
Citation: Leonov, A.O. Chiral

Modulations in Non-Heisenberg

Models of Non-Centrosymmetric

Magnets Near the Ordering

Temperatures. Magnetism 2024, 4,

91–103. https://doi.org/10.3390/

magnetism4020007

Academic Editor: Supriyo

Bandyopadhyay

Received: 2 February 2024

Revised: 20 March 2024

Accepted: 26 March 2024

Published: 1 April 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Chiral Modulations in Non-Heisenberg Models of
Non-Centrosymmetric Magnets Near the Ordering Temperatures
Andrey O. Leonov 1,2,3

1 International Institute for Sustainability with Knotted Chiral Meta Matter, Higashihiroshima 739-8511, Japan;
leonov@hiroshima-u.ac.jp

2 Department of Chemistry, Faculty of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
3 IFW Dresden, Postfach 270016, D-01171 Dresden, Germany

Abstract: The structure of skyrmion and spiral solutions, investigated within the phenomenological
Dzyaloshinskii model of chiral magnets near the ordering temperatures, is characterized by the
strong interplay between longitudinal and angular order parameters, which may be responsible for
experimentally observed precursor effects. Within the precursor regions, additional effects, such as
pressure, electric fields, chemical doping, uniaxial strains and/or magnetocrystalline anisotropies,
modify the energetic landscape and may even lead to the stability of such exotic phases as a square
staggered lattice of half-skyrmions, the internal structure of which employs the concept of the “soft”
modulus and contains points with zero modulus value. Here, we additionally alter the stiffness of the
magnetization modulus to favor one- and two-dimensional modulated states with large modulations
of the order parameter magnitude. The computed phase diagram, which omits any additional effects,
exhibits stability pockets with a square half-skyrmion lattice, a hexagonal skyrmion lattice with the
magnetization in the center of the cells parallel to the applied magnetic field, and helicoids with
propagation transverse to the field, i.e., those phases in which the notion of localized defects is
replaced by the picture of a smooth but more complex tiling of space. We note that the results can be
adapted to metallic glasses, in which the energy contributions are the same and originate from the
inherent frustration in the models, and chiral liquid crystals with a different ratio of elastic constants.
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1. Introduction

In non-centrosymmetric magnetic systems, chiral Dzyaloshinskii–Moriya interactions
(DMIs) based on the relativistic spin–orbit couplings [1,2] provide a unique mechanism
for the stabilization of solitonic textures in two dimensions—baby skyrmions—which are
extended into the third direction as skyrmion strings [3–5]. These skyrmions may exist as
localized particle-like countable excitations of the homogeneously magnetized state [6,7]
with relevant length scale tuned by the competition between direct exchange and DMI [8,9].
Alternatively, skyrmions may condense into multiply modulated phases—skyrmion lat-
tices [10,11]. Whereas the long-period one-dimensional spiral modulations with a fixed
sense of rotation due to DMI have been known for a long time [1,12,13], skyrmionic textures
were found to form ground states in the cubic helimagnets like MnSi [14] or FeGe [15]
near the ordering temperature TC only in 2009 [16]. In the applied magnetic field H, the
skyrmions are responsible for the appearance of a small closed area in the (H, T)-phase
diagram—A-phase [16,17]. Within a small A-pocket, the skyrmion lattice (SkL) appears
spontaneously, and its stability is commonly attributed to the thermal fluctuations, which
become sizable at relatively high temperatures [16,18]. At the same time, the boundaries of
the A-phase can be drastically changed by applying pressure [19], electric fields [20–22],
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chemical doping [23], or uniaxial strains [24,25]. Weak magnetocrystalline anisotropies
may also modify the energetic landscape and eventually favor the SkL in the A-phase
pocket [26,27]. In zero field, the skyrmions may underlie a spin liquid phase between the
low-temperature helical and the high-temperature paramagnetic state [28].

From recent numerical studies within the phenomenological (Dzyaloshinskii)
theory [29,30], it is known that these “high-temperature” skyrmions, underlying de-
scribed precursor phenomena, possess a number of unique properties: (i) the interaction
between the chiral skyrmions, being repulsive in a broad temperature range, changes
into attraction at high temperatures [29], and (ii) this leads to a remarkable confinement
effect—near the ordering temperatures, skyrmions exist only as bound states, and different
skyrmion mesophases as square half- or ±π-skyrmion lattices are formed by an unusual
instability-type nucleation transition [30]. In ±π-SkLs, the magnetization in the center of
the lattice cell is anti-parallel and parallel to the applied field. The half-SkL is formed by
cells with up and down magnetization in the center and in-plane magnetization along
the cell boundaries. Such features of confined skyrmions distinguish them from their
“low-temperature” counterparts visualized by Lorentz microscopy, e.g., in nanolayers of
FeGe [31] and Fe0.5Co0.5Si [32] far from TC and theoretically studied in early works by A.
Bogdanov and co-workers [3,6].

In the present paper, we suggest another mechanism of skyrmion stability near the
ordering temperatures achieved within the framework of the modified Dzyaloshinskii
model for metallic cubic helimagnets [11]. We neglect different secondary effects and
provide a more realistic description of the inhomogeneous twisted magnetic structure in
these mesophases. We show that confined chiral modulations are very sensitive to values
of the stiffness parameter η characterizing a modulus field. The magnetic phase diagram
calculated for η = 0.8 exhibits pockets with square half-SkLs, hexagonal SkLs with the
magnetization in the center of the cells parallel to the applied field, and helicoids with
propagation transverse to the applied field. Therefore, the present results change the picture
of the formation and evolution of chiral modulated textures and shed new light on the
problem of precursor states observed as blue phases in chiral nematics [33] and in chiral
magnets [16,28].

2. Phenomenological Theory and Equations

The equilibrium chiral modulations in cubic helimagnets near the ordering tempera-
tures are derived by the minimization of the phenomenological magnetic energy [1,12]:

W =
∫

d3r[A(gradM)2 + DM · rotM − H · M + a1M2 + a2M4] (1)

where the first and the second terms with coefficients A and D are isotropic and antisym-
metric exchange interactions; the third term is Zeeman energy density with H being an
applied magnetic field; and the fourth and fifth terms represent the Landau expansion near
the ordering temperature. These terms reflect the phenomenon that near the ordering tem-
peratures, the magnetization amplitude varies under the influence of the applied magnetic
field and temperature. According to Landau, this process is described by supplementing
the magnetic energy with the additional homogeneous free energy term with even powers
of the magnetization. Although higher-order terms can be included, it is a reasonable
approximation to consider the series to fourth order in the order parameter as long as the
order parameter is small.

Functional (1) includes all necessary (primary) interactions essential to stabilize the
skyrmion and helical phases.

By rescaling the spatial variable in (1), x = r/LD, the magnetic field h = H/H0, and
the magnetization m = M/M0

LD = A/D, H0 = κM0, M0 = (κ/a2)
1/2, κ = D2/(A), a = a1/κ = J(T − Tc)/κ (2)
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energy W (1) can be written in the following reduced form:

W̃ =
∫

d3x
[
(grad m)2 − m · rotm − h(n · m) + am2 + m4

]
, (3)

where h = |h| and n is a unity vector along the applied magnetic field. The case
a1 = 0 corresponds to the critical temperature ac, where spontaneous magnetization
appears (Figure 1a).
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Figure 1. (Color online) (a) The diagram on plane (a, h) showing the regions with different types of
skyrmion–skyrmion interactions: I—repulsive interaction between isolated skyrmions; II—attractive
inter-skyrmion interaction; III—the region of skyrmion confinement. In region III, skyrmions exist
only as bound states since oscillations in the asymptotics of isolated skyrmions do not diminish.
Above the line h0, no isolated skyrmions can exist. (b) Critical line, which delineates different regimes,
in the case of the non-Heisenberg model for different values of parameter η.

Functional (3) includes three internal variables (components of the magnetization
vector m, which contribute to the variable modulus) and two control parameters, the
reduced magnetic field with amplitude h and the “effective” temperature a(T) (2).

2.1. High-Temperature Isolated Skyrmions

Isolated skyrmions can be thought of as isolated static solitonic textures localized in
two spatial directions. The magnetization in the center of skyrmion pointing opposite to an
applied magnetic field rotates smoothly in all radial directions and reaches the orientation
along the field at the outskirt of skyrmion. The structure of isolated skyrmions near the
ordering temperature is characterized by the dependence of the polar angle θ(ρ) and
modulus m(ρ) on the radial coordinate ρ (we introduce here spherical coordinates for the
magnetization (m, θ, ψ) and cylindrical coordinates for the spatial variables (ρ, ϕ, z)) and is
determined from the system of Euler equations [11,29]:

m2

[
θρρ +

θρ

ρ
+

sin θ cos θ

ρ2 +
2 sin2 θ

ρ
− h sin(θ)

]
+ 2
(
θρ − 1

)
mρ = 0,

mρρ +
mρ

ρ
+ m

[
θ2

ρ +
sin2 θ

ρ2 + θρ +
sin θ cos θ

ρ

]
+ 2am + 4m3 − h cos(θ) = 0

(4)

with boundary conditions θ(0) = π, θ(∞) = 0, m(∞) = m0, m(0) = m1 and the magnetization
in the homogeneous phase m0 being determined from the equation 2am0 + 4m3

0 − h = 0.
As it was determined in Ref. [6], the asymptotic behavior of isolated skyrmions bears

exponential character: ∆m = (m − m0) ∝ exp(−αρ), θ ∝ exp(−αρ). By substituting these
into the linearized Euler Equation (4) for ρ → ∞, one can find three distinct regions in the
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magnetic phase diagram on the plane (a, h) with different character of skyrmion–skyrmion
interactions (Figure 1a): repulsive interactions between isolated skyrmions occur in a broad
temperature range (area (I)) and are characterized by real values of parameter α ∈ ℜ
(I), the magnetization in such skyrmions always having the “right” rotation sense; at
higher temperatures (area (II)), the skyrmion–skyrmion interaction changes to an attractive
character with complex α ∈ C (II); finally, in area (III) near the ordering temperature,
aN = 0.25, only strictly confined skyrmions exist with imaginary α ∈ ℑ. The line separating
different regimes of inter-skyrmion interaction on the plane (a, h) looks like

h⋆ =
√

2 ± P(a)(a + 1 ± P(a)/2), P(a) =
√

3 + 4a (5)

with turning points p (−0.75,
√

2/4), q (0.06, 0.032
√

5), and u (−0.5, 0) (dashed line
in Figure 1a).

The typical solutions, such as profiles θ(ρ) and m(ρ), for isolated skyrmions in each
region were investigated in Refs. [29,30].As in region II, the exponents α are complex
numbers, the skyrmion profiles display antiphased oscillations. The rotation of the magne-
tization in such an isolated skyrmion contains two types of rotation sense: if rotation has
the “right” sense, the modulus increases, and otherwise, the modulus decreases in parts of
the skyrmion with the “wrong” rotation sense. Such a unique rotational behavior of the
magnetization is a consequence of the strong coupling between two order parameters in
Equation (4)—modulus m and angle θ.

2.2. Energy Minimization

For rigorous minimization of the functional (3), the Euler–Lagrange equations are non-
linear partial differential equations. These equations were solved by a numerical energy
minimization procedure using finite-difference discretization on grids with adjustable grid
spacings and periodic boundary conditions [34]. Components of the magnetization vector
m were evaluated in the knots of the grid, and for the calculation of the energy density (3),
we used the finite-difference approximation of derivatives with different precision up to
eight points as neighbors. To check the stability of the numerical routines, we additionally
refined and coarsened the grids. For axial fields, we used grid spacings ∆y ≈ ∆x so that
grids were approximately square in the xy plane in order to reduce the artificial anisotropy
incurred by the discretization. The final equilibrium structure for the two-dimensional
modulated states was obtained according to the following iterative procedure of the energy
minimization using simulated annealing and single-step Monte Carlo dynamics with the
Metropolis algorithm:

(i) The initial configuration of magnetization vectors in the grid knots for Monte Carlo
annealing is chosen appropriately to ensure relaxation to a desired particle-like state.

(ii) A point (xn, yn, zn) on a grid is chosen randomly. Then, the magnetization vector
in that point is rotated without a change in its length. If the energy change ∆Hk
associated with such a rotation is negative, the new orientation is kept.

(iii) However, if the new state has an energy higher than the last one, it is accepted
probabilistically. The probability P depends upon the energy and a kinetic cycle
temperature Tk:

P = exp
[
−∆Hk

kBTk

]
, (6)

where kB is the Boltzmann constant. Together with probability P, a random number
Rk ∈ [0, 1] is generated. If Rk < P, the new configuration is accepted and is otherwise
discarded. Generally speaking, at high temperatures Tk, many states will be accepted,
while at low temperatures, the majority of these probabilistic moves will be rejected.
Therefore, one has to choose an appropriate starting temperature for heating cycles.

(iv) The characteristic spacings ∆x, ∆y, and ∆z are also adjusted to promote energy relax-
ation. The procedure is stopped when no further reduction in energy is observed.
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2.3. Modulated Phases Stabilized within the Model (3)

Skyrmion periodic states near the ordering temperatures, which may be “designed”
with the help of the “soft-modulus” tool kit and may underlie the occurrence of an anoma-
lous precursor regime, include the following states: (i) hexagonal lattices of ±π-skyrmions
(i.e., skyrmions of both polarities with respect to the field direction, in which the mag-
netization undergoes the full swing by the angle π from the center to the outskirt of the
lattice cell (Figure 2d,e); (ii) square staggered lattices of π/2-skyrmions, in which the angle
is halved (Figure 2c). A square half-skyrmion lattice exploits the soft-modulus version
of the magnetization to match the half-skyrmion configurations in the interstitial regions
between the skyrmionic cores: then, zero magnetization points/lines replace the defects
between the square plaquettes pointing up and down [11,30]. Exhaustive analysis of field-
and temperature-driven evolution of skyrmion mesophases near the ordering temperature
was performed in Refs. [29,30].

(a)

(b)

(c)

(d) (e)

H

H

H

H

H

z

cone

helicoid

half-skyrmion lattice

p-skyrmion lattice+ p-skyrmion lattice-

Figure 2. (color online) Schematics of one- and two-dimensional mesophases near the ordering
temperature Tc, obtained as solutions of the functional (3). A conical spiral is a single-harmonic
solution with the propagation direction along the magnetic field (a). If the propagation vector of
a spiral state is perpendicular to an applied magnetic field, such a state is called helicoid (b). The
half-skyrmion lattice (c) consists of cells with up (red color) and down (blue color) magnetization in
the center and in-plane magnetization along the cell boundaries. In the hexagonal +π (d) and −π

(e) skyrmion lattices, the magnetization in the center of the lattice cell is parallel and anti-parallel to
the applied field, correspondingly, which is indicated by the corresponding color scheme. The cells
bear unit topological charges. The central hexagon is embraced by the triangular regions.

We consider one-dimensional spiral states with their wave vectors along the field
(cones, Figure 2a) or perpendicular to the field (helicoids, Figure 2b). For the isotropic
model (3), the cone phase with the fixed magnetization modulus and rotation of m around
the applied magnetic field, ψ = z, cos(θ) = h/m, m = |a − 1/2|/2, is the global energy
minimum in the whole region where modulated states exist. That is why, for cubic heli-
magnets, the energy density (3) has to be supplemented, e.g., by anisotropic contributions,
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fa = bea ∑i(∂mi/∂xi)
2 + kc ∑i m4

i , where bea and kc are reduced values of the exchange and
cubic anisotropies [12]. These anisotropic interactions impair the ideal harmonic twisting of
the cone phase and allow for the thermodynamic stability of skyrmion states as discussed in
Ref. [27,30]. Cu2OSeO3 represents a unique example in the family of B20 cubic helimagnets,
exhibiting two well-defined skyrmion pockets stabilized by the competing exchange and
cubic anisotropies in the temperature–magnetic field phase diagram [35].

2.4. A Generalized Gradient Energy for a Chiral Isotropic System

A generalization of isotropic chiral magnets proposed in Ref. [11] replaces the usual
Heisenberg-like exchange model (3) by a non-linear sigma model coupled to a modulus
field with different stiffness η:

∑
i,j
(∂imj)

2 → ∑
i,j
(∂imj)

2 + (1 − η)∑
i,j
(∂im)2 → m2 ∑

i,j
(∂inj)

2 + η ∑
i
(∂im)2. (7)

Parameter η equals unity for a “Heisenberg” model, in chiral nematics η = 1/3 [33].
Model (7) yields a generalized gradient energy for a chiral isotropic system with a

vector order parameter, which is equivalent to the phenomenological theory in the director
formalism [11,33] of liquid crystals. Chiral liquid crystals are considered ideal model
systems for probing the behavior of different modulated structures on the mesoscopic scale.
In these systems, a surprisingly large diversity of naturally occurring and laser-generated
topologically nontrivial solitons with differently knotted nematic fields has recently been
investigated [36].

For η > 1, the field- and temperature-driven evolutions of skyrmion and helical states
are qualitatively the same as for η = 1 [29,30]. However, for the thermodynamical stability
of skyrmions, higher values of additional anisotropic contributions must be applied. The
endpoints of the lines bounding the confinement region are shifted to the left (i.e., in the
region of lower temperatures) with respect to aN = 0.25 (blue line in Figure 1b). Therefore,
the conical phase can exist for higher temperatures in comparison with skyrmions. In this
case, skyrmions, being stabilized by additional energy contributions, occupy the pocket
within the region of stability of the cone phase bounded by the lines of the first-order phase
transition skyrmion cones.

For η < 1 on the contrary, the additional “softness” of the longitudinal order parameter
makes the confined chiral modulations extremely sensitive to the applied magnetic field,
temperature, and anisotropic energy contributions: different chiral states undergo a very
complex sequence of phase transitions. In a zero magnetic field, the region of confinement
extends to the temperatures higher than aN (green line in Figure 1b). This means that
skyrmions and helicoids can exist and compete for the thermodynamical stability for
a > aN . Cones appear only for a ≤ aN , independent of the value of η. Such a phase offset
becomes crucial even for a negligible difference in stiffness coefficients.

The phase diagram of states for model (3), including a generalized gradient energy
with η = 0.8, is plotted in Figure 3a.
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Figure 3. (Color online) (a) Theoretical phase diagram for chiral magnets near magnetic ordering
according to the modified non-linear sigma model [11]. In larger applied fields, i.e., in the A-region, a
densely packed full skyrmion lattice is found in region (I). The helicoid transverse to an applied field
is re-entrant in region (II). Region (III) is a half-skyrmion lattice with defects. (b) Dependencies of
energy densities in all considered modulated phases on the applied magnetic field h (a = 0.23) are
calculated with respect to the conical phase. The evolution of the half-skyrmion lattice (c) for the field
pointing opposite to the z axis exhibits transformation into a helicoid. The −π SkL (d) also turns into
a helicoid for the same field direction. For the +π SKL (e), the field is pointing along the z direction,
i.e., along the magnetization in the cell center. All structures are shown with the help of contour plots
for the mz-component of the magnetization and correspond to the points in (b).

3. Phase Diagram of Solutions for η = 0.8

The magnetic phase diagram (Figure 3a) calculated for η = 0.8 is drastically different
from the typical phase diagram of cubic helimagnets. It is a manifestation of the fact that
even a small difference between angular and longitudinal stiffnesses may contribute to
much more complicated behavior in the precursor region. The present phase diagram
includes pockets with a square half-skyrmion lattice, hexagonal lattice with the magneti-
zation in the center of the cells parallel to the applied magnetic field, and helicoids with
propagation transverse to the field. At low fields, a half-skyrmion staggered lattice is the
global minimum of the system. At lines E-A and A-C, this lattice undergoes a first-order
phase transition into the conical phase and the +π-skyrmion lattice, correspondingly. At
a higher field, the +π-skyrmion lattice competes with a helicoidal phase with the line
B-C being the line of a first-order phase transition between them. In contrast, the −π-
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skyrmion lattice states expected to form a metastable low-temperature phase in chiral cubic
helimagnets [16,35] do not exist near magnetic ordering in this model. Critical points of
this phase diagram have the following coordinates: A = (0.209, 0.029), B = (0.204, 0.036),
D = (0.265, 0), and E = (0.152, 0).

The phase diagram shows that both helicoidal kink-like and skyrmionic precursors
may exist.

4. Field- and Temperature-Driven Transformation of Modulated States for η = 0.8

In Figure 3b, the energy densities of all considered modulated phases are plotted
with respect to the energy of the conical phase. The snapshots of the contour plots for mz-
components of the magnetization in particular points of these curves are shown in panels
(c) and (d) of Figure 3. These contour plots provide basic insight into the transformation of
different modulated phases in the applied magnetic field.

4.1. Transformation of the −π-Skyrmion Lattice in Applied Magnetic Field

For η = 0.8, the hexagonal lattice of −π-skyrmions represents the metastable state with
the largest energy density from all skyrmion textures (red curve in Figure 3b). In the applied
magnetic field, the energy density of the −π-skyrmion lattice increases (points m1 and m2),
and eventually at some critical magnetic field h(m3), the skyrmion lattice undergoes the
transformation toward the spiral state with the lower energy density (Figure 3d). At the
field h(n3), which is the intersection point of skyrmion and spiral energy densities (red and
dark-blue curves in Figure 3b), the first-order phase transition occurs between metastable
helical and −π-skyrmion states. To obtain a numerical solution for the −π-skyrmion lattice,
the temperature Tk of the Monte Carlo annealing must be relatively low (see Section 2.2 on
the details of the numerical methods). Otherwise, −π-skyrmions transform into the state
with the lowest energy for h < h(m3) and even for h = 0. For h < h(n3), −π-skyrmions
turn into the half-skyrmion square lattice (blue curve in Figure 3b); for h(n3) < h < h(m3),
into the helicoid (dark-blue curve in Figure 3b).

In Figure 3d, the structure of the skyrmion lattice is characterized by the contour plots
for the mz component of the magnetization. The magnetic field is applied down, i.e., along
the magnetization in the centers of triangular regions (blue triangles surrounding the main
hexagon in Figure 3d, points m1 and m2), and significantly increases their fraction with
respect to the parts of the lattice with opposite directions of the magnetization. In the point
m3, the lattice loses its stability and elongates into the spiral. In Figure 3d (point m3), the
initial moment of the transformation is shown.

4.2. Transformation of the +π-Skyrmion Lattice in Applied Magnetic Field

The +π-skyrmion lattice (black curve in Figure 3b) is the metastable state in the
interval of magnetic fields 0 < h < h(n1). In point n1, the first-order phase transition
occurs between half- and +π-skyrmion lattices. In the interval of fields h(n1) < h < h(n2),
+π-skyrmions are the global minimum of the system. In point n2, the helicoids replace the
skyrmions by the first-order phase transition. In the phase diagram (Figure 3a), the region
of thermodynamical stability of +π-skyrmions is displayed by the hatching. For h < h(n1),
+π-skyrmions can be easily transformed into the square lattice of half-skyrmions as shown
by the dotted line in Figure 3b. Therefore, the temperature of the Monte Carlo annealing
must be sufficiently low.

In the applied magnetic field, the fraction of the skyrmion lattice with the magnetiza-
tion along the field grows rapidly at the expense of the triangular regions with the opposite
magnetization (point p1 in Figure 3d). For the fields h > h(n2), there are two scenarios for
the evolution of this skyrmion lattice: in the first variant, the +π- skyrmion lattice turns
into the helicoid as it was described also for −π-skyrmions; alternatively, +π-skyrmions
may transform into the homogeneous state.
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4.3. Transformations of the Half-Skyrmion Lattice

For η < 1, the half-skyrmion lattice is the global minimum of the system in the interval
of magnetic fields 0 < h < h(n1) (blue line in Figure 3b). Additional energy costs to
make the magnetization zero along particular directions in the square lattice are lower
than for η > 1. As a result, the region of square lattice lability broadens essentially. For
η = 0.8, the half-skyrmion lattice is thermodynamically stable in the temperature interval
0.152 < a < 0.265, h = 0 (see phase diagram in Figure 3a).

In the applied magnetic field, the relative area of plaquettes in the half-skyrmion lattice
magnetized along the field grows at the cost of the oppositely magnetized plaquettes (h2
in Figure 3c). For h > h(n1), the half-skyrmion lattice may either transform into the more
stable +π-skyrmion lattice (point h3 in Figure 3c) with the subsequent transformation
into the helicoid or elongate into the spiral state through intermediate structures shown in
Figure 3c, h4. Energy density has a local minimum for such modulated states.

The region of thermodynamical stability of the half-skyrmion lattice is marked in blue
in Figure 3a.

4.4. Transformation of Helicoids in the Applied Magnetic Field

For definiteness, one-dimensional helical states will be considered to propagate along
the y-coordinate axis; an applied magnetic field is directed along z (Figure 4a). Rotating
magnetization m is written in spherical coordinates,

m = m(y) (sin θ(y), cos θ(y), 0), (8)

with θ(y) being the angle of the magnetization with respect to the z axis and m(y)—the
longitudinal order parameter.
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Figure 4. (Color online) Solutions for the helicoid (a) presented as dependencies θ(y) (b),
dθ/dy(y) (d), m(y) (c), dm/dy(y) (e) demonstrate strong transformation of the helical structure
in the applied magnetic field for a = 0.23. The longitudinal value of the magnetization along the field
gradually increases, whereas opposite to the field, it decreases (see sketch in (a) and longitudinal
profiles in (c)). Angular profiles become more localized (see solutions in (b)). In a critical magnetic
field h = −0.024, the magnetization opposite to the field is equal to zero m1(0) = 0.

The energy density of such a helical state after substituting (8) into Equation (3) can be
written as

Φ = m2
(

dθ

dy

)2
− m2 dθ

dy
+ η

(
dm
dy

)2
+ am2 + m4 − hm cos θ (9)

The Euler equations
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d2θ

dy2 +
2
m

dm
dy

dθ

dy
− 1

m
dm
dy

− h
2m

sin θ = 0,

d2m
dy2 − m

η

((
dθ

dy

)2
− dθ

dy
+ a + 2m2

)
+

h
2η

cos θ = 0 (10)

with boundary conditions

θ(0) = 0, θ(p/2) = π, m(0) = m1, m(p/2) = m2 (11)

describe the structure of the helicoid in dependence on the values of the applied magnetic
field h. p is a period of the helicoid.

In Figure 4b–e, I have plotted the dependencies m = m(y) (c) and θ = θ(y) (b) as well
as dm/dy(y) (e) and dm/dy(y) (d) in the helicoid for different values of the field. In a zero
magnetic field, the magnetization with the constant modulus performs the single-mode
rotation around the propagation direction. The longitudinal and angular order parameters
are analytically defined as

m =

√
0.25 − a

2
, θ =

y
2

. (12)

Increasing magnetic field h||z destroys the single-mode character of rotation in the
helicoid: the magnetic field stretches the value of the magnetization along the field (m2
in Figure 4c) and squeezes it for the opposite direction (m1 in Figure 4c). The angular
profiles become strongly localized (blue lines in Figure 4b). Dependencies of derivatives for
corresponding order parameters are also highly non-linear (Figure 4d,e): the magnetization
vector tries to rotate faster in the parts of the helicoid opposite to the field.

For some critical value of the magnetic field (in Figure 4 for a = 0.23, this critical field
is 0.024), the value of m1(0) decreases to zero. In the further increasing magnetic field as a
possible solution to Equation (10) and, therefore, a candidate of the helicoid evolution, I
considered the one-dimensional spiral state with the following boundary conditions:

θ(0) = 0, θ(p/2) = θ0, m(0) = m1, m(p/2) = 0. (13)

In Figure 5, the same characteristic features for this spiral state as in Figure 4 are depicted.
The length of the magnetization along the field continuously increases, whereas the angle
θ(p/2) decreases.
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Figure 5. (Color online) Solutions for the one-dimensional modulated state with boundary condi-
tions (13) presented as dependences θ(y) (b), dθ/dy(y) (d), m(y) (c), dm/dy(y) (e). Such a state is
considered as a possible scenario for the evolution of a helicoid in a strong magnetic field. In (a) the
structure of the helical state is presented schematically.
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Considered that the helicoid is the global minimum of the system in the range of fields,
h(n2) < h < h(ν1) (Figure 3b). In the point n2, it replaces, by the first-order phase
transition, the +π-skyrmion lattice. Point ν1 marks the first-order phase transition with
a homogeneous state. For h > h(ν1), such a helicoid can still exist but as a metastable
solution with the positive energy density. In Figure 3a, the region of the helicoid stability is
shown by the light violet color.

5. Conclusions

The basic phenomenological model for chiral ferromagnets (Equation (1)) allows to
obtain rigorous solutions for 2D skyrmions and analytical solutions for one-dimensional
helical and conical states in the whole range of the control parameters—the reduced values
of temperature a, and magnitude of the applied magnetic field h. The properties of the
chiral modulations reveal a noticeable similarity with characteristic peculiarities of cubic
helimagnets near the ordering temperatures known as “precursor states” and “A-phase
anomalies”. This allows to suggest that the softening of the magnetization magnitude
is the basic physical mechanism underlying anomalous properties of “precursor states”
in chiral magnets. As the energy differences between different modulated phases in the
high-temperature region are very small, additional energy contributions result in changes
of relative phase stabilities and may cause the drastic modification of phase diagrams: cubic
and exchange anisotropies are known to stabilize −π-skyrmions not only in the particular
interval of the magnetic field near Tc but also close to zero temperatures. Additional
softening of the magnetization modulus considered within the non-Heisenberg model
allows to favor a rich variety of modulated states with zero-modulus lines and points
substituting the notion of defects. Then, half-skyrmions and spirals with m(p/2) = 0 may
also occupy vast stability regions at the phase diagrams. This effect comes into play already
for minor differences between stiffnesses of longitudinal and angular order parameters,
thus making the precursor region more intricate. Remarkably, the concept of skyrmionic
textures in chiral magnetic systems can be extended to continuum models for glass-forming
liquids. These models describe the frustrated tiling of space by the incompatible locally
preferred clusters of a molecular liquid within a generalized elastic theory. The field theory
for the local order-parameter includes antisymmetric couplings derived from the decurving
of ideal template units into flat space. As a qualitatively new feature, a model with a
softened modulus of the local intensity of the order parameter was proposed in Ref. [37].
The corresponding classical field theory allows the stabilization of skyrmionic localized
states and extended textures. The notion of a glassy structure as an entangled network of
defect lines is replaced by the complex geometry of an elastic and frustrated continuum that
can display both “rotation” or twisting and longitudinal suppression of the ideal local order.
The skyrmions in the simplest version of the frustration models are close but soft relatives
of the hedgehog solutions in Skyrme’s original SU(2) symmetric model for nucleons [38]. It
is argued that stable skyrmions are formed at elevated temperatures in molecular liquids
and that their condensation into frustrated textures underlies the stability of supercooled
and glassy states.
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