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Abstract: In this paper, we explore the iterated Crank–Nicolson (ICN) algorithm for the one-
dimensional peridynamic model. The peridynamic equation of motion is an integro-differential
equation that governs structural deformations such as fractures. The ICN method was originally
developed for hyperbolic advection equations. In peridynamics, we apply the ICN algorithm for tem-
poral discretization and the midpoint quadrature method for spatial integration. Several numerical
tests are carried out to evaluate the performance of the ICN method. In general, the ICN method
demonstrates second-order accuracy, consistent with the Störmer–Verlet (SV) method. When the
weight is 1/3, the ICN method behaves as a third-order Runge–Kutta method and maintains strong
stability-preserving (SSP) properties for linear problems. Regarding energy conservation, the ICN
algorithm maintains at least second-order accuracy, making it superior to the SV method, which
converges linearly. Furthermore, selecting a weight of 0.25 results in fourth-order superconvergent
energy variation for the ICN method. In this case, the ICN method exhibits energy variation similar
to that of the fourth-order Runge–Kutta method but operates approximately 20% faster. Higher-
order convergence for energy can also be achieved by increasing the number of iterations in the
ICN method.

Keywords: peridynamics; nonlocal wave equation; iterated Crank–Nicolson method; Störmer-Verlet
method; superconvergence
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1. Introduction

Peridynamics, introduced by Stewart Silling in 2000 [1], is a nonlocal theory designed
to model structural deformations such as fractures [2–4]. Its applications extend beyond
mechanics and material science to encompass fields like biology and multi-physics prob-
lems [5]. The peridynamic equation of motion is an integro-differential equation governing
nonlocal wave interaction. Unlike classical continuum mechanics, which relies on partial
differential equations and faces challenges in handling discontinuities, the peridynamic
model employs summation of bond forces over a finite region known as the horizon. This
unique feature enables the effective handling of discontinuous solutions. Numerical meth-
ods for solving nonlocal wave equations involve temporal discretization of derivatives
and numerical integration in the spatial domain. Various numerical algorithms have been
adopted into peridynamics, including the meshfree method [6], quadrature methods [7,8],
the finite element method [9], the discontinuous Galerkin method [10], and spectral meth-
ods [11–14].

The Störmer–Verlet (SV) algorithm [15] is a popular temporal discretization method
for peridynamics, implemented in software packages like PDMATLAB2D [16]. The SV
method offers advantages such as time reversal and symplectic properties, leading to total
energy conservation in a Hamiltonian system. However, as noted by [17], the magnitude of
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the energy variation being greater than zero is influenced by the choice of the numerical
quadrature method.

The Crank–Nicolson (CN) algorithm [18] is another widely used numerical method
capable of preserving the total energy of a Hamiltonian system. The CN method is second-
order accurate, implicit, and unconditionally stable. Because it is implicit, the discretized
equations can be solved using iterations, leading to the explicit iterated Crank–Nicolson
(ICN) algorithm [19]. Originally developed for hyperbolic advection equations with appli-
cations in numerical relativity [20–22], the ICN method has been extended to other fields,
including beam propagation equations [23,24] and Maxwell’s equations for electromagnetic
waves [25,26].

In this paper, we explore the ICN method for peridynamics. We employ the weighted
ICN algorithm for temporal discretization and the midpoint quadrature method to evaluate
the integral in the spatial domain. Teukolsky [20] discovered that the number of iterations
does not affect the convergence rate of the ICN method for hyperbolic advection equations.
As long as the number of iterations is greater than one, the method maintains second-order
accuracy. Nevertheless, employing a large number of iterations can enhance its energy
conservation property, as it gradually converges to the energy-conserving solution of the
CN method. To enhance stability, the ICN method is generalized by introducing a weight θ,
leading to the θ-ICN method [27]. When the weight equals 0.5, the method reverts to the
original ICN method. However, the θ-ICN method degrades to first-order accuracy when θ
is not equal to 0.5. In another study [28], the θ-ICN method is refined to achieve second-
order accuracy by employing two different weights in consecutive iterations, with the
geometric mean of the two weights set to 0.5. Our investigation of the ICN method for
peridynamics aims to identify an efficient method with enhanced performance in terms of
energy conservation.

The paper is organized as follows: In Section 2, we review the peridynamic equation
and its corresponding numerical algorithms. In Section 3, we present the ICN method.
Numerical examples are presented in Section 4, followed by the conclusion.

2. Peridynamic Model

In this section, we briefly review the peridynamic equation and the corresponding
numerical methods.

Consider a one-dimensional homogeneous and infinitely long bar. The peridynamic
equation of motion can be written as

ρ(x)utt(x, t) =
∫ ∞

−∞
f (x̃ − x, u(x̃, t)− u(x, t))dx̃ + b(x, t), (1)

where u, ρ, b, and f represent the displacement field, the density, the external force, and the
pairwise force function, respectively. The limits of the integral in (1) are usually replaced
with finite numbers by ignoring the interaction between particles with a distance greater
than the horizon δ, or equivalently, f = 0 when |x̃ − x| > δ. Equation (1) can be written as

utt = A(x, u) + B(x, t), (2)

and a system of first-order equations

ut = v, (3)

vt = A(x, u) + B(x, t), (4)

where A(x, u) = 1
ρ

∫ ∞
−∞ f (x̃ − x, u(x̃, t)− u(x, t))dx̃ and B = b/ρ. If A(x, u) is linear, then

it can be written as A(x, u) = Āu, where Ā is a matrix that does not depend on u. For the
linear case, the total energy of the system is given by [17]

E =
1
2

vTv − 1
2

uT Āu − uT B. (5)
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By viewing the system (3) and (4) as a Hamiltonian system, we see that E is the
Hamiltonian (energy), so it is a conserved quantity.

The system of peridynamic Equations (3) and (4) can be written as a vector equation:

Ut = F(U), (6)

where U = (u, v)T and F(U) = (v, A(x, u) + B)T . In the linear case, A(x, u) = Āu, and we
obtain

Ut = LU, (7)

where

L =

(
0 I
Ā 0

)
. (8)

A numerical algorithm for the system (3) and (4) involves the evaluation of the integral
A(x, u) in the spatial domain and the temporal discretization of the derivatives ut and vt.
Using the Störmer–Verlet (SV) algorithm, we obtain the following discretized equations:

vn+1/2 = vn +
∆t
2
[A(x, un) + B(x, tn)], (9)

un+1 = un + ∆t vn+1/2, (10)

vn+1 = vn+1/2 +
∆t
2

[
A(x, un+1) + B(x, tn+1)

]
. (11)

Another popular method is the Runge–Kutta (RK) algorithm. A general s-stage RK
method for Equation (6) can be written in the following standard form:

ki = ∆t F

(
Un +

i−1

∑
j=1

aijk j

)
, i = 1, 2, ..., s (12)

Un+1 = Un +
s

∑
i=1

biki, (13)

where aij and bi are the coefficients in the Butcher tableau [29]. In particular, when s = 4,
a21 = a32 = 1/2, a43 = 1, a31 = a41 = a42 = 0, b1 = b4 = 1/6, and b2 = b3 = 1/3, we
obtain the classical fourth-order RK (RK4) method [30]

k1 = ∆t F(Un), (14)

k2 = ∆t F(Un +
1
2

k1), (15)

k3 = ∆t F(Un +
1
2

k2), (16)

k4 = ∆t F(Un + k3), (17)

Un+1 = Un +
1
6
(k1 + 2k2 + 2k3 + k4). (18)

To evaluate the integral A(x, u), a commonly used method is the quadrature algorithm.
For example, using the midpoint rule, we have

A(x, u) =
1
ρ

∫ ∞

−∞
f (x̃ − x, u(x̃, t)− u(x, t))dx̃ ≈ 1

ρ

N

∑
j=1

f j∆x, (19)

where f j = f (xj − x, u(xj, t) − u(x, t)). In the linear case, using the midpoint method,
the matrix Ā is symmetric and negative definite [17]. Other Newton–Cotes quadrature
rules include the composite trapezoidal rule
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A(x, u) ≈ 1
2ρ

(
f1 + 2

N−1

∑
j=2

f j + fN

)
∆x, (20)

and the composite Simpson’s rule

A(x, u) ≈ 1
3ρ

(
f1 + 4

(N−1)/2

∑
j=1

f2j + 2
(N−3)/2

∑
j=1

f2j+1 + fN

)
∆x, (21)

where N ≥ 3 must be an odd number for Simpson’s rule.
In general, the SV method (9)–(11) is second-order in time, and the midpoint quadra-

ture is second-order in space. Consequently, the resulting midpoint SV method attains
second-order accuracy in both space and time. The SV method exhibits time reversal and
symplectic properties. Therefore, it preserves the total energy of the Hamiltonian system.

In contrast, although commonly used RK methods have orders larger than two, they
do not preserve the total energy. Let E0 represent the energy at the initial time t = 0 and En
the energy at time step tn. For an energy-conserving method, we should have |En − E0| = 0
(or of the order of the machine round-off error), where |En − E0| is the total energy variation.
However, it has been reported in [17] that |En − E0| > 0 for the SV method.

3. The Iterated Crank–Nicolson Method

In [19,20,27,28], the iterated Crank–Nicolson (ICN) and the weighted ICN algorithms
are developed as predictor–corrector methods for hyperbolic partial differential equations.
The peridynamic equation is a second-order integro-differential Equation (1), which can
be expressed as a system of first-order differential Equations (3) and (4) and in its vector
form (6).

In this section, we start with the Crank–Nicolson (CN) method for system of first-order
differential equations and derive the ICN method as an iterative solver for the discretized
equations from the CN algorithm.

There are two versions of the CN algorithms for the system (6):

Un+1 = Un + ∆t
F(Un) + F(Un+1)

2
, (22)

and

Un+1 = Un + ∆tF
(

Un + Un+1

2

)
, (23)

where Un and Un+1 represent the solution at time tn = n∆t and tn+1 = (n + 1)∆t, respec-
tively. If the function F is linear in terms of the variable U, then Equations (22) and (23)
are equivalent.

The implicit nature of the method requires the solution of a system of linear or non-
linear equations. When solved by iterations, it leads to the ICN method. In [28], the ICN
method is developed using a predictor–corrector strategy, and it can also be derived using
the CN Equation (23). Here, we use the CN Equation (22) to demonstrate the ICN method,
and the other one can be derived following a similar procedure. The iterative solver is
a fixed-point iteration. Replacing Un+1 on the right-hand side of Equation (22) with the
k-th approximation Uk and letting the initial guess U0 = Un, we obtain the following
ICN solver:

U0 = Un, (24)

Uk+1 = Un + ∆t
(

F(Un) + F(Uk)

2

)
, k = 0, 1, 2, . . . , m (25)

Un+1 = Um+1, (26)
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where m is the number of iterations.
In the ICN Equations (24)–(26), if we use a weight θ when averaging F(Uk) and F(Un)

in Equation (25), then we obtain the θ-ICN method:

U0 = Un, (27)

Uk+1 = Un + ∆t[(1 − θ)F(Un) + θF(Uk)], k = 0, 1, 2, . . . , m (28)

Un+1 = Um+1. (29)

For hyperbolic equations, the stability region of the θ-ICN method depends on the
weight θ. As a result, by changing the weight θ, we can obtain more stable solutions.
However, the θ-ICN method is only first-order accurate [27]. In [28], the θ-ICN method is
improved to second-order accuracy by employing different weights at consecutive steps
where the number of iterations is fixed at two. The modified θ-ICN method can be written as

U1 = Un + ∆tF(Un), (30)

U2 = Un + 2θ∆t[(1 − θ)F(Un) + θF(U1)], (31)

Un+1 = Un + ∆t
[
(1 − θ̃)F(Un) + θ̃F(U2)

]
, (32)

and it is second-order accurate when θ̃ = 0.25/θ. This method is referred as the geometric-
averaging (GA) θ-ICN method as the geometric mean of θ and θ̃ is 0.5. When θ = 0.5,
it becomes the original ICN method. For simplicity, we call it the ICN method in the
proceedings part of the paper.

The ICN algorithm (30)–(32) is a three-stage RK method and can be written in standard
form as:

k1 = ∆tF(Un), (33)

k2 = ∆tF(Un + k1), (34)

k3 = ∆tF(Un + 2θ(1 − θ)k1 + 2θ2k2), (35)

Un+1 = Un + (1 − θ̃)k1 + θ̃k3. (36)

A special case is when θ = 1/3:

U1 = Un + ∆tF(Un), (37)

U2 = Un +
4
9

∆tF(Un) +
2
9

∆tF(U1), (38)

Un+1 = Un +
1
4

∆tF(Un) +
3
4

F(U2), (39)

and it is a third-order RK method as it satisfies the criteria given in Gottlieb and Shu’s
paper [31]. Furthermore, if F is linear, this method can further be written as

U(1) = Un + ∆tF(Un), (40)

U(2) = U(1) + ∆tF(U(1)), (41)

Un+1 =
1
3

Un +
1
2

U(1) +
1
6

(
U(2) + ∆tF(U(2))

)
, (42)

which makes it a strong stability-preserving (SSP) method [32].

4. Numerical Examples

In this section, we evaluate the performance of the ICN method for peridynamics
through a series of numerical simulations. Our computer codes were implemented in
MATLAB and executed on a 64-bit computer equipped with a 12th generation Intel(R)
Core(TM) i7-12700 CPU @ 2.10GHz.
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For simplicity, we set b(x, t) = 0 and ρ(x) = 1. The initial condition is u0(x) = exp(−x2)
and v0 = 0 unless otherwise specified. We consider the following pairwise force function:

f (x̃ − x, u(x̃, t)− u(x, t)) = C(x̃ − x)(u(x̃, t)− u(x, t))r, (43)

where the micromodulus function C is given by:

C(x) =
4√
π

e−x2
. (44)

The problem is linear when r = 1 and nonlinear otherwise. We use a finite horizon δ,
so that C(x) = 0, if |x| > δ.

The computational spatial domain [Lx, Ux] is divided into N grid cells so
∆x = (Ux − Lx)/N. We let the solution be defined at the center of each cell, so
Un

j = U(xj, n∆t) where xj = Lx + (j − 1
2 )∆x, j = 1, 2, . . . , N. Similar to [17], a periodic

boundary condition is implemented to approximate the original problem of an infinitely
long bar. The simulation stops before the solution reaches the boundaries.

To test the rate of convergence, we compute the L2 error norm

ϵL2 =

√
∑N

j=1 |u(xj, t)− ue(xj, t)|2

N
, (45)

and the L∞ error norm
ϵL∞ = maxj|u(xj, t)− ue(xj, t)|, (46)

where ue is the exact solution.
In our simulations, we primarily test the ICN methods with three weights: θ = 0.5,

1/3, and 0.25. The original ICN method corresponds to the case when θ = 0.5. The number
of iterations for the ICN method is fixed at two unless specified.

4.1. Linear Peridynamic Equation

In the linear case where r = 1, the computational domain is chosen to be [−20, 20],
and the mesh size is N. We let δ = 5 and ∆t = ∆x. The exact solution is given by [33]

ue(x, t) =
2√
π

∫ ∞

0
e−s2

cos(2sx) cos
(

2t
√

1 − e−s2
)

ds. (47)

The solutions of the ICN method (θ = 0.5) at four time instances are shown in Figure 1.
The results are very similar for other values of θ and the SV method. The grid size is
N = 800. We can see that the numerical solutions agree with the exact solutions very
well. Table 1 shows the rates of convergence of the solutions measured in the L2 and L∞
norms, together with the energy variation |En − E0|. In terms of L2 and L∞ norms, the SV
method converges quadratically, the same as the ICN methods with θ = 0.5 and 0.25. When
θ = 1/3, the ICN method is third-order.

A symplectic method preserves the total energy, meaning the energy variation
|En − E0| = 0 is ideally zero or is on the order of the machine round-off error. However,
as shown in Figure 2, the energy variation of the SV method is approximately 10−3, and as
illustrated in Table 1, besides being zero, it converges linearly. In the case of the ICN method
with θ = 0.5, the magnitude of energy variation grows and reaches approximately 10−2

when t = 10. On the other hand, when θ = 0.25, the energy variation grows much more
slowly, with its magnitude around 10−6, several orders of magnitude lower than the other
two methods. From Table 1, we have the following observations regarding the convergence
of the energy variation. Firstly, the ICN method is at least second-order accurate, surpassing
the linear convergence of the SV method. Secondly, when θ = 0.5, both the energy and the
solution exhibit second-order convergence. Thirdly, when θ = 1/3, the energy variation
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converges quadratically, despite its third-order solution. Lastly, when θ = 0.25, the ICN
method achieves fourth-order superconvergence.

( (a) (b)

( (c) (d)

Figure 1. Solutions to the linear peridynamic equation at (a) t = 2.5, (b) t = 5, (c) t = 7.5, and
(d) t = 10. Method: the ICN method with θ = 0.5. Mesh size N = 800.

Table 1. Comparison of the SV method and ICN methods with various weights for the linear
peridynamic equation. ϵL2 and ϵL∞ represent the numerical errors measured in the L2 and L∞ norms,
respectively. |En − E0| denotes the energy variation from t = 0 to t = 10.

Method N ϵL2 Rate ϵL∞
Rate |En − E0| Rate

SV

100 1.36 × 10−3 - 3.65 × 10−2 - 3.67 × 10−2 -
200 2.34 × 10−4 2.54 8.84 × 10−3 2.05 1.83 × 10−2 1.00
400 4.10 × 10−5 2.51 2.19 × 10−3 2.01 9.18 × 10−3 1.00
800 7.24 × 10−6 2.50 5.47 × 10−4 2.00 4.59 × 10−3 1.00

1600 1.28 × 10−6 2.50 1.37 × 10−4 2.00 2.30 × 10−3 1.00

ICN (θ = 0.5)

100 2.34 × 10−3 - 6.18 × 10−2 - 3.87 × 10−1 -
200 4.67 × 10−4 2.32 1.76 × 10−2 1.81 1.45 × 10−1 1.42
400 8.27 × 10−5 2.50 4.42 × 10−3 2.00 3.89 × 10−2 1.90
800 1.45 × 10−5 2.51 1.10 × 10−3 2.01 9.84 × 10−3 1.98

1600 2.56 × 10−6 2.50 2.74 × 10−4 2.00 2.47 × 10−3 2.00

ICN (θ = 1
3 )

100 7.59 × 10−4 - 2.11 × 10−2 - 1.60 × 10−1 -
200 7.30 × 10−5 3.38 2.79 × 10−3 2.92 4.99 × 10−2 1.68
400 6.57 × 10−6 3.47 3.56 × 10−4 2.97 1.30 × 10−2 1.94
800 5.83 × 10−7 3.49 4.45 × 10−5 3.00 3.28 × 10−3 1.99

1600 5.16 × 10−8 3.50 5.57 × 10−6 3.00 8.22 × 10−4 2.00

ICN (θ = 0.25)

100 1.45 × 10−3 - 3.91 × 10−2 - 1.58 × 10−2 -
200 2.38 × 10−4 2.61 8.99 × 10−3 2.12 9.70 × 10−4 4.02
400 4.12 × 10−5 2.53 2.20 × 10−3 2.03 6.06 × 10−5 4.00
800 7.25 × 10−6 2.51 5.48 × 10−4 2.00 3.79 × 10−6 4.00

1600 1.28 × 10−6 2.50 1.37 × 10−4 2.00 2.37 × 10−7 4.00
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Figure 2. Time history of the total energy variation E(t)− E(0). The grid size is N = 800.

Table 2 compares the SV, the ICN with θ = 0.25, and the classical RK4 methods.
For RK4, both the solution and the energy variation have fourth-order convergence, making
it one of the optimal choices for temporal discretization. The energy variation of the SV
method is four or five orders of magnitude larger than the other two methods. The ICN
method operates approximately 30% slower than the SV method due to the additional
evaluation of integrals in the updating equations. The ICN and RK4 methods yield similar
energy variation for both resolutions N = 1600 and N = 3200, while the ICN solver runs
approximately 20% faster than the RK4 method at both resolutions.

Table 2. Comparison of energy variation and run time for three methods (SV, ICN, and RK4).

Method |En − E0| (N = 1600) Run Time (s) |En − E0| (N = 3200) Run Time (s)

SV 2.30 × 10−3 20 1.15 × 10−3 139

RK4 2.10 × 10−7 33 1.32 × 10−8 236

ICN (θ = 0.25) 2.37 × 10−7 26 1.48 × 10−8 184

4.2. Energy Conservation for the ICN Method with Different Weights

In this test, we investigate the relationship between the energy variation and the weight
θ in the ICN method. The simulation setup remains consistent with the previous section,
where the grid size is fixed at N = 800. The results presented in Table 3 demonstrate
that as the weight θ decreases from 0.7 to 0.2, the energy variation En − E0 increases
from −1.7 × 10−2 to 1.9 × 10−3. Notably, when θ = 0.25, the energy variation reaches its
minimum amplitude of 3.7 × 10−6.
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Table 3. Energy variation of the ICN method with different weights.

θ En − E0

0.70 −1.77 × 10−2

0.60 −1.38 × 10−2

0.50 −9.84 × 10−3

0.40 −5.91 × 10−3

1/3 −3.28 × 10−3

0.30 −1.97 × 10−3

0.25 3.79 × 10−6

0.20 1.98× 10−3

4.3. The ICN Method with Multiple Iterations

In this example, we study the original ICN method (θ = 0.5) with a varying number
of iterations. Firstly, we examine the relationship between the energy variation and the
number of iterations in the ICN method. The simulation setup remains consistent with
Section 4.1. We consider two grid sizes: N = 800 and 1600. As shown in Table 4, as m
increases, the energy variation decreases. For N = 800 and N = 1600, the energy variations
reach the order of the machine round-off error of 10−15 when m is greater than 10 and
8, respectively. This example illustrates that the ICN method can preserve energy up to
machine precision by employing a large number of iterations. Furthermore, when the grid
size increases, the energy variation reaches machine precision at a faster rate. For N = 1600,
achieving the order of 10−7 requires 3 iterations, with a CPU run time of approximately
37 s. This runtime is not substantially greater than that required for the ICN method with
θ = 0.25 (26 s) and the RK4 method (33 s) in the previous test, as shown in Table 2.

Table 4. Energy variation of the ICN method when the number of iterations changes. En is the total
energy at t = 10.

Number of
Iterations m En − E0 (N = 800) Run Time (s) En − E0 (N = 1600) Run Time (s)

1 9.88 × 10−3 2.65 2.47 × 10−3 20.44
2 −9.84 × 10−3 3.56 −2.47 × 10−3 29.37
3 −1.51 × 10−5 4.37 −9.47 × 10−7 37.64
4 1.51 × 10−5 5.23 9.47 × 10−7 44.99
5 2.54 × 10−8 6.07 3.98 × 10−10 52.17
6 −2.54 × 10−8 6.92 −3.98 × 10−10 58.95
7 −4.55 × 10−11 7.72 −1.78 × 10−13 66.40
8 4.55 × 10−11 8.58 1.78 × 10−13 72.49
9 8.53 × 10−14 9.45 ∼10−15 80.32
10 −8.70 × 10−14 10.27 ∼10−15 89.71
11 ∼10−15 11.15 ∼10−15 95.04
12 ∼10−15 11.97 ∼10−15 101.81

From the previous multi-iteration test, we observe that when the number of iterations is
three, the original ICN method exhibits an energy variation at the same order of magnitude
as the RK4 method. This motivates us to conduct a convergence test for the three-iteration
ICN method. The results are presented in Table 5. We find that the three-iteration ICN
method demonstrates second-order convergence in terms of the L2 and L∞ error norms,
and fourth-order convergence in terms of energy conservation. Since both the three-iteration
ICN and the RK4 methods are four-stage methods, they have comparable CPU run times.

Furthermore, we conduct a series of simulations to examine the rate of convergence
of the ICN method with varying numbers of iterations, as shown in Table 6. We observe
that as the number of iterations increases, the rate of convergence also increases. When the
number of iterations is an even number, the rate of convergence remains the same as the
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number of iterations. However, for an odd number of iterations m, the rate of convergence
is m + 1. These results indicate that a higher order of convergence (in terms of energy
conservation) can be achieved by increasing the number of iterations in the ICN method.

Table 5. The three-iteration ICN method (θ = 0.5) for linear peridynamic equation.

N L2 Rate L∞ Rate |En − E0| Rate

100 3.11 × 10−3 - 7.78 × 10−2 - −5.22 × 10−2 -
200 4.90 × 10−4 2.66 1.86 × 10−2 2.06 −3.77 × 10−3 3.79
400 8.31 × 10−5 2.56 4.44 × 10−3 2.07 −2.41 × 10−4 3.97
800 1.45 × 10−5 2.52 1.10 × 10−3 2.02 −1.51 × 10−5 3.99
1600 2.56 × 10−6 2.50 2.74 × 10−4 2.00 −9.47 × 10−7 4.00

Table 6. Energy convergence rate as a function of the number of iterations in the ICN method.

Number of Iterations m Rate of Convergence of Energy

1 2.0
2 2.0
3 4.0
4 4.0
5 6.0
6 6.0
7 8.0
8 8.0

4.4. Comparison of Three Quadrature Formulas for Linear Peridynamics

As shown in [17], the choice of quadrature formula for integration impacts the accu-
racy of energy conservation. In this example, we examine three different Newton–Cotes
quadrature formulas: the midpoint rule (Equation (19)), the composite trapezoidal rule
(Equation (20)), and the composite Simpson’s rule (Equation (21)). For Simpson’s rule,
we adjust the grid size to N + 1, as N is an even number in our simulations. Results are
presented in Tables 7 and 8. We do not observe significant differences among the three
quadrature formulas. All three methods exhibit the same order of convergence. The L2,
L∞, and energy variation are of comparable magnitudes across all three methods, with the
differences being negligible. This example suggests that the degree of the Newton–Cotes
quadrature formulas does not significantly affect the convergence rate.

Table 7. Comparison of three quadrature formulas for the peridynamic simulation using the SV
method. ϵL2 and ϵL∞ represent the numerical errors measured in the L2 and L∞ norms, respectively.
|En − E0| denotes the energy variation from t = 0 to t = 10.

Method N ϵL2 Rate ϵL∞
Rate |En − E0| Rate

SV + midpoint

100 1.3626781938 × 10−3 - 3.6546374629 × 10−2 - −3.6686416132 × 10−2 -
200 2.3386240754 × 10−4 2.54 8.8420752239 × 10−3 2.05 −1.8341493309 × 10−2 1.00
400 4.1038150512 × 10−5 2.51 2.1896453314 × 10−3 2.01 −9.1848205222 × 10−3 1.00
800 7.2412556153 × 10−6 2.50 5.4733686142 × 10−4 2.00 −4.5945520876 × 10−3 1.00
1600 1.2794967586 × 10−6 2.50 1.3681318781 × 10−4 2.00 −2.2975549644 × 10−3 1.00

SV + composite trapezoidal

100 1.3626781938 × 10−3 - 3.6546374631 × 10−2 - −3.6686416132 × 10−2 -
200 2.3386240741 × 10−4 2.54 8.8420752309 × 10−3 2.05 −1.8341493309 × 10−2 1.00
400 4.1038150469 × 10−5 2.51 2.1896453350 × 10−3 2.01 −9.1848205222 × 10−3 1.00
800 7.2412556001 × 10−6 2.50 5.4733686322 × 10−4 2.00 −4.5945520876 × 10−3 1.00
1600 1.2794967533 × 10−6 2.50 1.3681318870 × 10−4 2.00 −2.2975549644 × 10−3 1.00
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Table 7. Cont.

Method N ϵL2 Rate ϵL∞
Rate |En − E0| Rate

SV + composite Simpson

100 1.3532560898 × 10−3 - 3.6461913740 × 10−2 - −3.6637130961 × 10−2 -
200 2.3386240745 × 10−4 2.53 8.8420752291 × 10−3 2.04 −1.8341493309 × 10−2 1.00
400 4.1038150476 × 10−5 2.51 2.1896453345 × 10−3 2.01 −9.1848205222 × 10−3 1.00
800 7.2412556013 × 10−6 2.50 5.4733686308 × 10−4 2.00 −4.5945520876 × 10−3 1.00
1600 1.2794967535 × 10−6 2.50 1.3681318867 × 10−4 2.00 −2.2975549644 × 10−3 1.00

Table 8. Comparison of three quadrature formulas for the peridynamic simulation using the ICN
method (θ = 0.25). ϵL2 and ϵL∞ represent the numerical errors measured in the L2 and L∞ norms,
respectively. |En − E0| denotes the energy variation from t = 0 to t = 10.

Method N ϵL2 Rate ϵL∞
Rate |En − E0| Rate

ICN + midpoint

100 1.4531942146 × 10−3 - 3.9071358030 × 10−2 - 1.5796799025 × 10−2 -
200 2.3797519266 × 10−4 2.61 8.9850019534 × 10−3 2.12 9.7041252646 × 10−4 4.02
400 4.1222863495 × 10−5 2.53 2.1984031675 × 10−3 2.03 6.0617629614 × 10−5 4.00
800 7.2494508340 × 10−6 2.51 5.4789636190 × 10−4 2.00 3.7885364605 × 10−6 4.00
1600 1.2798591070 × 10−6 2.50 1.3684841395 × 10−4 2.00 2.3678339289 × 10−7 4.00

ICN + composite trapezoidal

100 1.4531942145 × 10−3 - 3.9071358029 × 10−2 - 1.5796799025 × 10−2 -
200 2.3797519254 × 10−4 2.61 8.9850019605 × 10−3 2.12 9.7041252645 × 10−4 4.02
400 4.1222863452 × 10−5 2.53 2.1984031712 × 10−3 2.03 6.0617629611 × 10−5 4.00
800 7.2494508188 × 10−6 2.51 5.4789636369 × 10−4 2.00 3.7885364605 × 10−6 4.00
1600 1.2798591017 × 10−6 2.50 1.3684841484 × 10−4 2.00 2.3678340710 × 10−7 4.00

ICN + composite Simpson

100 1.4433953589 × 10−3 - 3.8867087321 × 10−2 - 1.5770288980 × 10−2 -
200 2.3797519257 × 10−4 2.60 8.9850019587 × 10−3 2.11 9.7041252645 × 10−4 4.02
400 4.1222863459 × 10−5 2.53 2.1984031706 × 10−3 2.03 6.0617629612 × 10−5 4.00
800 7.2494508201 × 10−6 2.51 5.4789636355 × 10−4 2.00 3.7885364570 × 10−6 4.00
1600 1.2798591019 × 10−6 2.50 1.3684841481 × 10−4 2.00 2.3678339645 × 10−7 4.00

4.5. Linear Peridynamic Model with Discontinuous Initial Condition

In this example, we explore our method’s capability for handling discontinuities,
focusing on discontinuous initial conditions [34,35]. The simulation setup mirrors the
previous linear example in Section 4.1, except for the initial condition.

First, we utilize the following piecewise constant function as the initial displacement
field u0:

u0(x) =


1, |x| < 2

0.5, 2 ≤ |x| < 5
0, otherwise.

(48)

The initial velocity field v0 is set to zero. The solutions of the ICN method (θ = 0.25)
at four time instances are shown in Figure 3, and the convergence rates are listed in Table 9.

For the second experiment in this section, we apply a piecewise constant function as
the initial velocity field v0:

v0(x) =


0.5, |x| < 2
0.25, 2 ≤ |x| < 5

0, otherwise.
(49)

The initial displacement field is a continuous function u0(x) = exp(−x2). The results
are presented in Figure 4 and in Table 10. When computing the convergence rates, we
utilize the solution obtained on a fine mesh (N = 3200) as the reference solution. In
both scenarios, the convergence rates are akin to those observed with continuous initial
conditions. Specifically, with regard to the L2 and L∞ error norms, both the SV method
and the ICN method demonstrate quadratic convergence. In terms of energy conservation,
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the SV method displays linear convergence, whereas the ICN method with θ = 0.25
achieves fourth-order accuracy.

( (a) (b)

( (c) (d)

Figure 3. Solutions of the linear peridynamic equation with piecewise constant initial displacement
field (48) at (a) t = 2.5, (b) t = 5, (c) t = 7.5, and (d) t = 10.

Table 9. Numerical errors and convergence rates of the SV and the ICN methods for the linear
peridynamic equation with piecewise constant initial displacement field (48). ϵL2 and ϵL∞ represent
the numerical errors measured in the L2 and L∞ norms, respectively. |En − E0| denotes the energy
variation from t = 0 to t = 10.

Method N ϵL2 Rate ϵL∞
Rate |En − E0| Rate

SV

100 3.31 × 10−3 - 1.03 × 10−1 - 6.40 × 10−2 -
200 4.78 × 10−4 2.79 2.74 × 10−2 1.91 3.26 × 10−2 0.97
400 8.17 × 10−5 2.55 7.53 × 10−3 1.86 1.63 × 10−2 1.00
800 1.36 × 10−5 2.58 1.90 × 10−3 1.99 8.14 × 10−3 1.00

1600 1.89 × 10−6 2.85 3.91 × 10−4 2.28 4.06 × 10−3 1.00

ICN (θ = 0.25)

100 3.53 × 10−3 - 1.09 × 10−1 - 3.13 × 10−2 -
200 4.89 × 10−4 2.85 2.81 × 10−2 1.95 2.00 × 10−3 3.96
400 8.22 × 10−5 2.57 7.59 × 10−3 1.89 1.26 × 10−4 3.99
800 1.37 × 10−5 2.59 1.90 × 10−3 2.00 7.88 × 10−6 4.00

1600 1.89 × 10−6 2.85 3.91 × 10−4 2.28 4.92 × 10−7 4.00
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( (a) (b)

( (c) (d)

Figure 4. Solutions of the linear peridynamic equation with piecewise constant initial velocity field
(49) at (a) t = 2.5, (b) t = 5, (c) t = 7.5, and (d) t = 10.

Table 10. Numerical errors and convergence rates of the SV and the ICN methods for the linear
peridynamic equation with piecewise constant initial velocity field (49). ϵL2 and ϵL∞ represent the
numerical errors measured in the L2 and L∞ norms, respectively. |En − E0| denotes the energy
variation from t = 0 to t = 10.

Method N ϵL2 Rate ϵL∞
Rate |En − E0| Rate

SV

100 3.47 × 10−3 - 8.95 × 10−2 - 2.99 × 10−2 -
200 2.69 × 10−4 3.69 9.93 × 10−3 3.17 1.51 × 10−2 0.99
400 4.69 × 10−5 2.52 2.61 × 10−3 1.93 7.54 × 10−3 1.00
800 7.93 × 10−6 2.56 6.62 × 10−4 1.98 3.76 × 10−3 1.00

1600 1.15 × 10−6 2.78 1.41 × 10−4 2.23 1.88 × 10−3 1.00

ICN (θ = 0.25)

100 3.50 × 10−3 - 9.14 × 10−2 - 1.04 × 10−2 -
200 2.64 × 10−4 3.73 9.78 × 10−3 3.22 6.35 × 10−4 4.03
400 4.55 × 10−5 2.54 2.38 × 10−3 2.04 3.94 × 10−5 4.01
800 7.67 × 10−6 2.57 5.81 × 10−4 2.04 2.45 × 10−6 4.01

1600 1.11 × 10−6 2.78 1.25 × 10−4 2.22 1.53 × 10−7 4.00

4.6. Nonlinear Peridynamic Equation

For the nonlinear case, we set r = 3 in Equation (43). The computational domain
spans [−10, 10], with ∆t = ∆x. The solution obtained through the ICN method is presented
in Figure 5, and Table 11 illustrates the convergence rates of these solutions. We use the
solution on a fine mesh (N = 3200) as the exact solution when computing the convergence
rates. From the tabulated data, it is evident that when θ = 1/3, the ICN method demon-
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strates third-order convergence. For the other two values of θ, the ICN method converges
quadratically, similar to the SV method.

( (a) (b)

( (c) (d)

Figure 5. Solutions to the nonlinear peridynamic equation at (a) t = 2.5, (b) t = 5, (c) t = 7.5, and
(d) t = 10.

Table 11. Comparison of the SV method and the ICN methods with various weights for the nonlinear
peridynamic equation. ϵL2 and ϵL∞ represent the numerical errors measured in the L2 and L∞

norms, respectively.

Method N ϵL2 Rate ϵL∞
Rate

SV

100 2.12 × 10−4 - 4.45 × 10−3 -
200 2.33 × 10−5 3.19 7.04 × 10−4 2.66
400 4.11 × 10−6 2.50 1.91 × 10−4 1.88
800 7.65 × 10−7 2.42 6.45 × 10−5 1.57

ICN (θ = 0.5)

100 2.15 × 10−4 - 7.65 × 10−2 -
200 2.46 × 10−5 3.13 1.54 × 10−2 2.31
400 4.20 × 10−6 2.55 3.01 × 10−3 2.36
800 7.68 × 10−7 2.45 6.26 × 10−4 2.27

ICN (θ = 1
3 )

100 8.39 × 10−4 - 2.14 × 10−2 -
200 8.03 × 10−5 3.39 2.84 × 10−3 2.92
400 7.36 × 10−6 3.45 3.63 × 10−4 2.97
800 6.59 × 10−7 3.48 5.17 × 10−5 2.81

ICN (θ = 0.25)

100 3.11 × 10−4 - 8.13 × 10−3 -
200 3.34 × 10−5 3.22 1.16 × 10−3 2.81
400 4.77 × 10−6 2.81 2.40 × 10−4 2.27
800 7.92 × 10−7 2.59 7.16 × 10−5 1.75
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5. Conclusions

In summary, we utilized the iterated Crank–Nicolson (ICN) algorithms to solve the
integro-differential equation for peridynamic models. The weighted ICN method, a gen-
eralization of the original ICN method that introduces a weight θ while maintaining at
least second-order accuracy, was employed for temporal discretization. Additionally, we
employed a midpoint quadrature algorithm for numerical integration in the spatial domain.

A series of numerical simulations were conducted to assess the performance of the
ICN method for linear and nonlinear peridynamic equations in one dimension. The results
confirmed the convergence rates of the ICN methods with various weights, including
θ = 0.5, 1/3, and 0.25. Additionally, we compared three quadrature formulas and observed
similar results for both the Störmer–Verlet (SV) and ICN methods, indicating that the choice
of quadrature formula does not significantly affect the rate of convergence.

Our focus on energy conservation in the linear peridynamic model led to several key
observations. Firstly, for the original ICN method with θ = 0.5, increasing the number
of iterations reduced the energy variation until it reached machine precision, with the
convergence rate increasing as iterations increased. Secondly, decreasing θ resulted in a
corresponding decrease in the magnitude of the energy variation, with θ = 0.25 yielding
the minimum value. Thirdly, we noted that the rate of energy convergence was lower
than that of the solution for the SV method and the ICN method with θ = 1/3. While the
SV method exhibited second-order convergence with linear energy convergence, the ICN
method with θ = 1/3 achieved third-order accuracy with quadratic energy convergence.
When θ = 0.5, both the solution and the energy variation were second-order convergent.
Finally, when θ = 0.25, the ICN method demonstrated fourth-order superconvergence
regarding energy conservation, with energy variation at the same order of magnitude as
the fourth-order Runge–Kutta method while saving approximately 20% of the CPU time.
Similar results were obtained with piecewise constant initial conditions, and a nonlinear
case was also tested to verify the rate of convergence of the ICN method.

In conclusion, our numerical tests demonstrated that the ICN method is well suited
for peridynamic simulation and generally outperforms the SV method in terms of en-
ergy conservation.
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