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Abstract: Thermo-vortices (bright spots, blobs, swirls) in cosmic fluids (planetary atmospheres,
or even black hole accretion disks) are sometimes observed as clustered into quasi-symmetrical
quasi-stationary groups but conceptualized in models as autonomous items. We demonstrate—using
the (analytical) Sharp Boundaries Evolution Method and a generic model of a thermo-vorticial field
in a rotating “thin” fluid layer in a spacetime that may be curved or flat—that these thermo-vortices
may be not independent but represent interlinked parts of a single, coherent, multi-petal macro-
structure. This alternative conceptualization may influence the designs of numerical models and
image-reconstruction methods.

Keywords: vortex dynamics; relativistic dynamics; fluid dynamics; hot spots; thermo-vortices;
large-scale structures; black hole accretion disk; planetary atmosphere; planetary ocean; methods:
analytical

1. Introduction

Recently, a highly complex analysis of observations of the black hole Sagittarius A*
(Sgr A*) yielded an impressive image (see Figure 1, panel A) that suggests the possible
presence of three bright spots within its structure outside the shadow of a black hole (see
Refs. [1–6]). Visually, this phenomenon is resemblant of the formations already observed
in the atmospheres of planets (also shown in Figure 1, panels B–D). Indeed, regular in
shape, long-lasting vortices and multi-vortex structures appear frequently in nature; some
well-known examples are the Antarctic Polar Vortex, oceanic vortices, cyclones and anti-
cyclones in atmospheres, cyclone storms on Jupiter poles, and analogous vortex structures
in the atmospheres of outer planets. If further observational studies confirm that the
bright spots in Figure 1A are not artifacts of the image-reconstruction algorithm but are
indeed physical in nature (apparently associated with temperature anomalies/emissions in
localized areas), then the list of known cosmic environments with multi-vortex structures
would be expanded to include black hole accretion disk flows.

All vortex structures are naturally studied using frameworks and models that seem
most appropriate for their native environments. Typically, however, the individual vortices
are conceptualized as stand-alone items, sometimes interacting, sometimes not.

In this paper—while contemplating the image presented in Figure 1A and its visually
bright spots (although the only significant real feature in the image is the shadow and its
diameter, the non-uniformity of the brightness along the ring is not very significant and
is subject to processing/reconstruction methods)—we analytically demonstrate that such
spots may exist and represent connected “petals” of a single multi-petal thermo-vorticial macro-
structure. Within such a structure, the vorticity of the “hydrodynamic” (i.e., collective)
flow is interlinked with the temperature field of the medium. This vorticity, a Lagrangian
characteristic of the hydrodynamic flow, is transported by the flow, thus creating spots with
an elevated temperature.
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Figure 1. First Row, Left Panel (A): Composite image of the black hole Sgr A* derived from radio
(1.3 mm) data collected by the Event Horizon Telescope (EHT) Collaboration [1]. First Row, Right
Panel (B): Multiple cyclones on Jupiter’s North Pole [7]. Second Row, Left Panel (C): The Antarctic
Ozone Hole in Earth’s stratosphere; the vortex is quasi-circular on 24 September 2001. Second Row,
Right Panel (D): The vortex evolved into a two-petal structure by 24 September 2002. Credit: NASA’s
Earth Observatory [8].

The awareness of the existence of two interpretations of the structure and the linkage of
thermo-vortices is important. The initial conceptualization—whether the thermo-vortices are
treated from the start as stand-alone items or as inextricable parts of one macro-structure—
may meaningfully influence the numerical models and image-reconstruction methods.

In our model, we make the following assumptions and impose the following restric-
tions: the flow of the disk fluid is assumed to be large-scale (the Reynolds number or its
analogue is large, i.e., viscous effects are small and may be neglected); the flow is slow (rela-
tive to the sound speed); and the assumption of medium incompressibility is acceptable. To
simplify the mathematical complexity of analytic solutions, our model considers the “thin”-
layer case: (1) it is assumed that the accretion disk is relatively thin, i.e., the characteristic
size of the structure is assumed to be significantly larger than the characteristic thickness
of the disk (layer) at the location at which the structure is localized; (2) the motion of the
medium is assumed to be quasi-two-dimensional, i.e., the component of the collective
flow velocity in the direction perpendicular to the disk plane is suppressed or significantly
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smaller in magnitude than the characteristic flow velocity in the disk plane (in this context,
a “thick” system may also, in principle, be described using the two-dimensional treatment if
a vorticity patch is broken into columnar sub-patches, as in Refs. [9,10]); (3) the temperature
decreases towards the center of the disk due to the assumption that the heating of the disk
mainly occurs not from the hot central body but from the periphery where the capture and
destruction of captured bodies occurs due to the tidal effect.

The medium (disk layer) in our model is presumed to rotate. Vorticity is non-zero
where there is velocity shear. We describe the “average” vorticity, representative of some
“band” within the disk, using the symbol ω. (Obviously, this vorticity ω is not the same as
the spin of the central body or the characteristic angular velocity Ω of the disk’s rotation.)
When Ω is “sufficiently” high, the centrifugal effects (in the rotating frame) become promi-
nent in the leading terms, and even dominate the gravitational effect of attraction to the
central body.

To avoid any confusion, for the modelers accustomed to working with trajectories for
particles, let us emphasize that we work with the field, not with individual particles (or their
trajectories or orbits). Perhaps what may help the reader grasp this nuance better is the
reminder that the velocity of the displacement of electrons in a usual house-wire is not the
same thing as the speed of propagation of the electro-magnetic field perturbation along
that same wire.

Additionally, we limit our consideration to the case when the magnetic field is weak
and the plasma is non-relativistic. This means that in our treatment we neglect the effect of
the magnetic field on the large-scale “hydrodynamics” of the flow, i.e., in the full tensor
of the energy–momentum of the macroscopic “hydrodynamic” flow combined with the
electromagnetic field, we neglect the magnetic part. However, this does not mean that this
“weak” magnetic field has no impact on the electromagnetic radiation (for example, on the
polarization of the synchrotron radiation). Indeed, as Ref. [11] indicates, EHT images in
linear polarization have identified a coherent spiral pattern around the black hole, produced
from ordered magnetic fields threading the emitting plasma.

Finally, our focus is on steady-state thermo-hydrodynamic structures. This is important
to keep in mind for numerical modelers who typically initiate their models at time t = 0
(and may start, for example, with the spherical Bondi accretion) and allow their models
to evolve towards some steady state (hoping to minimize accumulated errors along the
way). In contrast, our steady-state is derived analytically; we jump straight to the model of
a flattened rotating medium (disk, layer) and examine its quasi-stationary dynamics.

The paper is organized as follows: Section 2 explains the model, Section 3 presents
the results, and Section 4 concludes with the discussion. Appendices A and B explain the
details of calculations; Appendix C elaborates the accretion disk model.

The derived insights may be useful for analyses of environments ranging from ac-
cretion disks (in an approximation of curved spacetime) to planetary atmospheres (in an
approximation of flat spacetime): the design of numerical models and image reconstruction
methods may be influenced by how the steady-state of the media is conceptualized—as
multiple (separate) quasi-localized vortices or as a single (integrated) multi-petal structure.

2. Model

We use the quasi-2D fluid dynamics model, which describes large-scale vorticial
motions of a “thin” rotating disk in a mildly curved spacetime.

Coordinates and Notations: In the model, we use the coordinate system where x ≡ x1
and y ≡ x2 are the axes in the horizontal plane and z points vertically up. We employ the
following notations: Φ is the potential of the force field; temperature θ ≡ θ0 + τs + τ, where
θ0 is the (constant) baseline temperature of the disk, τs is the spatially inhomogeneous,
axially symmetrical, time-independent part of the temperature distribution, and τ = τ(t, xj)
is the temperature—a dynamical quantity related to the vortex structures in the fluid; vi
signifies the components of the velocity field v; ω3 is the z-component of vorticity [∇× v];
and ϵijk is the standard alternating tensor (ϵ123 = 1, ϵijk = 0 when any two indices are
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equal, ϵijk = +1 for any even number of permutations of indices from ϵ123, and ϵijk = −1
for any odd number of permutations). Note also that ϵ3jk∂jτs∂kΦ ≡ 0 because both τs
and Φ are axially symmetric. Furthermore, we assume that the band of the disk between
r1 and r2 > r1, where the vortex structure of interest is formed, is characterized by an
approximately constant angular velocity Ω = (0, 0, Ω).

“Thin” Disk: In the simplest model—in which the vortex structures are realized in
a ”thin” flat sheet with h ≪ L, V2 ≪ s2 ≪ c2, Re ≫ 1—the z-component of velocity, w,
vanishes and may be dropped in all formulas (see Ref. [10], developing this particular
model, or classical Refs. [12–14]). Here, h is the characteristic local thickness of the disk,
which is slowly dependent on the radial coordinate; L is the characteristic spatial length
over which the macroscopic flow characteristics change substantially; s is the so-called
“isothermal sound speed”; V is the characteristic fluid velocity; c is the speed of light;
dimensionless parameter Re is the Reynolds number (or its analogs) such that Re ≫ 1.

The System of Equations: The set of equations for the z-component of vorticity ω3
and for variations in temperature τ becomes:

∂jvj = 0, Dtω3 = βϵ3jk∂jτ∂kΦ, Dtτ = −vi∂iτs, (1)

where indices j, k = 1, 2. Operator Dt ≡ ∂t + vk∂k is the total derivative. The condition of
incompressibility div v = 0 does not mean that the density of the medium is constant. This
condition simply means that the density evolves according to the equation (∂t + vI∂i)ρ = 0.
Taking ρ = ρ0 + (∂ρ/∂T)p(T − T0) + (∂ρ/∂p)T(p − p0) ≃ ρ0(1 − β(T − T0)), after some
simple manipulation, the evolution equation for temperature perturbations takes the form
of the third equation in Equation (1). For the equation of state, we will assume, in accordance
with the assumption div v → 0, that the density essentially depends only on the temperature
and not on the pressure. Thus, we write ρ ≃ ρ0(1 − β(T − T0)), where subscript 0 denotes
the reference values. The coefficient of thermal expansion β = −ρ−1(∂ρ/∂p)T is presumed
to be constant in the layer. Since quantity β(T − T0) is generally small (relative to 1), one
may neglect the density variations and hence replace ρ with the constant value ρ0 in all
terms of the dynamic momentum equation except for the “buoyancy” term.

We will presume that a collective fluid motion forms in the system, for which the
relationship between the flow velocity and temperature variation is given by

vi = aϵ3ij∂jτ ≡ aϵij∂jτ. (2)

Here, tensor ϵij is the antisymmetric unit, second-order tensor, for which ϵ12 = −ϵ21
and the diagonal components are zero; and a is some parameter assuring the correct
dimension for the relationship between the considered quantities. In this case, vorticity
ω3 = −a∆τ + 2Ω3, where ∆ = ∂2

1 + ∂2
2. Then, notably, the presence (or absence) of the

component with constant Ω3 does not impact the core set of Equation (1).
As mentioned, the vorticial field is intertwined with the thermal field. Thus, in

addition to the set of Equation (1), any model must include equations for the temperature
field. We set the ansatz for the temperature profile as θ ≡ θ0 + τs + τ, where θ0 is the
(constant) baseline temperature of the disk, τs is the spatially inhomogeneous, axially
symmetrical, time-independent part of the temperature distribution, and τ = τ(t, xj) is
the temperature—a dynamical quantity related to the vortex structures in the fluid. We
chose the stationary temperature deviation τs in a form that allows for a self-consistent
analytical solution. This choice does not contradict experimental observations (see, for
example, Ref. [15]). Therefore, we will model (using notation r = |x| and x = (x1, x2),
and the Taylor series expansion) the background distribution of the time-independent
temperature deviation τs in the simplest form:

τs =
τ1

2
r2 , τ1 > 0 , (3)
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where τ1 is the parameter characterizing the “rapidity” of the increase in the basal tem-
perature of the medium as the distance r from the disk rotation axis grows. (Generally
speaking, the question of what shape the temperature profile takes within a black hole’s
accretion disk is an open one. Astronomical measurements remain challenging, despite
significant progress. See, for example, Refs. [15,16].) When the leading contribution to po-
tential Φ comes from the centrifugal effects, we can express Φ = −K2|x|2 − (1/2)[Ω, x]2 ≃
−(1/2)[Ω, x]2. Here, the square brackets denote the cross product of two vectors. Param-
eter K2 is determined by the expression K2 = GMBH/r3 = c2rg/(2r3), where K ∼ r−3/2

is the so-called Kepler parameter (in the Newtonian approximation of gravity), which is
interpreted as the angular velocity of a test particle on a circular orbit at distance r: G is
the gravitational constant; c is the speed of light; MBH is the black hole “mass”. Thus,
when angular velocity Ω is presumed to remain constant within the band of r where
the thermo-vorticial macro-structure forms, the set of the interlinked nonlinear evolution
equations becomes:

a∂t∆τ + a2ϵik∂iτ∂k∆τ = βΩ2ϵikxi∂kτ, (4)

∂tτ + aϵik∂iτ∂kτ = aτ1ϵikxi∂kτ, (5)

where, obviously, quantity vk = aϵik∂iτ is the k-th component of the flow velocity.
Equations (4) and (5) have a transparent physical meaning. Their left sides describe the

transport of dynamic (field) quantities: vorticity (∼∆τ) and temperature perturbation (τ).
The right sides of these equations describe “sources” that generate the vortices and the tem-
perature perturbations. In other words, the vortices are generated by the source described
by the right part of Equation (4), which is effective (non-zero) only when there exists an
inhomogeneous gravity-like force field Φ ∼ Ω2 with which temperature perturbation τ
interacts via the equation of state (when compressibility β ̸= 0), while the quantity ∆τ—
which characterizes the vortex field in the fluid—is transported by the self-induced flow
(the left part of Equation (4)). On the other hand, in Equation (5), temperature perturbation
τ is transported by the self-generated flow (vi ̸= 0); temperature perturbation τ(t, x) is
generated by the source (the right part of Equation (5)), which is non-zero only when there
exists a spatial- and time-independent temperature gradient (i.e., when τ1 ̸= 0). The pro-
cesses are interlinked because the “source” of one dynamic quantity depends on a complex
combination of other dynamic quantities. Equations (4) and (5) show that when the stratifi-
cation of temperature is absent (τ1 = 0) and there is no disk rotation (Ω = 0, i.e., centrifugal
force is zero), then Equations (4) and (5) degenerate into the traditional equations for vortex
evolution and transport in a two-dimensional ideal fluid. Comparing Equations (4) and (5),
we conclude that both the first and second equations describe the evolution of the same
physical entity. As follows from the definition of hydrodynamical velocity, the dimension
of coefficient a is [a] = θ−1L2T−1 ≡ [temperature]−1 × [length]2 × [time]−1.

Lagrangian Quantity (“Q-Vorticity”): By combining Equations (4) and (5), i.e., after
multiplying the second equation by βΩ2/aτ1 and subtracting it from the first, we obtain:

(∂t + aϵik∂iτ∂k)(∆τ − R−2τ) = 0 . (6)

Here, parameter R−2 = a−2(β/τ1)Ω2. Its dimension is (θ1L−2T1)2 × θ−1 × θ−1L2 ×
T−2 = L−2, showing that R is a space scale factor. If the question is posed to examine the
evolution of the temperature field, then the nonlinear differential equation Equation (6) is
solved numerically, specifying the initial distribution of the temperature field, as well as
the spatial boundary conditions.

On the other hand, we may define a new quantity

q ≡ a(∆τ − R−2τ), (7)

which we will call “q-vorticity” because this quantity is linked to the streamfunction via
definitions. This quantity is transported by the flow according to Equation (6), i.e., as



Dynamics 2024, 4 362

a Lagrangian quantity. Thus, the integral of any function of q in the xy-plane is always
conserved.

Temperature: Temperature τ is found via the Green function representation. It is
presented as follows:

τ(x, t) =
1
a

∫
dx′ G(x, x′)q(x′, t) . (8)

Here, the Green function satisfies the following equation:

(∆ − R−2)G = δ(x, x′) , (9)

where δ is the Dirac delta-function. The collective “hydrodynamical” velocity of the flow
(orthogonal to the temperature gradient) is calculated using Equation (2).

Modeling Steady-State: So, what is the initial vorticity distribution q(x, t) and how
can it be modeled? Recall that we are not talking about the evolution of the system from
some state of “nothing”, but are focusing on the (dynamical) steady-state to which the
system eventually evolves.

Two methods are useful for modeling such a steady-state of q(x, t).
For a strongly localized vortex—see, for example, Ref. [17]—quantity q(x, t) can be

parameterized by a function in the form F(x − x0(t)), i.e., the one with the center at
coordinate x = x0(t), which satisfies the equation of transport ẋ0k(t) + ϵik∂iψ = 0. In other
words, in such cases, the center of the vortex moves according to ẋ0(t) − v[x0(t)] = 0.
(Here, the symbol “dot” signifies the derivative with respect to time.)

Alternatively—as we will consider below—the distribution of q(x, t) can be described
in the form of a macro-structure with “petals” (with constant q(x, t) = q0 inside) whose
moving boundaries evolve according to Equation (6).

Extended (i.e., not narrowly localized) stationary vortex structures—the ones rotating
with constant angular velocity ω (≡ ω3)—are simpler to consider in a rotating coordinate
system where the structures appear immovable, i.e., when their rotation direction is co-
aligned with the z-axis and the derivative with respect to time becomes ∂t = −ωϵikxi∂k.
(The procedure is laid out, for example, in Ref. [18].) Indeed, when f = f (ρ, ϕ − ωt), then
calculations relying on the properties of Jacobeans produce the following: ∂t f = −ω∂ϕ f =
−ω∂( f , ρ)/∂(ϕ, ρ) = −ω(∂( f , ρ)/∂(x1, x2))(∂(x1, x2)/∂(ϕ, ρ)) = −ω(ϵikρ−1xi∂k f )(−ρ).
Then, Equation (5) may be rewritten as follows:

ϵik∂i

(
− ω

2
|x|2 + aτ

)
∂k

(
τ +

τ1

2
|x|2

)
= 0 , (10)

which is satisfied by the ansatz

τ +
τ1

2
|x|2 = F(−ω

2
|x|2 + aτ). (11)

The explicit expression of function F can be found from the obvious fact that
temperature-driven flow perturbations must vanish when temperature perturbations
vanish themselves. The suitable expression is as follows: function F(u) = −τ1u/ω. Then,
temperature fluctuations are expressed as follows:

τ = −τ1

ω
aτ . (12)

It follows from here that parameter a = −ω/τ1. Combining this with Equation (4),
where ∂t = −ωϵikxi∂k is taken into account, we obtain the second evolution equation—the
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one which describes the rotation of a stationary vortex structure with angular velocity ω
caused by the self-induced field of hydrodynamical velocity:

ϵik(−ωxi + a∂iτ)∂k

(
∆τ − R−2τ

)
= 0 . (13)

Here, R2 = (τ1β)−1(ω/Ω)2 ≡ λ2
θ(ω/Ω)2, where the thermal length scale λθ =

(τ1β)−1/2 characterizes the background regime of this model. Obviously, an extended
(multi-petal) thermo-vortex structure exists when parameter τ1, characterizing the “rapidity”
of the change in temperature (and stream function) with the distance from the disk rotation
axis of τ1 > 0.

The “Blob” in The Method of Contour Dynamics / Sharp Boundaries Evolution
Method (SBEM): The term “thermo-vorticial blob” defines, in the plane (x1, x2), a domain D
filled with constant vorticity q0 (with the dimensions [q0] = [time]−1) and bounded by a
closed contour ∂D.

The contour can be described in the parametric form, where parameter s is the con-
tour’s arc length (starting from some initial point on the contour), such that 0 < s < L,
where L is the entire length of the contour. The shape of the blob boundary is given by the
following equations:

x(s) = ν1 cos ϕ − ν2 sin ϕ, y(s) = ν1 sin ϕ + ν2 cos ϕ, (14)

where the quantities ν1, ν2, and ϕ are functions of s. Next, we introduce dimensionless
variables and parameters: σ = L/l, s → Ls, α = (ω/q0)(l/R)3, η = σ/4K(m). Here, K(m)
is the complete elliptic integral of the first kind. Omitting the details of the analysis, we
will only point out that the functions

ν1 =
1

8α
κ′ , ν2 = −1 +

1
16α

κ2
0 −

1
16α

κ2 (15)

are linked with the curvature of the contour κ via the following non-linear differential
equation:

κ′′ + (8α − 1
2

κ2
0)κ +

1
2

κ3 − 8α = 0. (16)

Here, prime signifies a derivative with respect to dimensionless argument σs. The
angular coordinate ϕ(s) of the tracing point on the contour (Figure 2) is calculated from the
following obvious expression:

ϕ(s)− ϕ(0) =
∫ σs

0
dξ κ(ξ) (17)

which follows from the definition of curvature κ.

.
Figure 2. Illustration of a vortex blob.
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Equation (16) resembles Duffing’s equation:

y′′ + (1 − 2m)y + 2my3 = 0, (18)

which describes oscillations in a non-linear oscillator (see Ref. [19–22], for example).
Equation (A34) is solved analytically in terms of Jacobi elliptic functions y = cn(θ, m)
with period 4K(m). The non-zero free term 8α complicates the straightforward solving of
Equation (16).

To bring the equation into a canonical form without the free term, we can make the
following manipulations: make a “shift” in κ, “flip” the result “upside down”, make a
change in the magnitude, make one more “shift” in the result, and finally, make a change
in the magnitude again. In other words, the solution has the following form:

κ(s) = A +
B

1 − ϵ z(λs)
(19)

where z(λs) is the Jacobi elliptic cosinus and λ = n4K(m) for n-petal configuration:
n = 2, 3, . . . . Parameter λ provides the periodicity of the solution (z(0) = z(λ)), i.e., the
closing of the contour. Therefore, we change the argument, transitioning from σs to θ = λs.
The initial conditions are introduced as κ(0) = κ0 and κ,s(0) = 0.

The solution contains six free parameters: α, η = σ/4K(m), A, B, m, ϵ. However, one
parameter remains free; this fixes the values of all other parameters. We select ϵ as the
controlling parameter. Parameter ϵ determines the magnitude of the initial perturbation
because of κ(0) = A + B/(1 − ϵ). Obviously, for the unperturbed state, when ϵ = 0, we
have A + B = 1, σ = 2π, m = 0, ϕ(0) = π/2, η = 1.

Omitting the details of calculations, we found

m = ϵ2µ,

A =
(−1 + 2(−1 + ϵ2)µ)(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))

ϵ2 + µ − ϵ4µ
,

B =
2(1 − ϵ2)(1 + µ − ϵ2µ)(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))

ϵ2 + µ − ϵ4µ
,

α =
(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))3

8(ϵ2 + µ − ϵ4µ)2 ,

η = − n(−ϵ2 − µ + ϵ4µ)

(1 − ϵ2)1/2(1 + µ − ϵ2µ)1/2(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))
,

σ = 4K(ϵ2µ)η . (20)

Parameter µ(n, ϵ) is fixed by the condition that the solution of equation

1
σ

ϕ,s = κ(s) → dϕ(s)
ds

= 4K(ϵ2µ)η

(
A +

B
1 − ϵ cn(n4K(ϵ2µ) s, ϵ2µ)

)
(21)

has to satisfy the boundary conditions ϕ(0) = π/2 and ϕ(1) = 5π/2. Here, cn(ξ, m) is the
Jacobi elliptic cosinus, K(m) is the complete elliptic integral of the first kind, 4K(0) = 2π,
and n is the number of petals in the vortex structure. In Equation (19), parameters A, B,
and others, are taken from Equation (20); dimensionless parameter s changes from s = 0 to
s = 1.

The calculation, which we do not present in this section, provides the leading term
in the expansion of µ = µ(n, ϵ) in a series with respect to ϵ (which does not vanish when
ϵ → 0): the expression µ → n2 − 1.
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3. Results

To analyze the thermo-vorticial “blobs”, we employed the so-called Sharp Boundaries
Evolution Method (SBEM). Within the blob, q(x, t) = q0 is constant; outside the blob,
q(x, t) = 0. This method originated in the 1960s–1970s and was further advanced in
subsequent years. Despite the seemingly radical simplification, the method produces a
reasonably good description and estimates for large-scale vortex flows/structures ([9,10]).
Indeed, for the motion of an incompressible fluid in the xy-plane, the velocity vector v
lies in the same plane, and the vorticity vector has only one non-zero component, qz. For
large-scale vortex structures, it is intuitively apparent that there exist zones (which are
sometimes rather spacious) where the vorticity magnitude reaches its maxima (“hilltops”)
when the sign of vorticity is positive and its minima (“chasms”) when the sign of vorticity
is negative. There are also zones where vorticity is zero or close to zero (“flats”), transitional
zones between hilltops and flats (“upper slopes”), and transitional zones between flats and
chasms (“lower slopes”). Since typically the fluid velocity and thermodynamical quantities
are analyzed in terms of the integral characteristics derived from vorticity, when the slopes
are steep (i.e., the Reynolds number Re or its equivalent is enormous), these transitional
zones may be treated as sharp (precipitous, vertical) moving boundaries which evolve
in accordance with the laws of hydrodynamic flows. In this paper—to not complicate
the calculations—we consider only the case with the hilltops, upper slopes, and flats (not
including the chasms and lower slopes).

One Coherent Multi-Petal Structure: We find that, because of the intertwined nature
of the thermal and vorticial fields in the fluid medium, what often looks like a group
of multiple individual “circular” vortices (as depicted in Figure 1, for example) is in fact
one coherent macro-structure with a complex multi-petal shape. In other words, the localized
“circular” vortices are not independent; they influence each other, redistributing conservable
quantities—such as vorticity q(x, t) and energy, which are linked to temperature τ(x, t)—
locally, within and between each other, while preserving the integrals over the entire
multi-petal system.

Figure 3 illustrates the contours of thermo-vortices with three and five petals.

Figure 3. Examples of 3-petal and 5-petal contours.

Describing the shape of such a multi-petal structure mathematically is not a trivial
exercise. We demonstrate how we characterize the shape using several key parameters: the
number n of petals (counting the “fingers”), the level of non-linearity ϵ (describing whether
the “fingers” are long or short; measuring the gap between the peak and trough); and
parameter µ(n, ϵ) (describing whether the “fingers” are thick or thin, and sharply pointed
or not). The latter is achieved by employing (instead of “smooth” sinus/cosinus functions)
the Jacobi elliptic sinus/cosinus, which permits the inclusion of higher spectral harmonics
into the description of the shape’s “fullness”.
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In Figure 3, both shapes have the same peak/trough nonlinearity, i.e., they possess
the same parameter ϵ = −0.28. But because they have a different number of petals n, their
values of µ(n, ϵ) are different. Figure 4 illustrates how µ(n = 3, ϵ) depends on ϵ and how
parameter ϵ (and therefore µ(n, ϵ)) impacts the contour shape.

. (A) (B)

Figure 4. Impact of nonlinearity (peak/trough) parameter ϵ on a three-petal thermo-vortex. Left panel
(A): Plot for µ(n = 3, ϵ). Dots correspond to examples in Panel 3B. Maximum µ is at ϵ = 0:
µmax(n, 0) = n2 − 1. Right panel (B): Deformation of three-petal contour: ϵ = −0.07 (green; inner);
ϵ = −0.14 (brown); ϵ = −0.28 (blue); ϵ = −0.35 (black; outer).

Parameter µ = µ(n, ϵ) is not an independent quantity. It can be found via the im-
position of one more condition: the requirement that the contour must close, i.e., that
phase difference ϕ(1) − ϕ(0) = 2π, which follows from Equation (21). For moderate
−0.49 ≤ ϵ ≤ 0 and 2 ≤ n ≤ 8, function µ(n, ϵ) is well approximated by the simple
expression µ(n, ϵ) ≃ (n2 − 1)/(1 + cϵ2(n2 − 1))d, where c ≃ 1.56 and d ≃ 0.98.

Figure 5 illustrates how µ(n, ϵ) behaves for varying numbers of petals n and nonlin-
earity (peak/trough) parameter ϵ.

(A) (B)

Figure 5. Sensitivity of µ(n, ϵ) to the number of petals n and nonlinearity (peak/trough) parameter
ϵ. Left panel (A): Vertical µ-axis is logarithmic. Curves denote the following: ϵ = −10−3 (brown;
upper); ϵ = −0.28 (black); ϵ = −0.35 (blue; lower). Right panel (B): Vertical µ-axis is linear and cut
off at µ = 30 for better clarity of the image.

Once the shape of the contour of the macro-structure can be described, the properties
of the system can be analyzed.
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Number of Petals and Other Key Parameters: Generally speaking, the number
of petals n evolves as the system evolves because of the complex linkage between the
parameters in the system. Physically, multi-petal vortex structures arise when thermal
energy is introduced into the system, leading to the formation of a hot (τ0 ̸= 0) domain of
finite (0 < l < ∞) size with non-zero vorticity (Q ̸= 0) inside. Mathematically, when three
quantities Q, l, and τ0 are specified as the initial conditions, they “fix” three geometrical
parameters: n, ϵ, and µ. Here, the conserved quantity is as follows:

Q = q0l2σ
1
2

In(ϵ, µ) , where I(ϵ, n) =
∫ 1

0
ds
(
(ν2

1(s) + ν2
2(s))κ(s)

)
. (22)

Recall that here, l is the characteristic size; σ ≡ L/l, where L is the contour length;
parameter s is the contour’s arc length.

Quantities l and τ0 may be measured in observations. Thus, their links to other
parameters in the system are informative:

l = (
2
In
)1/5α1/5σ−1/5(

QR3

ω
)1/5, τ0 = (

2
In
)3/5α−2/5σ−3/5τ1(

QR4/3

ω
)3/5 . (23)

All coefficients are functions of ϵ, n, and µ. The dimensions of the quantities [Q] =
length2 × time−1, [R] = length, [ω] = time−1 and [τ1] = temperature × length−2 assure the
correct dimensions of the written expressions for l and τ0.

Temperature Distribution: Determination of the contour is the first step of the analysis.
Once the steady-state contour for the thermo-vorticial blob is established, the temperature
distribution τ = τ(t, xj) inside the blob may be determined. The expression for temperature
distribution in terms of dimensionless variables is as follows:

τ(x, y) = (
q0τ1R2

2πω
)(β σ)

∫ 1

0
ds
(

1
β|ẑ − z| −

1
2

K1(β|ẑ − z|)
)
ℜ
(

exp[iϕ(s)](ẑ∗ − z∗)
i|ẑ − z|

)
. (24)

Figure 6 shows—for the same study—the vorticity distribution q(x, y) and the tem-
perature profile (in the xz-plane for y = 0; obviously, temperature is distributed similarly
within the planes slicing the other petals). The right panel also shows how the temperature
profile varies depending on the geometrical parameter β = l/R. The greater β is, the
“tighter” the thermal structure within the petal—the petal peak is higher, the sides are
narrower, and also, near the center of macro-rotation, the central thermo-vortex appears.

(A) (B)

Figure 6. Left panel (A): Vorticity distribution q(x) of the three-petal thermo-vorticial structure.
Right Panel (B): Temperature distribution when y = 0 and geometrical parameter β = l/R is as
follows: β = 1/π (black; lower curve), β = 2/π (brown), and β = π (blue; upper curve).
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4. Discussion and Conclusions

The fact that rotating cosmic fluids contain vortices has been understood for a while.
Vortices have been discussed in the context of planetary atmospheres (at least since the
discovery of the Jupiter’s Great Red Spot), in the context of vortices and magnetic flux
tubes in the accretion disks of black holes [23], galactic center hot spots [24], and so on.
When the observed vortices are multiple, coherent, and long-lasting, they are also often
clustered into orderly quasi-symmetric arrangements. These multiple vortices are typically
interpreted as possibly interacting, but nonetheless as stand-alone items.

In our paper, we demonstrated that an additional physical interpretation of what these
vortices represent may exist. What one sees in astronomical images as distinct spots may be
not multiple individual quasi-circular-shaped vortices, which possibly interact and drift to form
a quasi-symmetrical quasi-stationary macro-arrangement, but instead these distinct spots
(thermo-vortices) may be the observable parts of one structure whose shape is a complex
contour with multiple “petals”. Either alternative is theoretically possible, but the latter
one is typically not considered.

To bring attention to this multi-petal interpretation, we presented and analyzed a
model that can be illustrative and adaptable to various environments. Specifically, in order
for our model to be of interest for studies of the accretion disks of black holes, we used
the metric that works for the mildly curved spacetime (naturally, this model works in flat
spacetime as is the case for planets). We had to limit our considerations to the model of
a rotating “thin” layer because otherwise the mathematical calculations would become
unwieldy. Our focus was on the description of the steady-state, large-scale, thermo-vorticial
motions, not on the evolution from the state of “nothing”. We demonstrated that the
steady-state may indeed look like a multi-petal structure and that the shape of individual
petals may be highly nonlinear (the petals may look like “fat fingers”, or be elongated or
pointy). Various parameters (relative dimensions of the system, thermal gradient, initial
vorticity, etc.) and their linkages determine the outcome. We also demonstrated that the
petals indeed have an elevated temperature and would appear as bright spots if observed
from afar.

The physical explanation for why a system would evolve towards a steady-state with
N petals rather than M petals is intuitively simple. The contour of the macro-structure
bounds the inner domain of higher vorticity. Naturally, the contour is closed. Therefore,
if subjected to some perturbation, the contour’s steady-state turns into a “standing wave”
(like a standing wave on the surface of a swimming pool), with the number of crests
(petals) defined by the properties of the system. The shape of the crests, however, is
not sinus-wave-like but is complex (finger-like) because the system is highly nonlinear.
Obviously, no steady-state is eternal, but we did not study the problem of the transition of
quasi-steady-states.

Several notable multi-vortex arrangements, which are likely to be multi-petal struc-
tures, can be mentioned. As seen in Figure 1 (second row; panels C and D ), in the span of
one year, the Antarctic ozone hole evolved from a quasi-circular into a two-petal structure.
Based on the common knowledge of what the ozone hole represented, we can conclude
with certainty that the two vortices observed in 2002 were not separate entities; they were
indeed two petals of one shape-changing macro-structure. The arrangement of vortices
on Jupiter’s South Pole (Figure 1B) is also a candidate multi-petal macro-structure. Spe-
cialists in geophysical fluid dynamics may spot an analogy between the study of this
paper and the Rossby waves (see, e.g., Ref. [25]): the interface on the thermocline η (or,
equivalently, the streamfunction) corresponds to the temperature τ (which is proportional
to the streamfunction due to the presumed Equation (2)), the pressure gradient responsible
for the geostrophic flow corresponds to the gradient of the centrifugal potential Φ, and
the potential vorticity corresponds to the q-vorticity. Not surprisingly, the global nature of
planetary solitary waves corresponds to multi-petal structures and explains images like
those in Figure 1B–D. One difference, however, is that the Rossby waves occur at the sharp
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boundaries between regions with different temperatures; in our case, the regions are of
different vorticities.

As for the question of whether our mathematical treatment is valid for a “thick”
system—such as the atmosphere of Jupiter or a “thick” double-layered accretion disk near
a rotating black hole—the answer is yes. “Thick” systems may be, in principle, described
using the same mathematical apparatus when the vorticity patch is broken into columnar
sub-patches. (Refs. [9,10] point to the use of this technique.)

For a more detailed treatment—not included in this paper—it is necessary to con-
sider the nuances of mathematical models for hydrodynamic flows (see, for example,
Refs. [26,27]), collective plasma effects [28], relativism [29–43], and relativistic hydrody-
namics [44].

For a strongly relativistic system—such as an accretion disk in the environment of a
rapidly rotating supermassive object or a supermassive black hole, see Refs. [45–47]—the
conditions (in covariant description) of adiabaticity and incompressibility remain the same,
while the equation of fluid motion (in spacetime with a metric defined by the square of
the four-interval ds2 = mikdqidqk in the equatorial plane of a rotating black hole when the
coordinate q2 ≡ θ = π/2) has the following form in the leading approximation (these
details of our analysis are not listed in this paper):

− w
c2 Dvβ = ∂β p + 2

w
c2 [v × Ω]β + w∂β ln

√
g00 + . . . (25)

Here, D is the operator of the total derivative with respect to the “synhronized time”;
the enthalpy w is defined as w/c2 = γρ+(1/c2)(ρe1 + p), where γ is the Lorentz factor, p is
the pressure, and e1 is the non-relativistic part of the internal energy); c is the light speed; vβ

is the covariant β-component of the 3D velocity. Naturally, the basic elements of the model
momentum in Equation (A84) are the pressure gradient (the first term), the “Coriolis force”
(the second term), and the gravity and centrifugal forces, which are packed in the third
term of the momentum equation. The key difference compared to the classic hydrodynamic
treatment is the replacement of the classic gravity/centrifugal acceleration −∇Φ + Ω2r
with −∇ ln

√
m00, and the replacement of the classic averaged angular velocity Ω of

the accretion disk rotation with the relativistic parameter Ω = (c/2)γu0curl(−g00 g).
If the thermo-vortices are at some “distance” from the event horizon and conditions
x = r/rg ≫ 1, Ωx < 1 are satisfied, then, leaving the leading terms in the expansion
∂β ln

√
m00, we can obtain that ∂β ln

√
m00 ≃ −xΩ2 + 1/2x2 + 1/2x3 + (2a + Ω)Ω/2x2.

Here, the terms of higher orders of smallness are omitted. The first term describes the
centrifugal effect, the second describes the contribution of the force of attraction in the
Newtonian approximation of gravity, the third term describes the Schwarzschild model of
a non-rotating black hole, the last takes into account the rotation of both the black hole and
the disk. For x ≫ 1, Ωx < 1, but Ωx3/2 > 1/2, the principal contribution provides the first
term ∼ Ω2, i.e., the centrifugal effect, independent of the exact structure of the spacetime
near the rotating, or not rotating, black hole.

To conclude, the illustrative model that we presented provides insights that are use-
ful for a broad range of physical applications, ranging from planetary atmospheres to
black hole accretion disks. Whether the observed vortices in cosmic fluids are conceptu-
alized as stand-alone objects or inextricable parts of one macro-structure may meaning-
fully influence the numerical models employed in consideration of the phenomena and
image reconstruction methods.
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Appendix A. The Concept of “Thermo-Vorticial Blob”

The material in Appendix A is presented for the readers unable to read (in its original,
and only, language of publication) one the foundational sources—the book (Ref. [9]) by
V.P. Goncharov and one of the authors of this article—which, among many things, examines
the core considerations regarding the use of a complex variable functions set, required for
the implementation of the method here called the Sharp Boundaries Evolution Method
(SBEM), in detail. The method—laid out and applied in examples in Refs. [9,10,18]—relies
on the concept of “a thermo-vorticial blob”.

The term “a vorticial blob” is defined (in the complex plane z = x1 + ix2) as a region
(domain D) filled with constant vorticity (q0, with dimensions [q0] = [time]−1) and bounded
by a closed contour (∂D). When convenient, we will use coordinate notations x = (x1, x2),
as well as x = (x, y). See Figure 2.

The contour can be described in the parametric form ẑ = ẑ(s), where parameter s is the
contour’s arc length (starting from some initial point on the contour) such that 0 < s < L,
where L is the entire length of the contour. The derivative ẑ,s ≡ ∂ẑ/∂s is obviously the
unit-vector tangential to the contour. The normalizing condition follows from the definition
of the tangential unit vector:

|ẑ,s(s)|2 = 1, (A1)

which can be also expressed as follows:

ẑ,s(s) = exp(iϕ(s)). (A2)

The contour is traced in the counterclockwise direction. The tangential unit vector ẑ,s
is colinear to the x2-axis when s = 0. Consequently, ϕ(0) = π/2.

Therefore, the contour can be described as follows:

ẑ(s) = exp(iϕ(s))(ν1(s) + iν2(s)), (A3)

where ν1(s) and ν2(s) must satisfy the following conditions:

ν1,s(s)− κ(s)ν2(s)) = 1, ν2,s(s) + κ(s)ν1(s)) = 0, ϕ,s(s)− κ(s) = 0 (A4)

for any values of parameter s (here, κ(s) is the curvature of the contour at the tracing
point s). Indeed, if, at s = 0, the radius vector is colinear with the x-axis (hence, the angle is
π/2 for the tangent vector), then ν1(0) = 0 and ν2(0) = −l. The components of these two
vectors are equal to ẑ(0) = (l, 0) and ẑ,s(0) = (0, i), respectively.

The equations describing the contour profile are thus:

x̂ = ν̂1 cos ϕ − ν̂2 sin ϕ, ŷ = ν̂1 sin ϕ + ν̂2 cos ϕ, ϕ,s = κ. (A5)

To describe the vortex blob analytically, we will use the two-dimensional Heaviside
function Θ(z), defined as follows:

Θ(z) = 1, if z ∈ D, and Θ(z) = 0, if z /∈ D,

Θ(z) = 1/2, if z is on contour ∂D. (A6)

The vorticity distribution (q ∼ curlv) for a vortex blob may then be written as follows:
q = q0Θ(z).
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In the complex plane, the Θ(z)-function can be written in the form of the contour
integral (see Refs. [19,26], for details), where the contour is traced in the counterclockwise
direction:

Θ(z) =
i

2π

∫
∂D

dẑ
z − ẑ

. (A7)

Equation (A7) is, obviously, a corollary of the Cauchy theorem. Equation (A7) can be
rewritten in the following frm:

Θ(z) =
i

2π

∫ L

0
ds

ẑ,s(s)
z − ẑ(s)

= − i
2π

∫ L

0
ds

ẑ,s(s)
|ẑ(s)− z|

ẑ∗(s)− z∗

|ẑ(s)− z| . (A8)

With the help of two useful formulae (see Ref. [19])

∂

∂z∗
(

1
z
) = πδ(2)(x1, x2) and

∂

∂z
(

1
z∗

) = πδ(2)(x1, x2), (A9)

the derivatives of Θ-function with respect to z∗ and z may be expressed in form of the
contour integral:

∂Θ(z)
∂z∗

=
i
2

∫
∂D

ds ẑ,s(s) δ(2)(x − x̂(s)),

∂Θ(z)
∂z

= − i
2

∫
∂D

ds ẑ∗,s(s) δ(2)(x − x̂(s)) . (A10)

Appendix A.1. Temperature Distribution

The introduction of the so-called ψ-function, defined as ψ ≡ aτ, helps simplify deriva-
tions. Indeed, vorticity q ∼ q0 ∼ curlv is a local characteristic, which determines the
magnitude of the vortex motion in the structure, whereas temperature τ depends on the
characteristics of the environment (ω, τ1, . . . ). The ψ-function is a local solution of the
corresponding Green equation

ψ(x) = − 1
2π

∫
dx′q(x′)K0(

|x − x′|
R

) = − q0

2π

∫
dx′Θ(x′)K0(

|x − x′|
R

). (A11)

Here, dx = dx1dx2 is a surface element of the xy-plane; function K0(ξ) denotes a
modified Bessel function of the 0-th order. Since K0(ξ) is the Green function (see, for
example, Ref. [48]),

(∆ − 1
R2 )

(
− 1

2π
K0(

|x − x′|
R

)
= δ(2)(x − x′), (A12)

we can rewrite Equation (A11) as follows:

ψ(x) = − q0

2π

∫
dx′Θ(x′)

(
2πR2δ(2)(x′ − x) + R2∆′K0(

|x′ − x|
R

)
=

− q0

2π

∫
dx1Θ(x1)

(
2πR2δ(2)(x1 − x) + R2 ∂2

∂z∗1∂z1
K0(

|z1 − z|
R

)
. (A13)

The Laplace operator (with respect to the running coordinates with index 1) is ob-
viously ∆1 ≡ ∂2

1 + ∂2
2 = (∂1 + i∂2)(∂1 − i∂2) = ∂2/∂z∗1∂z1. From here, we can obtain the

following:

ψ(x) = −q0R2Θ(x)− q0R2

2π

∫
dx1Θ(z1)

∂2

∂z∗1∂z1
K0(

|z1 − z|
R

)
. (A14)
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Integrating (with respect to z∗1) Equation (A14) by parts and using known transforma-
tions for the Bessel functions, we find that

ψ(x) = −q0R2Θ(x)− q0R
4π

∫
dx1K1(

|z1 − z|
R

)×

(
∂Θ(z1)

∂z∗1
)
(z∗1 − z∗)
|z1 − z| + (

∂Θ(z1)

∂z1
)
(z1 − z)
|z1 − z| . (A15)

Next, we use Equation (A10) and change the integrating order. We find the following:

ψ(x) = −q0R2Θ(x)− q0R
4π

∫ L

0
du K1(

|ẑ(u)− z|
R

)
1

2|ẑ(u)− z| ×

i
(

ẑ,u(u)(ẑ(u)∗ − z∗)− ẑ∗,u(u)(ẑ(u)− z)
)

. (A16)

Since functions ψ and τ are connected by Equation (12), via τ = −(τ1/ω)ψ, we obtain,
for the temperature distribution:

τ(x) =
τ1q0R2

ω
Θ(x)− τ1q0R

4πω

∫ L

0
ds K1(

|ẑ(s)− z|
R

)×

ℑ
(

exp[iϕ(s)]
(ẑ(s)∗ − z∗)
|ẑ(s)− z|

)
. (A17)

Transitioning to dimensionless variables (s → Ls, z → lz, ẑ → lẑ, l/R → β, L/l →
σ)—note that we preserve the same symbols for efficiency—we can rewrite Equation (A17)
in the following form:

τ(x) = τ0(Θ(x) + G(x; β)), (A18)

where

G(x; β, σ)) = − β σ

4π

∫ 1

0
dξ K1(β|ẑ(ξ)− z|)×

ℑ
(

exp[iϕ(ξ)]
(ẑ(ξ)∗ − z∗)
|ẑ(ξ)− z|

)
. (A19)

Parameter τ0 = τ1q0R2/ω is the parameter which determines the characteristic tem-
perature level of the vorticial blob. The integral Equation (A19) is a function of coordinates
x = (x, y) which depend on the dimensionless geometrical parameters β = l/R (the ratio
of the blob size l to the “thermal” scale R) and σ = L/l (the ratio of the contour length L to
the characteristic blob size l). Recall that τ1, with dimension [τ1] = [temperature]/[length]2,
is the parameter characterizing the “rapidity” of the increase in basal temperature τs with
distance from the rotation axis.

Appendix A.2. Value of ψ-Function for Blob Contour

To find the expression for the contour, we first transition from x → x̂(s). Then, from
Equation (A16), we obtain the following for ψ̂ = ψ(ẑ(s):

ψ̂ = −q0R2Θ(ẑ(s)) +
q0R
4π

∫ L

0
du K1(R−1|ẑ(u)− ẑ(s)|)×

ℑ
(

ẑ,u(u)(ẑ(u)∗ − ẑ(s)∗)
|ẑ(u)− ẑ(s)|

)
, (A20)

where the variables are still dimensional.
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We assume that parameter R is small in comparison with the characteristic scale of
the blob. Then, the main contribution to the integral comes from a small region in the
neighborhood of the tracing point ẑ(s). The contour may possess some (small) curvature
(meaning |ẑ,ss| ≪ R−1). In the vicinity of point s (with small ν = u − s and ẑ,ss = iκ̂ẑ,s
where κ̂(s) = ϕ,s) we can write the following:

ẑ,u(u)(ẑ(u)∗ − ẑ(s)∗) =

(ẑ,s + ẑ,ssν + . . . )(ẑ∗,sν +
1
2

ẑ∗,ssν2 + . . . ) = ẑ,s ẑ∗,sν +
1
2

ẑ,s ẑ∗,ssν2 + ẑ,ss ẑ∗,sν2 + · · · =

|ẑ,s|2(ν − i
1
2

κ̂ν2 + iκ̂ν2 + . . . ) = ν +
i
2

κ̂ν2 + . . . (A21)

Here, all terms of order ≥ ν3 are omitted.
Equation (A20) is written (for a small curvature of ∂D) as a sum of two integrals: the

first one, due to symmetrical limits, yields zero; the second—not zero:

ψ̂ = −1
2

q0R2 +
q0R
8π

κ̂(s)
∫ ∞

−∞
dν K1(

|ν|
R
)

ν2

|ν| . (A22)

Here, both limits of integration (±∞) stretch to infinity (keep in mind the exponential
nature of the decrease in the Bessel function with the increasing value of its argument). The
value of the integral is πR2. Accordingly, we obtain the final result:

ψ̂ = −1
2

q0R2 +
q0R3

8
κ̂(s). (A23)

This expression establishes the link between the values of ψ̂-function (temperature) on
the contour and its local curvature κ̂.

Appendix A.3. Core Equations for Multi-Petal Structures

The boundary condition for the stream-function ψ on the contour, due to the presence
of the Heavyside function in q and, therefore, the delta-function in its derivative, is

ψ̂ − ω

2
|x̂|2 = Const. (A24)

Using Equation (A23), Equation (A24) can be rewritten in the following form:

q0R3

8
κ̂ − ω

2
|ẑ(s)|2 = K1 , (A25)

where ẑ(s) = x̂(s) + iŷ(s). The constant of integration K1 is fixed by the initial conditions
κ̂0, ν̂1(0) = 0 and ν̂2(0) = −l; hence

K1 =
q0R3

8
κ̂0 −

ω

2
l2 . (A26)

Then,

κ̂ = κ̂0 − 4(
ω

q0
)

l2

R3 + 4(
ω

q0
)

1
R3 (ν̂

2
1 + ν̂2

2) . (A27)

By taking the derivatives, we obtain the following:

ν̂1,s − κ̂ν̂2 = 1, ν̂2,s + κ̂ν̂1 = 0 and

κ̂,s = 8(
ω

q0
)

1
R3 (ν̂1 ν̂1,s + ν̂2 ν̂2,s). (A28)
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Using the first two equations, Equation (A28) can be written as follows:

ν̂1,s − κ̂ν̂2 = 1, ν̂2,s + κ̂ν̂1 = 0, ϕ̂,s − κ̂ = 0 and

κ̂,s − 8(
ω

q0
)

1
R3 ν̂1 = 0. (A29)

with initial conditions ν̂1(0) = 0, ν̂2(0) = −l, ϕ(0) = π/2, κ̂(0) = κ̂0.
After solving Equation (A29), the expression for contour ∂D can be found using the

following:

x̂ = ν̂1 cos ϕ − ν̂2 sin ϕ, ŷ = ν̂1 sin ϕ + ν̂2 cos ϕ. (A30)

We now introduce dimensionless variables and parameters: ν̂1 → lν1, ν̂2 → lν2, κ̂ →
l−1κ, σ = L/l, s → Ls, α = (ω/q0)(l/R)3. Equation (A29) becomes

ν′1 − κν2 = 1, ν′2 + κν1 = 0, ϕ′ − κ = 0, κ′ − 8αν1 = 0 (A31)

with the initial conditions ν1(0) = 0, ν2(0) = −1, κ(0) = κ0 and ϕ(0) = π/2. Symbol
“prime” signifies the derivative with respect to dimensionless argument ξ = σs.

The unperturbed state of Equation (A31) is the one satisfied by κ(s) = 1, ν1(s) = 0,
ν2(s) = −1, σ = 2π.

It may appear that one can simply solve the system in Equation (A31) numerically.
Indeed, the solutions depend on one variable s and are fixed by two dimensionless parame-
ters: parameter α = (ω/q0)(l/R)3 and phase parameter σ. The local curvature of contour
κ0 at the initial point is the governing parameter. Since we are dealing with differential
equations with first-order derivatives and are given initial conditions, obtaining a numeri-
cal solution is not difficult. However, we are only interested in the solution that will “close”
the contour, i.e., the tracing point must return to the starting point. This means that one
more requirement must be added to the system.

Appendix B. Equations Permitting Analytical Solution

Aiming to find the equation for the blob contour, we first rewrite Equation (A31) in
the following form:

ν1 =
1

8α
κ′ , ν2 = −1 +

1
16α

κ2
0 −

1
16α

κ2 ,

1
8α

κ′′ − κ(−1 +
1

16α
κ2

0 −
1

16α
κ2)− 1 = 0 , (A32)

which may be further rewritten as follows:

κ′′ + (8α − 1
2

κ2
0)κ +

1
2

κ3 − 8α = 0. (A33)

Equation (A33) resembles the non-linear Duffing’s equation:

y′′ + (1 − 2m)y + 2my3 = 0, (A34)

which is known (see Ref. [20–22], for example) to be solved analytically in terms of Jacobi
elliptic functions y = cn(θ, m) with the period 4K(m). Here, K(m) is the complete elliptic
integral of the first kind. The non-zero free term 8α complicates the straightforward solving
of Equation (A33).
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The angular coordinate ϕ(s) of the tracing point on the contour is calculated from the
obvious expression

ϕ(s)− ϕ(0) =
∫ σs

0
dη κ(η) (A35)

which follows from the definition of curvature κ.
Equation (A33) can be rewritten in the form of an equation of the first order with the

constant of integration fixed by the initial condition imposed on κ′(0):

(κ′)2 + (8α − 1
2

κ2
0)κ

2 +
1
4

κ4 − 16ακ = C2, (A36)

with the initial condition κ(0) = κ0. When κ′(0) = 0, Equation (A33) becomes

(κ′)2 + (16ακ0 −
1
4

κ4
0 − 8ακ2

0 +
1
2

κ4
0) +

(−16α)κ + (8α − 1
2

κ2
0)κ

2 +
1
4

κ4 = 0. (A37)

Appendix B.1. Weakly Perturbed Contour: Linear Approximation

Equation (A33) is satisfied by κ0 = 1, κ(θ) = 1. This case corresponds to a circle (a
contour with a constant curvature).

Now consider a small initial perturbation of the contour κ(0) = k0 → 1 + ϵ. We
can further write κ(θ) = 1 + ϵq1(θ) + . . . The parameters, obviously, must be dependent
on ϵ: α = α0 + ϵα1 + . . . , σ = σ0 + ϵσ1 + . . . . The substitution of these expressions into
Equation (A33) gives the expressions for the curvature in the linear approximation, and for
its derivative:

κ(s) = 1 + ϵ
1 + 8α cos[

√
1 + 8α σ s]

1 + 8α
+ . . . ,

κ′(s) = −ϵ
8α sin[

√
1 + 8α σs]√

1 + 8α
+ . . . , (A38)

where all terms of orders ≥ ϵ2 are omitted.
The value of curvature at s = 1 must be equal to its value at s = 0. This implies the

following condition:

√
1 + 8α σ = 2πn → α =

4π2n2 − σ2

8σ2 . (A39)

When ϵ → 0 (unperturbed state), parameter σ → 2π. Then, α → α0 = (n2 − 1)/8.
The angular coordinate ϕ(s) (the angle between the tangential vector and x-axis) for

the contour tracing point parameterized by s is as follows:

ϕ(s)− ϕ(0) = σ
2πns(4π2n2 + ϵσ2)) + ϵ(4π2n2 − σ2) sin(2πns)

8π3n3 . (A40)

Recall that s changes from 0 to 1; the full length L of the contour, normalized by l, is
σ = L/l, which is the ratio of the length of the contour L to the radius of the contour l
measured at the point s = 0. Parameter α = (ω/q0)(l/R)3 determines the characteristic
size of the blob as a function of the basal parameters of the state.

Using σ = 2π + ϵσ1 + . . . , we find that

ϕ(1)− ϕ(0) = 2π + ϵ(
2π

n2 + σ1). (A41)
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Obviously, ϕ(1) = ϕ(0). Thus, the parameters σ and α take the following values:

σ = 2π − ϵ
2π

n2 , α =
n2 − 1

8
+

ϵ

4
, (A42)

where n = 2, 3 . . .
The phase ϕ(s) in the considered approximation is given by the following expression:

ϕ(s) =
π

2
+ 2πs + ϵ

n2 − 1
n3 sin(2πns) . (A43)

After this step in calculations, we find the following quantities:

ν1(s) = −ϵ
2π

n
sin(2πns),

ν2(s) = −1 +
ϵ

n2 (1 − cos(2πns)), (A44)

and derive the contour of the vortex blob in the parametric form:

x(s) = ν1(s) cos ϕ(s)− ν2(s) sin ϕ(s),

y(s) = ν1(s) sin ϕ(s) + ν2(s) cos ϕ(s), (A45)

or

x(s) = ρ(cos ψ cos ϕ(s)− sin ψ sin ϕ) = ρ cos(ϕ + ψ),

y(s) = ρ(cos ψ sin ϕ(s) + sin ψ cos ϕ(s)) = ρ sin(ϕ + ψ),

. (A46)

where ρ =
√

µ2 + ν2 and ψ = arctan(ν/µ). Thus, the angle Φ = ϕ + ψ determines the
polar angle. In order for there to be no overlap, it is necessary that the derivative dΦ/ds is
greater than zero.

Naturally, the linear approximation can only indicate the tendency. One harmonic
is not enough to reveal the details of a deep contour deformation. For a more profound
understanding of the problem, it is necessary to use an exact analytical solution.

On the other hand, the simple analysis that was discussed makes it possible to grasp
the non-trivial fact that the parameters α and σ are not arbitrary: they are “quantized” in
a certain sense. Their values are determined by integers: n = 2, 3. . . . . That is, if some
localized area is filled with a quasi-homogeneous vortex with vorticity density q0, then an
n-petal vortex structure can form in this area only if the parameters of this structure (size,
intensity, background temperature gradient, angular velocity of disk rotation, etc.) satisfy
the quantification conditions of Equation (A42). If these conditions are not met, no n-petal
structure is formed at this location.

Appendix B.2. Strongly Nonlinear Configuration: Exact Analytical Solution

With the initial condition κ(0) = κ0 and κ,s(0) = 0, the basal equation is

1
σ2 (κ,s)

2 + (16ακ0 −
1
4

κ4
0 − 8ακ2

0 +

1
2

κ4
0) + (−16α)κ + (8α − 1

2
κ2

0)κ
2 +

1
4

κ4 = 0 . (A47)

If there were no linear term in curvature κ, the periodic solution of Equation (A47)
would be expressed in terms of Jacobi elliptic functions cn(λs, m), or sn(λs, m), where
dimensionless parameter λ provides the periodicity of the solution: z(0) = z(λ).

Let us bring the equation into canonical form. To do this, we will make the following
manipulations: make a “shift” in κ, “flip” the result “upside down”, make a change in
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magnitude, make one more “shift” in the result, and finally, make a change in magnitude
again. In other words, we offer an ansatz:

κ(s) = A +
B

1 − ϵ z(λs)
(A48)

where z(λs) is the Jacobi elliptic cosinus and λ = n4K(m) for n-petal configuration:
n = 2, 3, . . . . Parameter λ provides the periodicity of the solution (z(0) = z(λ)), i.e., the clos-
ing of the contour. Therefore, we change the argument, transitioning from σs to θ = λs. The
first term in Equation (A47) is modified with σ−2(κ,s)2 → η−2(κ,θ)

2, where η = σ/4K(m).
Recall that, as is known, the elliptic cosinus satisfies the equation

(z′)2 + (−1 + m) + (1 − 2m)z2 + mz4 = 0. (A49)

Here, prime signifies the derivative with respect to the argument. The substitution of
Equation (A48) into Equation (A49) provides an equation for curvature κ, which needs to
be subtracted from Equation (A47). The obtained polynomial contains six free parameters:
α, η = σ/4K(m), A, B, m, ϵ. To zero out this polynomial, we need to zero out each of the
coefficients in front of the terms with κl , where l = (0 . . . 4). However, we have only five
equations. Thus, one parameter remains free; this fixes the values of all other parameters.
We select ϵ as the controlling parameter. Parameter ϵ determines the magnitude of the
initial perturbation, because of κ(0) = A + B/(1 − ϵ)). Obviously, for the unperturbed
state, when ϵ = 0, we have A + B = 1, σ = 2π, m = 0, ϕ(0) = π/2, η = 1.

Omitting the details of calculations, we present the final results of these calculations:

A = (−1 + 2(−1 + ϵ2)µ)(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))/(ϵ2 + µ − ϵ4µ),

B = 2(1 − ϵ2)(1 + µ − ϵ2µ)(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))/(ϵ2 + µ − ϵ4µ),

m = ϵ2µ, σ = 4K(ϵ2µ)η, α = (ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ))3/8(ϵ2 + µ − ϵ4µ)2,

η = −n(−ϵ2 − µ + ϵ4µ)/(1 − ϵ2)1/2(1 + µ − ϵ2µ)1/2(ϵ2 + µ − 2ϵ3µ − ϵ4µ + 2ϵ(1 + µ)). (A50)

Parameter µ(n, ϵ) is fixed by the condition that the solution of equation σ−1ϕ,s = κ(s)
has to satisfy the boundary conditions ϕ(0) = π/2 and ϕ(1) = 5π/2. The equations
obviously can be written in the following form:

dϕ(s)
ds

= 4K(ϵ2µ)η

(
A +

B
1 − ϵ cn(n4K(ϵ2µ) s, ϵ2µ)

)
. (A51)

Here, cn(ξ, m) is the Jacobi elliptic cosinus, K(m) is the complete elliptic integral of
the first kind, 4K(0) = 2π, n is the number of petals in the vortex structure, parameters
A, B and others, are taken from Equation (A50), and dimensionless parameter s changes
from s = 0 to s = 1.

The calculation, which we do not present here, provides the leading term in the
expansion of µ = µ(n, ϵ) in a series with respect to ϵ (which does not vanish when ϵ → 0):
the expression µ → n2 − 1. The graphical result of calculations for µ = µ(n, ϵ) is presented
in Figure 5.

The expression of the blob contour is found from the following parametric representation:

x(s) = ν1(s) cos ϕ(s)− ν2(s) sin ϕ(s),

y(s) = ν1(s) sin ϕ(s) + ν2(s) cos ϕ(s), (A52)

where

ν1(s) =
1

8αη
κ,s, ν2(s) = −1 +

1
16αη

κ2
0 −

1
16αη

κ2. (A53)

The graphical results of calculations of the contour shape are presented in Figure 4.
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Appendix C. Model of Accretion Disk Near Black Hole

Accretion Disk: Generally speaking, different types of accretion disks are discussed
in the literature: thick disks (“doughnuts”), thin disks (Shakura-Sunyaev model), slim
disks, and advection-dominated accretion flows. The standard thin accretion disk model is
applied for an accretion rate that is substantially smaller than the Eddington limit. This
model was one of the first studies of accretion disks in the vicinity of black holes, formulated
in the early 1970s by Shakura and Sunyaev. The authors articulated the basic assumptions
and equations to describe classic thin disks in the Newtonian approximation of gravity.
Relativistic disks were first described by Bardeen, Press, and Teukolsky, and by Novikov
and Thorne. Thorne introduced the “slim disk” model, whose equations include a number
of terms neglected in the thin disk model equations. For more detail, see, for example,
Refs. [46,47]; these reviews cover the main aspects of the black hole accretion disk theory.

In the model presented below, the following presumptions are made about the ac-
cretion disk: (a) It is thin, i.e., its characteristic vertical thickness is much smaller than its
characteristic horizontal size; (b) It is located in the equatorial plane, implying that the
averaged θ-component of 4-velocity becomes suppressed; (c) It rotates with the rotation
axis perpendicular to the disk plane; (d) It is heated non-homogeneously, with higher
temperatures at the outer layers (due to the processes of the tidal disruption of captured
matter and strong dissipation in the shear flows).

Let us assume that, due to some mechanism, a locally “twisted” region of heated
matter spontaneously formed in the rotating disk. Then, in the field of the centrifugal
force, within the outer layers, “hot bubbles” form (i.e., localized plasma clusters whose
temperature exceeds the “average” for the disk and whose density is lower), which move
towards the axis of the disk rotation. However, when these hot bubbles are also vorticial in
nature (for example, due to the overall rotation of the disk), then each vortex bubble (via
induction of the velocity field) “forces” other vortex bubbles to rotate around itself. Hence,
the bubbles move “sideways”, rather than directly towards the rotation axis of the disk.
As a result, since all vortices are affected by the cumulative velocity field, they gradually
self-organize into zones of stability—a symmetric thermo-vorticial macro-structure which
rotates as a whole around the mutual center of symmetry. The dynamics and longevity
of this structure are linked to the thermal and vorticial properties of the system and its
elements. Visually, the protruding components of this structure look like bright “hot
petals”. For large-scale quasi-2D flows in “thin” fluid layers, with very high Reynolds
numbers, the so-called “smoothing” effect is observed when the level of vorticity acquires
an approximately constant value throughout the region of the vortex (see classical Ref. [26],
and subsequent developments in Refs. [9,10,18,27], and references therein).

The following assumptions are also made in the model: the mass of the accretion
disk (∼ 10−5 ÷ 10−4MBH) is negligible compared to the black hole “mass” MBH , the
radiative cooling does not strongly affect the dynamics of the fluid motion in the disk, the
electrons and ions are very weakly coupled by Coulomb interaction, and therefore, ion and
electron plasma components may have different temperatures, even with Te much greater
than Ti (see Ref. [28]). Then, it is the electron plasma component which contributes the
most to the equation of state of the accretion disk matter. Due to the large difference in
the masses of electrons and protons, electrons are highly mobile and provide the quasi-
neutrality of the plasma. Also, due to the high conductivity of the plasma, its own magnetic
field can be considered “frozen-in”. A range of possibilities may exist. In hot flows
like those around Sgr A* or M87, electron temperature is thought to be typically lower
than the ion temperature due to radiative losses to synchrotron, inverse Compton, and
bremsstrahlung processes.

Model Assumptions Regarding the Thickness Of the Disk: We consider the motion
of the medium relatively far from the event horizon, i.e., for hydrodynamic structures,
it may be assumed that r ≫ rg, where rg is the Schwarzschild radius. In this paper, the
approximation r > 3rg may be considered “far away”. When we are not dealing with
phenomena occurring near the event horizon (which is r ∼ rg), then, for r > 3rg, we can
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restrict ourselves to the roughest approximation for the spacetime metric near a rotating
(or not ) black hole.

It is assumed that the disk is geometrically thin—h ≪ r—where h is the characteristic
local thickness of the disk.

When r > rg (more specifically, r > 3rg), then the vertical component of gravity
acceleration can be estimated as gz = − G MBH z/(r2 + z2)3/2 ≡ −K2z(1 + z2/r2)−3/2.
This is balanced by the pressure gradient. Here, G is the gravitational constant, c is the
speed of light, K2 = GMBH/r3 = c2rg/(2r3), and K ∼ r−3/2 is the radius dependent on
the so-called Kepler parameter: the angular velocity of a test particle with a circular orbit at
a distance r from MBH in the Newtonian approximation of gravity.

Gas pressure along the direction perpendicular to the disk plane (x, y) is determined
by the hydrostatic equilibrium, dP = ρgzdz. Generally speaking, electromagnetic radiation
and the induced magnetic field may contribute to the pressure. In the simplest case, the
dominant contributor is the gas thermal pressure; then the vertical temperature distribution
is isothermal, which is an acceptable approximation when the disk is optically thick and
externally heated. The equation of state of gas/plasma is then P = s2ρ, where s is the
“isothermal sound speed” (which is not a function of the transversal coordinate z).

If we further assume that z ≪ r, the equation of hydrostatic equilibrium becomes
s2dρ = −s2h−2ρzdz, the solution of which is ρ(z) = ρ0 exp(−z2/2h2). Here, the transversal
space scale h is introduced: h = s r3/2/(GMBH)

1/2. Parameter ρ0 represents the density at
the disk mid-plane (at z = 0), and parameter h is the characteristic local thickness of the
accretion disk.

In order for the accretion disk to be considered thin, it is necessary that h/r ≃
sr1/2/(GMBH)

1/2 ∼ (s/c)(r/rg)1/2 ≪ 1. On the other hand, for great distances from the
black hole (r > rg), specific relativistic effects may be neglected or parametrized. Thus, we
obtain the following natural bounds for the validity of our consideration: rg < r < rg(c/s)2.
In other words, the presented model may be valid for the consideration of spots in ac-
cretion disks (resembling those in Figure 1A, for example) if the spots are located within
these limits.

Note that we work with the field, not with individual particles (their trajectories).
“Thin” Disk Temperature Distribution T(r): The problem of how physical param-

eters, such as temperature, are distributed within a geometrically “thin” accretion disk
may be examined, of course, within the framework of the hydrodynamical approximation,
introducing, among others, the concepts of turbulent flow, Reynolds tensor, turbulent
viscosity, and the closure of equations. Instead, since we are aiming to obtain only a
model-specific estimate, we will first (1) neglect the dependence of physical parameters
on the perpendicular to the disk-plane z-coordinate (i.e., integrate/average vertically) and
(2) consider the disk without radial thermal advection (i.e., the transfer of heat with matter
along the radius) and without the loss of mass from the lateral surfaces of the disk. In such
a disk, the angular velocity of rotation of the disk matter at each location along the radius r
is approximately equal to the angular velocity of rotation of a free test particle. In other
words, vr ≪ vϕ. (Recall that key parameters that determine the structure of a geometrically
thin disk are the mass of the gravitating center MBH , the internal radius of the accretion
disk Rin, and the accretion rate ṁ.)

The next assumption is that the gas of the accretion disk spirals inward and this
spiraling is very gradual, i.e., the orbits of the gas particles are almost circular. The orbital
speed is Keplerian and is estimated as vϕ =

√
GMBH/r = Kr. Quantity K =

√
GMBH/r3

is the so-called Keplerian parameter, which is radially dependent, determining the period
(TK = 2π/K) of revolution of the test particle located at distance r from the center of
attraction MBH .

The categorization of a (vertically isothermal) disk with characteristic thickness h as
“geometrically thin” means that h/r ≪ 1, where h2 = 2s2/K2, s ∼

√
T is the isothermal

sound speed for the gas, T is the absolute temperature, and the gas pressure is p = ρs2.
Then, it follows from the static equilibrium for the motion in z-direction that −dp/dz =
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−s2dρ/dz = ρ(GMBH/r2)(z/r) = ρK2z. This yields ρ = ρ0 exp(−z2/h2), where ρ0 is the
density of the disk mid-plane.

The specific angular momentum of the test particle is r vϕ =
√

GMBHr. This means
that, to flow inward (so that the radial velocity dr/dt < 0), the gas must lose its angular
momentum by redistributing the angular momentum within the disk. The “inner” gas
transfers its angular momentum to the “outer” gas; the gas matter flows inward. The loss
of the angular momentum by the entire system (via the outward wind, for example) results
in the inward flow of the remaining disk matter (with increased viscosity, the process
becomes diffusive).

For the unit mass located at the radial distance r, the acting potential U = −GMBH/r
produces the (inward-directed) force of attraction f = −dU/dr = −GM/r2. When the
mass dm is transported inward over the distance dr, its potential energy Ep is changed by
dEp = (GM/r2)dm dr. The potential energy of the particle dm when moved from infinity
to the location r decreases from zero to −G dm MBH/r. One half of this energy is converted
into kinetic energy; the other half is radiated away (this is the consequence of the so-called
“virial theorem”). In fact, for any gravitationally bound system the time-averaged potential
gravitational energy Ep and the time-averaged kinetic energy Ekin of the motion of the
particles of the system satisfy the following condition: Ep + 2Ekin = 0. Thus, variations
in the quantities are linked via the simple relationship: δEkin = −(1/2)δEp. Since the
total energy of the disk is E = Ekin + Ep = (1/2)Ep = −Ekin, then δE = −δEkin. In other
words, any addition of energy to the disk reduces the kinetic energy of its particles (the
disk components) and, conversely, energy radiation leads to an increase in Ekin, i.e., the
temperature of the disk. Since one half of the variation in the gravitational energy Ep goes
to the kinetic energy of the gas, then the other half is radiated. The luminosity is thus
L = (GMṁ/2r2)dr. Divided by the radiating area, 2 × 2πr × dr (the first factor 2 appears
because the disk has two sides), this expression produces the luminosity per unit area.

In the approximation where the disk radiates as a black body, its radiation power may
be characterized by the effective temperature T (from σT4, where σ is the Stefan–Boltzmann
constant). Equating the quantity L to the rate of energy loss via black-body radiation, we
obtain GMṁ/8πr3 = σT4. When ṁ is presumed to be independent of the coordinate r, this
expression leads to the radial temperature distribution: T = (GMṁ/8πσr3)1/4 ∼ r−3/4.

This estimate was obtained for disks without radial advection (the transfer of heat with
matter along the radius), without the loss of mass from the surfaces of the disk, without
consideration of the boundary conditions at the inner edge of the disk, etc. For an extended
source of mass (such that, within the disk, where Rin < r < R, the rate ṁ = ṁ0(r/R)s and
parameter s > 0)—i.e., when the inward mass transfer is balanced by the mass production
at the disk periphery (r ∼ R) and the mass is “devoured” by the black hole at the event-
horizon (r ∼ Rin)—the radial temperature dependence is T ∼ r(s−3)/4. This means that,
depending on the value of the parameter s, the temperature curve may take various shapes.
For s = 3, T is radius-independent (the disk is heated uniformly); no heat flow occurs along
the r-direction. For s > 3, the disk is hotter at its periphery, where the tidal destruction of
captured objects takes place.

Model of Spacetime Metrics: Obviously, equations of fluid motion in the vicinity
of a black hole must be written using the concept of relativistic dynamics. In our model
(see details in Refs. [29,30]), the spacetime metric is fully characterized by the black hole’s
mass parameter and “spin” (for an extensive discussion, see Refs. [31–36], and the bibli-
ographies therein). Specifically, we use the Kerr metric—an exact, singular, stationary, and
axially symmetric solution of the Hilbert–Einstein equations of the gravitational “field” in
a vacuum.

The notations, here and presented below, are as follows: Latin indices and suffixes
take the values 0, 1, 2, 3; parameter x0 = ct, c is always the speed of light; the Greek
letters take the values 1, 2, 3 and correspond to the spatial coordinates. The Galilean
metric (special relativity) is characterized by a metric tensor gik = (1,−δαβ). For the three-
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dimensional vector below, in Cartesian coordinates, there is no need to distinguish contra-
and covariant components.

Using the Boyer–Lindquist four-coordinates qi = (t, r, θ, ϕ)—and it is well-known that,
besides the Boyer–Lindquist coordinate representation, other representations of spacetime
locations exist—the square of the interval is written as ds2 = gik(r/rg, θ)dqidqk, where
notations are standard and the components of gik depend only on the dimensionless
combination rg/r and θ. Here, as accepted, rg = 2GMBH/c2 is the Schwarzschild radius, c
is the speed of light, G is the gravitational constant, and MBH is the “mass” of the black hole.
The off-diagonal term g03 in the metric tensor is proportional to the rate of the black hole’s
own rotation and to 1/r. We use the metric signature diag(+−−−) (see, for example,
Ref. [30], and references therein). To satisfy the principle of causality for moving material
objects, ds2 > 0. The four timespace coordinates qi = (t, r, θ, ϕ) provide the location of a
world event from the viewpoint of a remote observer. The meaning of space coordinates
r, θ, ϕ is clear once transitioned to the limit r ≫ rg, r ≫ ωr2

g/c. When the square of the
interval becomes ds2 → c2dt2 − dr2 − r2(dθ2 + sin2θ dϕ2), i.e., at infinity, parameters r, θ, ϕ
may be interpreted as the standard spherical coordinates in flat spacetime. For parameter r,
strictly speaking, note that it is not the “distance”, in the usual sense, from the center of the
black hole. This is because, for any material object, in the spacetime defined by equation
ds2 = gikdqidqk, no central point r = 0 exists in the sense of a world event on a valid
world-line.

Relativistic Flows Of Perfect Fluids: We take into account the effects of special and
general relativity to obtain the relativistic Euler equations. To avoid misunderstandings
that may arise due to the underdefinition of some concepts (for example, the definition of
the signature of the metric tensor), we include many details in this section, even though an
advanced reader will certainly be aware of them.

As is known (see, for example, Ref. [31]), the contravariant energy-momentum tensor
of a perfect relativistic fluid is written as Tik = (e + p)uiuk − pgik. Here, e is the internal
energy of the fluid; p is the pressure. The quantity w = e + p is the heat function (enthalpy);
gik is the contravariant metric tensor. The quantity ui is the contravariant 4-velocity of the
fluid flow; ui is its covariant 4-velocity. The 4-velocity vectors of the flow are normalized by
the condition uiui = 1. The covariant metric tensor (included in the definition of the interval
ds via ds2 = gikdxidxk) is the tensor gik reciprocal to the tensor gik; that is, gil glk = δi

k. The
usual rule of summation is always used. The metric signature is chosen as g00 > 0. The
procedure of the raising and lowering of these indices follows the standard rule. Therefore,
the 4-vector components’ links are as follows: ui = gikuk and ui = gikuk.

The relativistic internal energy e includes the rest energy of particles nmc2, where m is
the rest mass of one particle and n is the proper number density of particles (i.e., 1/n is the
volume per particle). The heat function w, normalized per mc2, is written as w/mc2 → w =
n + w1/mc2. Here, w1 captures the non-relativistic part of the heat function. Normalized
pressure p/mc2 → p has the same dimension as normalized w: [w] = [p] = [n].

The explanations of why tensor Tik takes such a form can be found in Ref. [12], §133.
The mixed tensor Tk

i is thus Tk
i = wuiuk − pδk

i . A more complex model of the stress–energy
tensor of a viscous relativistic fluid with an energy flux may be found in Ref. [33], §22.3, or
Ref. [12], §136. A method for building analytical models of relativistic accretion disks may
also be found in Ref. [46], which also contains an extensive bibliography on the topic.

To better explain the idea of how to construct the equations of fluid motion, as the first
step, we consider the flow in the flat spacetime. Then, if the Cartesian coordinates are used,
g00 = 1, gαβ = −δαβ. The equations of fluid motion and the condition for the conservation
of the proper number density of particles n are contained in the following equations:

∂Tk
i

∂xk = 0,
∂(nui)

∂xi = 0 . (A54)

Reminder: this system becomes closed through the inclusion of the equation of state
(for the ideal gas, Fermi gas, plasma, etc.). This is the most subtle part of the problem: one
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cannot just use some equation of state to “see what happens”, one must consider the real
astrophysical situation in the proper spacetime for the problem. The magnetic field can also
be included in the consideration. Then, tensor Tk

i would contain an additional magnetic
term. If the plasma is highly conductive, then the magnetic field may be considered “frozen-
in” within the fluid. Then, the additional Lorentz force appears in the dynamic equations
and an additional equation for the evolution of the “frozen-in” magnetic induction H
appears in the system of equations. Magneto-hydrodynamics is strictly applicable in
configurations when the mean free path and mean free time of electrons and protons are
much smaller than the characteristic scales and time intervals of the macroscopic motions
in question. However, there exist situations when, even for systems with long free paths of
current-carriers, the equations obtained from the kinetic theory are formally identical to the
MHD equations. Such a situation is observed, for example, in a non-equilibrium plasma
when the electron temperature considerably exceeds the ion temperature.

It is physically clear that when a conducting fluid moves in a magnetic field, electric
fields are induced in it. Thus, electric currents begin to flow. The magnetic field exerts forces
on these currents which, in principle, may considerably modify the flow characteristics.
Conversely, the currents themself perturb and even strongly modify the magnetic field.
Consequently, a complex interaction between the magnetic and fluid dynamics phenomena
takes place. Thus, the fluid flow must be studied by combining the fluid dynamics equations
with those of electromagnetic field equations—this is the MHD formulation. Such an
approach covers a wide range of physical objects, from liquid metals in a magnetic field to
cosmic plasmas. In most configurations, MHD processes are extremely complex.

The description radically simplifies if (a) all dissipative processes are neglected, i.e.,
no account is taken of thermal conduction and viscosity and the electrical conductivity is
considered unbounded such that, in the case of a perfectly conducting fluid, the electrical
field is completely screened and the magnetic field is “frozen-in” within the fluid; (b) the
fluid is incompressible; (c) in the equations of conservation, the following terms are added:
H2/8π to the density of the hydrodynamical energy ρv2/2 + ρϵ(ρ, σ), and the Maxwell
stress tensor −(Hα Hβ − δαβH2/2) to the hydrodynamical momentum flux density tensor
ρvαvβ + pδαβ. This leads to the appearance of the Lorentz force in the equation of fluid
motion: −(4πρ)−1[H, curl H].

The MHD formulation implies that the displacement current is neglected in the
Maxwell equations, i.e., c−1|∂tE| ≪ |curl H|; together with the “frozen-in” condition,
this leads to the following condition: vl/c2τ ≪ 1. Here, c is the light speed, l and τ
are, respectively, the characteristic space scale of the considered flow structure and of the
changes in its its evolution. From the Maxwell equation for the evolution of the magnetic
field H, which, in highly conductive plasma, becomes ∂tH = curl[v, H], it follows that
τ−1 ∼ vl−1. From these two inequalities, we find that v2 ≪ c2, i.e., the flow must be non-
relativistic. Because ∂tv ∼ −(4πρ)−1[H, curl H], i.e., ρv/τ ∼ H2/l, and taking into account
vl/c2τ ≪ 1, we find that it must be that H2 ≪ ρc2. Thus, if the inequality H2 ≪ ρc2

s ≪ ρc2

(where cs ∼
√

T is the speed of sound) is satisfied, the hot plasma may be considered
non-relativistic and the effect of the magnetic field can be taken into account as a small
perturbation and can be neglected in the leading approximation.

With respect to the modeling of black hole accretion disks in general, one caveat
is critically important: the present understanding of the physical conditions within the
disks (for example, the equation of state of the matter) is highly uncertain; there are no
observational measurements that confirm any of the existing models of the equation of state.
Unfortunately, as all studies note, the sensitivity of numerical models to the uncertainties in
the parameters of the equation of state is also high. Hence, until some reliable observational
data appear regarding the physical conditions in the vicinity of black holes, the overzealous
obsession with numerical details remains meaningless and semi-qualitative estimates
will suffice.
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Taking the explicit expression for Tk
i and differentiating it (using notation ∂/∂xl ≡ ∂l),

we obtain the following from Equation (A54):

∂kTk
i = ui∂k(wuk) + wuk∂kui − ∂k pδk

i = 0 . (A55)

We must remember that derivatives ∂l are to be regarded as the covariant components
of the 4-vector-operator. In fact, the differential of the scalar f , namely d f , is also scalar. The
scalar product of two 4-vectors, d f = dxi∂i f , is also scalar, making our assertion obvious.
The operator of differentiation with respect to the coordinate, ∂m, determines the covariant
components of the 4-vector operator ∂l = (∂0, ∂α). The index is raised according to the
usual procedure: ∂i = gik∂k. In the Galilean metric, contravariant ∂l = (∂0,−∂α), where the
enumerating index for space components, as mentioned earlier, is α = 1, 2, 3.

Next, project Equation (A55) onto the direction of the 4-velocity, i.e., we multiply it by
vector ui. This product is obviously also zero:

uiui∂k(wuk) + wukui∂kui − ui∂k pδk
i = 0 . (A56)

In the first term, the coefficient is uiui = 1. The second term is zero because uiui = 1,
i.e., ui∂kui = 0, and, in the Galilean metric, in the absence of the spacetime curvature, all
components of the Christoffel symbol are zero. Thus,

∂k(
w
n

nuk)− ui∂i p = 0 . (A57)

(Recall that w/c2 = γρ + (1/c2)(ρe1 + p), where γ is the Lorentz factor and e1 is
the non-relativistic part of the internal energy.) When we take the equation of continuity,
i.e., the second equation in the system Equation (A54), into account, then Equation (A57) is
transformed into

nui
(

∂i(
w
n
)− 1

n
∂i p

)
= 0 . (A58)

In the system where the total number of particles is constant and there are no external
heat sources, the fundamental thermodynamical identity is Td(s/n) = d(w/n)− (1/n)dp.
Here, T is the absolute temperature, s is the entropy per unit of proper volume, 1/n is
the volume per particle, w is the enthalpy per unit of proper volume, and σ = s/n is the
entropy per one particle. Noting te equation of continuity, we obtain from Equation (A57)
the equation of conservation for the entropy flux:

∂i(sui) = 0 or, because of nT ̸= 0, ui∂iσ = 0. (A59)

This means there is no heat exchange between adjacent fluid particles (which are
composed of enormous numbers of individual subatomic particles).

The next step is to project the first equation in Equation (A54) onto the direction
perpendicular to the 4-velocity. For this, we use the projection operator, i.e., we build
(δk

i − ukui)∂lTl
k, which is also zero. Thus,

∂kTk
i − ukui∂lTl

k = 0 . (A60)

Using the definition of Tk
i and simplifying some terms, we find four equations:

wuk∂kui = ∂i p − ukui∂k p . (A61)
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Here, the three space components of these four equations are the relativistic general-
ization of Euler equations; the time component for u0 is the consequence of the other three.
Equation (A61) was obtained from Equation (A60) and the definition for Tl

k, as follows:

∂k(wuiuk − pδk
i )− ukui∂l(wukul − pδl

k) =

wuk∂kui + ui∂k(wuk)− ∂i p − ukui∂l(wukul) + ukui∂k p =

wuk∂kui + ui∂k(wuk)− ∂i p − ukui(wul∂luk + uk∂l(wul)) + ukui∂k p =

wuk∂kui + ui∂k(wuk)− ∂i p − ukuiwul∂luk − ukuiuk∂l(wul) + ukui∂k p . (A62)

Here, the second term cancels the fifth term because ukuk = 1, and the fourth term is
zero because uk∂luk = 0, for the same reason; from this, we can obtain Equation (A61).

The equations of relativistic fluid dynamics in the general theory of relativity are
obtained from Equations (A59) and (A61) by simply replacing the ordinary derivatives with
the covariant ones (see Ref. [12], §134) and keeping in mind that the 4-velocity expression
is modified as well:

wukui;k = p;i − uiuk p;k, (σnui);i = 0 . (A63)

Recall that the covariant derivatives for vectors ui and ui are respectively determined
as ui

;k = ∂kui + Γi
lkul and ui;k = ∂kui − Γl

ikul . The quantities of Γk
lm are the Christoffel

symbols. Also, we recall that these quantities are expressed via the metric tensor gik
as Γi

kl = (1/2)glm(∂l gmk + ∂kgml − ∂mgkl). In Galilean coordinates, Christoffel symbols
Γk

lm = 0; therefore, the covariant differentiation reduces to the ordinary differentiation.
Because the covariant derivative of a scalar function produces the same result as an

ordinary derivative, Equations (A63) are rewritten as

wuk∂kui = (δk
i − uiuk)∂k p + wukΓl

ikul ,

uk∂kσ = 0, (A64)

or, for a contravariant component of 4-velocity of flow us, the first equation becomes

wgisuk∂kus = (δk
i − uiuk)∂k p + w(ukΓl

ikglmum − umuk∂kgim). (A65)

When the coordinate grid and spacetime metric are specified, then the group of the
last terms in the parenthesis in Equation (A65) manifests itself as a specific “force” acting
on a fluid relativistic particle in the “Euler description.” If, in analogy with the dynamics of
relativistic particles with dui/ds, we wrote, in the left part of Equation (A65), the quantity
uk∂kui ≡ (dxk/ds)∂kui, this would have been incorrect. Properly, the left part should look
as written in Equation (A65). The covariant quantity uk∂kui is not the specific covariant
force acting on the fluid particle; this force is the quantity gisuk∂kus.

It is helpful to see what will happen in the case of low velocities and in the absence
of fields, i.e., when γ → 1, ui → (1, v/c), ∂i = (∂0, ∂α). For the α-spatial contravariant
component of 4-velocity, we obtain (with the coefficient c−2) the “material” derivative:
uk∂kuα → c−1(∂t + vβ∂β)(vα/c) = c−2(dvα/dt) ≡ c−2aα. To find the covariant component
of the “material” acceleration aα, we use the standard rule for the lowering of indices.

Thus, we become capable of calculating the spatial “force” components, using gαsgis =
δi

α, based on the following equation:

wgαsuk∂kus = (δk
α − uαuk)∂k p + w(ukΓl

αkglmum − umuk∂kgαm), (A66)

which has a transparent physical meaning: the left side of the equation determines the
kinematic characteristics of the process—the evolution in time and space of the 4-velocity—
which characterizes the state of the fluid particle; the right side of the equation specifies
the causes of this change, namely, the pressure gradient and the presence of an external
force field.
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The subsequent calculations are conceptually rather transparent: for a given metric
tensor gik found from interval ds, defined via ds2 = gikdxidk, we calculate the Christoffel
symbols Γk

il ; everything is substituted into Equations (A66), which are solved for the selected
model of the equation of state of (disk) matter for the quantities p, e, ϵ, σ. Equations (A66),
which can be applied in many physically interesting situations, are quite complicated. The
equations of fluid dynamics in the first approximation beyond the Newtonian (i.e., in the
post-Newtonian, via expansion with respect to parameter c−2) were obtained in Ref. [37],
and are discussed in Ref. [33]. Additional information can be also found in Refs. [38–41,44].

Explicit Form of Metric Coefficients for Kerr Geometry with Rotation: For the Kerr
metric (see Ref. [30] and references therein), the components of the metric tensor may be
found from the following expression:

ds2 = G00dt2 + G11dr2 + 2G03dtdϕ + G22dθ2 + G33dϕ2 =

c2(1 −
rgr

r2 + â2 cos2 θ
)dt2 − (

r2 + â2 cos2 θ

r2 − rgr + â2 )dr2 − 2â(
rgr

r2 + â2 cos2 θ
) sin2 θdtdϕ −

−(r2 + â2 cos2 θ)dθ2 − (r2 + â2 − â2 rrg

r2 + â2 cos2 θ
sin2 θ) sin2 θdϕ2 . (A67)

If we need to transition to an uniformly rotating frame of reference, then we make
the following transformation x = x1 cos Ω̂t − y1 sin Ω̂t, y = x1 sin Ω̂t + y1 cos Ω̂t, z = z1,
where parameter Ω̂ is the angular velocity of the rotation co-linear with the z-axis. The
same notations remain: r → r, θ → θ, ϕ → ϕ + Ω̂t. Then,

ds2 = c2(G00 + 2G03Ω̂ + G33Ω̂2)dt2 +

G11dr2 + 2c(G03 + Ω̂G33)dtdϕ + G22dθ2 + G33dϕ2. (A68)

This dimensionless expression is expressed in units of length rg = 2GMBH/c2 and
time rg/c. Therefore, r → rgr, â → rga, Ω̂ → Ω = Ω̂rg/c. Thus, Equation (A68) can be
written as ds2 = mikdqidqk using the following:

m00 = 1 − x
x2 + a2 cos2 θ

− 2axΩ sin2 θ

x2 + a2 cos2 θ
−

Ω2 ((x2 + a2)2 − a2(x2 − x + a2) sin2 θ)

x2 + a2 cos2 θ
sin2 θ,

m11 = − x2 + a2 cos2 θ

x2 − x + a2 , m22 = −(x2 + a2 cos2 θ),

m33 = − ((x2 + a2)2 − a2(x2 − x + a2) sin2 θ)

x2 + a2 cos2 θ
sin2 θ,

m01 = 0, m02 = 0,

m03 = − ax sin2 θ

x2 + a2 cos2 θ
−

Ω
((x2 + a2)2 − a2(x2 − x + a2) sin2 θ)

x2 + a2 cos2 θ
sin2 θ. (A69)

As is known, for the Kerr model, the parameter is always a2 < 1/4. From Equation (A69),
it follows that dimensionless spacial parameter x is bounded as follows: x+ < x <
xmax(Ω, a, θ) if m00 > 0. Obviously, setting a = 0 and Ω = 0 in Equation (A69) provides the
Schwarzschild metric. Also, the limit value x+ corresponds to the external event horizon.
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Finally, we provide the expressions for the components of metric tensor mik in the
leading approximation for θ = π/2, a2 < 1/4 and x ≫ 1:

m00 = 1 − x2Ω2 − a2Ω2 − 1 + 2aΩ + a2Ω2

x
,

m11 = −1 − 1
x
− 1 − a2

x2 ,

m22 = −x2, m33 = −x2 − a2 − a2

x2 ,

m01 = 0, m02 = 0,

m03 = −x2Ω − a2Ω − a + a2Ω
x

. (A70)

From these expressions, it follows that if the fluid flow is away from the event horizon
(i.e., x ≫ 1 > |a| in dimensionless units) and parameter Ω satisfies conditions aΩ ≪ 1 and
(approximately) Ωx3 ≪ 1, then the principal contributions to the components of the metric
tensor mik come from the terms which depend on Ω; the stand-alone gravitational part in
the metric is not the focal one.

The expressions in Equation (A70) make it possible to determine the size of the strip
of a thin accretion disk, within which the approximation of the classical hydrodynamics
can be determined, and where the main contribution to the flow dynamics is made not by
the fine structure of the metric in the vicinity of a rotating black hole, but by the effect of
the rotation of the accretion disk, characterized by parameter Ω. Parameter Ω appears in
these expressions because the accretion disk mainly forms through the captured matter,
which has a non-zero angular momentum; therefore, the (averaged) angular velocity of the
disk—which is a material formation of finite mass and limited dimensions—is non-zero.
Hence, it is logical to transition to a coordinate system rotating with such angular velocity.
However, the very concept of a rotating coordinate system contains two implied caveats
(see Ref. [31], § 84): (1) some material bodies must exist (or the coordinate system has no
“anchors”) and (2) they exist within the spacetime domain, which is necessarily bound
(or the material bodies outside xmax(Ω, a, θ) would rotate with velocities exceeding the
speed of light, which is impossible; the limit xmax(Ω, a, θ) is where component m00 of the
metric tensor turns negative). This means that a rotating coordinate system cannot extend to
infinity. In other words, it is important to remember that all considerations are always made
for a finite spacetime domain surrounding the axis of rotation—beyond this domain lies the
“forbidden” zone. (Near the axis of rotation is the other “forbidden” zone—the ergosphere.)

As the rotation speeds up (Ω → Ωmax), the “forbidden” zones (where m00 < 0)
transform from two detached zones (Figure A1A) into one merged zone (Figure A1B).

(A) (B)

Figure A1. Domains of spacial coordinates (r, z) where the m00-component of the metric tensor mik
becomes negative (darkened zones). Calculations are made for the conditional values of parameters:
left panel (A) a = 1/3, Ω = 1/5; right panel (B) a = 1/3, Ω = 1/3.
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With respect to the relativistic consideration in general, several critically important
caveats exist: (1) A “rigid coordinate grid” (such as the Boyer–Lindquist parametrization)
cannot span everywhere, from infinity and into the ergosphere. The meanings of the
parameters defining the world-point for a body do change when transitioning from one
domain of spacetime into the other. This means that a “singularity” may appear. (2) The
singularities of both the event horizon and the static limit in the Kerr metric are illusory.
They become singularities only within the “unfortunate” choice of coordinates. Indeed,
just like in the case of being far away from the black hole (at infinity) where the Boyer–
Lindquist coordinates conveniently turn into normal spherical coordinates, in the case of
being near the black hole, the spacetime may be smoothly described (without singularities)
by differently chosen coordinates, such as Kruskal–Szekeres, Lemaitre, or Eddington–
Finkelstein coordinates (see, for example, Ref. [36]). Indeed, besides the Boyer–Lindquist
coordinates, a number of representations of spacetime locations exist (see, for example,
Refs. [42,43]). To clarify this idea: consider the spherical coordinate system. When angular
parameter θ = 0 or θ = π (think of the North/South Poles on the globe), the contribution
to the interval ds (via ds2) from the term ∼ sin2 θdϕ2 always equals zero, i.e., any value
of ϕ describes the same world-point (the Pole). Therefore, if working with spherical
coordinates, at the Pole, we can see an illusory singularity (the ϕ-coordinate appears to
“fold”). However, this is clearly a product of the “unfortunate” choice of coordinates; the
“singularity” disappears in another coordinate system—in the Cartesian, for example.

Linkage Between 4-velocity and 3-velocity: To express the 4-velocities of flow ui (in
the curved spacetime with rotation) via 3-velocities, we separate the coordinates of time
and space (denoted by the Greek letters) in the general form of the square of interval ds2:

ds2 = ĝ00(dx0)2 + 2g0αdx0dxα + gαβdxαdxβ. (A71)

For the special case of the Kerr geometry with rotation, quantities gik are easily ex-
pressed via mik. Next, we rewrite general Equation (A71) as follows:

ds2 = ĝ00(dx0 − gαdxα)2 − γαβdxαdxβ, (A72)

where the distance dl between two close points is found from dl2 = γαβdxαdxβ > 0.
Here, tensor γαβ = −gαβ + g00gαgβ (which should not be confused with the Lorentz factor
γ = (1 − v2/c2)−1/2) includes the 3-vector g whose covariant components are defined as
gα = −g0α/g00. Then, Equation (A72) can be rewritten as follows:

ds2 = ĝ00(dx0 − gαdxα)2(1 − v2

c2 ). (A73)

The expression for v2 is apparent from Equations (A72) and (A73) and reveals that,
in order to measure the magnitude of flow velocity v, one must simultaneously measure
the distance between neighboring points dl (in Equation (A72)) and the interval of the
corresponding time. This is why the expression

√
ĝ00(dx0 − gαdxα) is introduced.

From Equation (A73), it follows that

dx0

ds
≡ u0 =

γ√
ĝ00

+ gβuβ . (A74)

The link between the components of the general tensor gik and the components of the
specific case of the Kerr metric with rotation mik is given by the following:

ĝ00 → m00, g11 → m11, g22 → m22, g33 → m33,

g01 → 0, g02 → 0, g03 → m03. (A75)

Tensor γαβ, introduced in Equation (A73), becomes, in this cas, γαβ → −mαβ +
gαgβm00. It should be noted that tensor γαβ determines the metric in 3D space: the distance
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between two close points can be found from dl2 = γαβdxαdxβ. The contravariant 3D metric
tensor is γαβ = −gαβ (see Ref. [31], §84). Also, when gα = −g0α/ĝ00, the contravariant
component of the same vector g is determined as follows: gα = γαβgβ = −g0α. We can also
obtain that ĝ00 = ĝ−1

00 − gαgα.
Synchronized Time: The introduction of parameter z0 defined by dz0 =

√
g00(dx0 −

gαdxα)—the so-called synchronized time—is not some kind of mathematical manipulation.
It reflects the fundamental need within the framework of relativism to simultaneously
measure positions at two separate points and, therefore, to measure the particle velocity.
This means that the measured time interval is

√
ĝ00(dx0 − gαdxα), divided by c; the concept

of the velocity of fluid particle movement is formulated using this very time interval.
Equation (A71) allows us to conclude that 3D contravariant and covariant velocities take
the following form:

vα =
cdxα√

ĝ00(dx0 − gβdxβ)
=

cuα√
ĝ00(u0 − gβuβ)

,

vα = γαβvβ, vαvα = v2. (A76)

Furthermore, from Equations (A75) and (A76), the contravariant components of 4-
velocity are not introduced arbitrarily, but, following the procedure above, are expressed
via the 3-velocity vector v as follows:

ui =
dxi

ds
= (u0, uα) = (

γ√
ĝ00

+ γ
gαvα

c
, γ

vα

c
) . (A77)

Equation (A77) provides the link between the 4-velocities ui and 3-vectors of flow
velocities vα. Note that, in this case, the operator uk∂k can be written as ≡ (γ/c)D, where
D = ∂t0 + vβ∂β and t0 = z0/c. In fact,

uk∂k = γ((
1

√
g00

+ gβ
vβ

c
)∂0 +

vβ

c
∂β)) = γ((

dz0√
g00dz0

+
gαdxα

dz0
)∂0 +

vβ

c
∂β) =

γ((
dz0 +

√
g00gαdxα

√
g00dz0

)∂0 +
vβ

c
∂β) = γ((

√
g00dx0

√
g00dz0

)∂0 +
vβ

c
∂β) = γ(

∂

∂z0 +
vβ

c
∂β) =

γ

c
D.

Thus, the operator D is nothing more than a “material” derivative with respect to
time, in which, instead of differentiation with respect to the time t of a remote observer,
differentiation with respect to synchronized time t0 = z0/c is implied.

“Specific Force” and Coriolis Effect: Let us return to Equation (A65), which we write
using the following form:

wgβsuk∂kus = (δk
β − uβuk)∂k p + w fβ, (A78)

where, after some simple manipulations, fβ becomes a remarkably symmetric expression

fβ =
1
2
(∂βgkm − ∂kgβm − ∂mgβk)umuk. (A79)

The term fi in Equation (A78) is non-zero in a curved spacetime and manifests itself
as a certain specific force acting on a moving fluid particle.

The key question that immediately arises is whether Equation (A78) provides similar
expressions to the centrifugal and Coriolis forces which appear in the classical hydrodynamics.
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We expand the expression for fβ, explicitly selecting terms with u0:

fβ =
1
2
(∂βg00)(u0)2 +

[
(∂βgλ0 − ∂λgβ0)u0

]
uλ +

1
2
(∂βgµν − ∂µgνβ − ∂νgβµ)uµuν. (A80)

The first term in Equation (A80) can be rewritten as follows:

1
2
(∂βg00)(u0)2 =

1
2g00

(∂βg00)(1 + γ

√
g00gαvα

c
)2 =

(∂β ln
√

g00)(1 + γ

√
g00gαvα

c
)2. (A81)

Indeed, this expression turns into the simple model of Newtonian gravity in the limit
case of the weak field, non-rotation of the black hole, and when the very last term is zero.
This last term reflects the combined effect of the rotation of “everything” (via gα), movement
(via vα/c), and gravity (via g00).

We rewrite the second term in Equation (A80) as follows:

(∂βgλ0 − ∂λgβ0)u0uλ = (δ
µ
β δν

λ − δν
βδ

µ
λ)∂µgν0u0uλ =

u0
√

dϵβλσuλ

(
ϵµνσ

√
d

∂µgν0

)
. (A82)

Here, in a system with the right orientation of basis vectors, the Levi–Civita symbol
ϵµνλ (recall that this is not a tensor) has the components ϵ123 = ϵ123 = 1, and its sign
changes when index transposition is not even. In curvilinear 3D coordinates, the unit
antisymmetric tensor is defined as καβγ = d1/2ϵαβγ, where d is the determinant of the
matrix of the metric tensor gµν. Respectively, the tensor καβγ = d−1/2ϵαβγ. The expression
in parenthesises in Equation (A82), i.e., καβγ∂µgν0, is σ-component of the 3D contravariant
vector Γ = (curl (−g00g))σ (see Ref. [48]; or Ref. [31], footnote on p. 252). In combination
with other multipliers, Equation (A82) produces the cross-product of vectors v and Γ

with coefficient γu0/c. Indeed, if c = a × b, then cα = καβγaβbγ. Thus, the second
term in Equation (A80) can be written as γu0c−1[v × curl(−g00 g)], in accordance with
the definition of the cross-product in 3D curvilinear coordinates. The second term in
Equation (A80) has an analogous form (absent external fields) to the Coriolis specific force
that would appear in a frame rotating with angular velocity Ω = (c/2)γu0curl(−g00 g).

In the limit case of low velocities and in the absence of fields (i.e., when γ → 1, u0 →
1,
√

d → x, gν0 → −Ωx2, ∂µ → ∂1), the non-zero component of Ω, i.e., Ωθ , becomes
(1/2)ϵ132x−1∂1(−Ωx2) = Ω, which is the angular velocity of the rotation of the coordinate
system. In this case, Equation (A82) becomes 2ϵβλ2xuλΩ, i.e., we can obtain the expression
for the Coriolis force in spherical coordinates, with the presence of coefficients 2 and Ω.
Recall that, in the full expression for the radial component of the cumulative “force,” the
following terms are summarized: the radial component of the Coriolis force (∼ 2xϕ̇Ω), the
radial component of the centrifugal force (∼ xΩ2), and the term (∼ xϕ̇2) from the material
derivative for the flow velocity. By summing up, we can obtain the radial component
∼ x(Ω + ϕ̇)2.

The third term—which provides the relativistic correction to the leading terms in
Equation (A80) —appears due to both the large flow velocities and the curvature of space-
time. This term is present when the derivatives with respect to the 3-coordinates of the spa-
tial part of the metric tensor, gµν, are non-zero. After the substitution gαβ = −γαβ + g00gαgβ,
some of the terms are canceled, and the remaining ones contribute to the Christoffel symbol
over a spatial basis. In Cartesian coordinates, this term disappears.

Each term in Equation (A80) is drastically simplified in the case of low (v2 ≪ c2) fluid
flow velocities, i.e., when γ ≃ 1 and when c ≫ √

g00 gαvα: the first term in fβ is then
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transformed into a specific potential “force” (acting on a fluid particle of flow) which is a
strictly radial one in the case of the Schwartzschild metric. In the case of the Kerr metric,
this term includes both the “gravitational” action and the “centrifugal” effect dependent
on Ω2 and a2 (see m00 in Equation (A69)). The second term, as noted above, is analogous
to the Coriolis force in the classic hydrodynamics. The third term is negligible for low
flow velocities.

The subsequent simplification of Equation (A80) involves the expansion of all dynamic
quantities into series with respect to small parameters x−1 and v2/c2, which produces rather
cumbersome expressions. The contribution to the equation of fluid motion from the terms
containing the higher orders of flow velocity v will be negligible. The key difference
compared to the classic hydrodynamic treatment is the replacement of the classic gravity
acceleration −∇Φ with −∇ ln

√
m00 and the replacement of the classic angular velocity Ω

with parameter Ω, as written above.
If conditions x ≫ 1, Ωx < 1 are satisfied, then, leaving the leading terms in the expan-

sion ∂β ln
√

m00, we obtain that ∂β ln
√

m00 ≃ −xΩ2 + 1/2x2 + 1/2x3 + (2a + Ω)Ω/2x2.
Here, terms of a higher order of smallness are omitted. The first term describes the centrifu-
gal effect, the second describes the contribution of the force of attraction in the Newtonian
approximation of gravity, the third term is derived from the Schwarzschild model of non-
rotating black holes, the last term takes into account the rotation of both the black hole and
the disk. For x ≫ 1, Ωx < 1, but Ωx3/2 > 1/2, the principal contribution provides the first
term ∼ Ω2, i.e., the centrifugal effect, independently of the exact structure of the spacetime
near the rotating, or not rotating, black hole.

Derivation of Equations for Relativistic Flow: In the subsequent treatment, the
following expressions are useful. For a 3-vector a with covariant components aα, the
contravariant components of vector curl a are (curl a)α = 2−1(d)−1/2ϵαβγ(∂βaγ − ∂γaβ).
Also, div a = (d)−1/2∂α(d1/2aα). When the fluid can be considered “incompressible”, the
current potential Aµ may be introduced: vα = d−1/2ϵαµν∂µ Aν.

By rearranging the terms, we rewrite Equation (A78) in the following form:

−wgβα
γ

c
D

γvα

c
− 2

γw
c2 [v × Ω]β − ∂β p − w

1
2
(∂βg00)(u0)2 =

−uβ
γ

c
Dp − wgβ0

γ

c
Du0 + w

γ2

2c2 (∂βgµν − ∂µgνβ − ∂νgβµ)vµvν. (A83)

Remember here that (for the spacial components) uν = γvν/c and uν = −γvν/c.
Presuming that the metric tensor components g00 and gαβ are time-independent,

when low-velocity flows (v2 ≪ c2, i.e., γ → 1 and w → γc2ρ → c2ρ) are consid-
ered at some distance from the event horizon (i.e., (uα)2Γ ≪ 1, where Γ is a charac-
teristic magnitude of the Christoffel symbols), then the right side in Equation (A83)
may be dropped. On the other hand, the thermodynamical quantity p = p(n, σ) gives
(uk∂k)p = (∂p/∂n)s(uk∂k)n + (∂p/∂σ)n(uk∂k)σ. For low velocities, u0 → (g00)

−1/2, and
the last term on the left side of Equation (A83) becomes w∂β ln

√
g00. The equation for the

evolution of flow velocities then becomes:

− w
c2 Dvβ − 2

w
c2 [v × Ω]β = ∂β p + w∂β ln

√
g00 + . . . (A84)

The simplest formulation is the one made in the Cartesian coordinates. Then, we
may not distinguish between the contra- and covariant components of a vector and simply
write the following: vα = vα = ϵαµν∂µ Aν and (curl v)α = ϵαβγ∂βvγ = ϵαβγ∂β(ϵγµν∂µ Aν) =
ϵαβγϵγµν∂β∂µ Aν = (δµαδνβ − δναδµβ)∂β∂µ Aν. So, (curl v)α = ∂α(∂µ Aµ)− ∂ν∂ν Aα = −∆Aα

when ∂µ Aµ = 0 (for example, when there is only one component of the vector Aµ →
(0, 0, A3(q1, q2)), which is not dependent on the polar coordinate q3 ≡ ϕ). Here, ∆ is the
Laplace operator.

2D Flows: Consider the flow in a thin layer of an ideal fluid in the plane θ = π/2. In
this case, the flow velocity vα has only two non-zero components in the xy-plane. Then,
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ω = curl v (in terms of components: ωλ = ϵλµν∂µvν) has only one non-zero component
A3 ≡ ψ, i.e., ω3 is perpendicular to the xy-plane.

We assume that a state of dynamical equilibrium exists:

∂β ps + ρ0∂β ln
√

g00 = 0. (A85)

We will now write p = ps + p1, ρ = ρ0 + ρ1. Combining Equation (A85) with
Equation (A84), we find that a perturbed state is described by the following:

−ρ0(Dvβ + 2[v × Ω]β)) = ∂β p1 + ρ1∂β ln
√

g00. (A86)

In this equation, the small term ∼ ρ1Dvβ is omitted for similar reasons to those ar-
ticulated in Refs. [12], §13, or [14]: We suppose that the space-scale of structures which
are of interest to us is small in comparison with the distances over which the force-field
from m00 causes a noticeable change in density, and we can regard the fluid itself as in-
compressible. This means that, during this process, we can neglect the change in the
density caused by the pressure change. The change in density caused by thermal expan-
sion, ρ1 ≃ (∂ρ/∂T)p(T − T0), cannot be neglected, because this is the one which causes
the phenomenon.

All the necessary attributes in the evolution equation Equation (A86) are presented: on
the left is the kinematic quantity, which is dependent on the flow velocity v, which describes
the change in the state of the fluid particle in the Euler description, and on the right are the
terms characterizing the causes which drive this change—the gradient pressure and the
force characteristic determined by the metric coefficient m00.

Next, the following well known expressions are used: (v · ∇)v = ∇(v2/2)− [v × ω],
where ω = [∇ × v] and [∇ × [A × B]] = (B · ∇)A − (∇ · A)B + (∇ · B)A − (A · ∇)B
which provide [∇× [v × ω]] = (ω · ∇)v − (∇ · v)ω + (∇ · ω)v − (v · ∇)ω, Then, we can
move forward. Next, we have div v = 0. Obviously, div ω = 0. In this case, for 2D flows
in the xy plane, curl[v × ω] = −(v · ∇)ω. Full vorticity can be determined as −∆ψ + 2Ω.
The evolution equation, Equation (1), for function ψ (in vβ = ϵβµ3∂µψ) is found after some
manipulations, excluding ∂β p1 using the operation ϵγβα∂α∂β p1.

The condition div v = 0 does not mean that the density of the medium is constant.
This condition simply means that the density evolution takes place according to the fol-
lowing equation: Dρ = 0. Using ρ = ρ0 + (∂ρ/∂T)p(T − T0) + (∂ρ/∂p)T(p − p0) ≃
ρ0(1 − βp(T − T0)), after some simple manipulation, the evolution equation for tempera-
ture perturbations takes the form of the third equation in Equation (1). For the equation
of state we shall assume, in accordance with the assumption of div v → 0, that the den-
sity essentially depends only on the temperature and not on the pressure. Thus, we set
ρ = ρ(1 − βp(T − T0)), where subscript 0 denotes the reference values. The coefficient of
thermal expansion βp is presumed constant. Since the quantity βp(T − T0) is generally
small, one may neglect the density variations, and hence replace ρ with the constant value
ρ0 in all terms, except in the “buoyancy” term.

Condition div v = 0 is not merely wishful. This condition is applicable in situations
where, on the one hand, the magnitude of the instantaneous current velocity v may be
considered small compared to the speed of sound s, i.e., v2 ≪ s2, and, on the other hand,
the time τ during which the flow configuration changes meaningfully is large compared to
the time which is necessary for the sound signal to travel distances of the order of the size l
of the vorticial structure in the flow, i.e., τ ≫ l/s (see Ref. [12]). Then, we can assume that
information about the disturbance of the medium is transmitted by an acoustic signal, as if
instantly, i.e., the medium can be considered incompressible. Obviously, the requirement
must also be met that the speed of sound s, although large compared to the value of the
local current velocity in the medium, must be less than the speed of light c.

Condition div v = 0 means that the flow velocity v is uniquely determined by spec-
ifying the vorticity ω = curl v. Indeed, from the well known identity curl curl b =
∇div b − ∆b for any vector quantity b, it follows that when div v = 0, then ∆v = −curl ω,



Dynamics 2024, 4 392

and, consequently, v = −curl
∫

dx1G(x − x1)ω(x)1. Here, G(x − x1) is the Green function
of the problem ∆G(x − x1 = δ(x − x1 with boundary conditions. The final remark is
that since the velocity is determined through the integral of the product of the vorticity q
and the Green’s function G, even if the model vorticity distribution function is chosen to
be “bumpy”, the integration process—smoothing—produces a resulting function that is
“smooth”, i.e., the function is “well-defined” and correctly (at least qualitatively) describes
the examined process.
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