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Abstract: Few valorization pathways have been implemented as alternatives to reduce the orange
peel waste (OPW) disposal in landfills. OPW can be a source of income or economic savings in juice
production factories since this waste is a potential source of value-added products (e.g., bioactive com-
pounds) and energy vectors (e.g., biogas). Valorization alternatives should be based on (i) orange peel
chemical composition, (ii) market analysis, and (iii) availability. Nevertheless, few literature papers
have highlighted the chemical composition change caused by the different juice production schemes
as a potential opportunity to obtain different value-added products and biorefinery schemes. Thus,
the aims of this review paper are related to (i) reviewing different orange fruit processing pathways,
(ii) analyzing several OPW chemical compositions reported in the open literature, (iii) providing a
summary of OPW extraction pathways for bioactive compounds production, and (iv) evaluating
the effect of applying different extraction methods on bioactive compound extraction performance.
This review includes a description of the OPW matrix, market insights, packaging, physicochemical
characterization, processing technologies, and suggested biorefinery approaches. Finally, different
extraction methods for obtaining bioactive compounds from OPW are compared. As a result, the
supercritical fluid extraction process has the highest extraction performance and selectivity since this
method extracted a high amount of hesperidin (8.18 g/kg OPW db.). In conclusion, OPW is a source
of bioactive compounds and valuable products that can be introduced in juice-producing factories to
increase product portfolio or economic savings by changing the energy matrix.

Keywords: bioactive compounds; biorefineries; chemical composition analysis; extraction technologies;
orange peel waste valorization; orange processing

1. Introduction

Orange is one of the most popular citrus crops in the world. This fruit has sev-
eral healthy compounds such as vitamin C, folic acid, antioxidants, flavonoids, and cate-
chins [1,2]. The orange crop has been considered a versatile crop because this fruit can be
produced in different soils and climatic conditions [3]. Several countries between 30◦–35◦

north and south of Ecuador can produce oranges. Citrus sinensis (L.) Osbeck is the most
important species of sweet orange in the world. Seminara et al. [3] reported four orange
classifications according to the orange color. Hence, sweet oranges can be classified as com-
mon, navel, blood, and acidless. Common oranges are the most produced and consumed
worldwide. Indeed, the common orange group can be subdivided into different types, such
as Salustiana, Valencia Midknight, Valencia Barberina, Ovale, Valencia Late, Valencia Delta,
and Ruby Valencia. All of these cultivars are suitable for industrial processing because these
varieties have a high juice yield and low content of bittering compounds. However, Valen-
cia oranges are the most used fruits as raw material for juice, jams, and pulp production
due to the adaptability of this variety to different climatic conditions. The most important
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orange exporters in the world are Spain, Egypt, Greece, Morocco, Netherlands, Italy, The
United States of America (USA), Argentina, Brazil, Chile, Uruguay, Honduras, Mexico,
Colombia, China, and Zimbabwe. Meanwhile, the most important countries for orange
processing are the USA, Mexico, Brazil, China, Spain, Argentina, Greece, and Italy [4].

All orange varieties have a similar morphology. Nevertheless, this fruit has a different
chemical composition and physical characteristics depending on the variety, rootstock, soil,
fertilization, irrigation, age, maturity, and position in the tree [5,6]. Oranges’ diameter
ranges from 4 to 12 cm [7]. The fruit size depends on the variety, growing conditions, and
maturation. This fruit comprises eight different tissues and the seed [7]. In general, the
weight of oranges is 87% water and 13% compounds such as minerals, essential oils, fats,
proteins, fibers, organic acids (e.g., formic acid and citric acid), pectin, glucosides, and
pentosans [8]. These compounds are distributed in the eight tissues of the orange. On the
other hand, oranges are consumed as a fresh product and juice. The edible fraction of the
fruit involves the segments and juice sacs (pulp or rag). The edible fraction is about 31–51%
of total fruit weight. Instead, the non-edible fraction is the cuticle, oil glands, flavedo, core,
segment membranes, and albedo. The non-edible fraction corresponds to 49–69% of total
fruit weight [7]. Moreover, the non-edible fraction is called orange peel waste (OPW) [9].
Figure 1 shows an outline of the morphology of an orange.
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Figure 1. Orange fruit constituents.

Oranges have been used to produce several food products (e.g., juice) at the industrial
level [10]. Thus, large amounts of OPW are produced worldwide without a specific
treatment or valorization route (i.e., 24 million tons of OPW) [11]. Currently, OPW is
disposed of in landfills producing large amounts of greenhouse gas emissions and leachates
with a high chemical oxygen demand. Thus, innovative ways to use and valorize this waste
have been studied to mitigate OPW environmental damage and promote the sustainability
of the citrus value chain at regional, national, and worldwide levels. This statement is true
since upgrading OPW to bio-based products reduces the environmental impact caused by
the poor peel disposition and the replacement of oil-based products [12].

OPW has different chemical compositions depending on the juice extraction process
(manual or industrial). Cellulose, hemicellulose, and pectin are the most important com-
ponents. Several authors have reported different ways to upgrade and obtain different
value-added products and extract bioactive compounds in stand-alone processes and biore-
finery configurations [13–15]. Higher yields have been reported by applying different
extraction methods such as solvent extraction, ultrasound-assisted extraction, microwave-
assisted extraction, and supercritical fluids [16–19]. Nevertheless, few literature reports
have analyzed the possible influence of the OPW chemical composition on obtaining high
extraction yields. Moreover, few literature papers have highlighted the influence of the juice
extraction method on the OPW chemical composition On the other hand, a global summary
related to the valorization possibilities of obtaining bioactive compounds, value-added
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products, and energy vectors is required before proposing OPW upgrading pathways. For
these reasons, the aims of this review paper are related to (i) reviewing different orange
fruit processing pathways, (ii) analyzing several OPW chemical compositions reported in
the open literature, (iii) providing a summary of OPW extraction pathways for bioactive
compounds production, and (iv) evaluating the effect of applying different extraction
methods on the bioactive compounds extraction performance. In addition, this review
includes a description of the OPW matrix, market insights, packaging, physicochemical
characterization, processing technologies, and suggested biorefinery approaches.

2. Orange Fruit Processing and OPW Origin

Oranges are commercialized as fresh fruit or juice [20]. Traditional orange marketing
does not comply with technical standards in most producing areas [21]. Direct orange
commercialization has a high participation of intermediaries in the orange value chain.
Thus, the price per unit of orange increases until the final consumer. Traditional marketing
has been denominated as primary processing, since oranges do not have a direct trans-
formation [21]. On the other hand, juice production is the industrial commercialization
way (so-called secondary processing) [22]. In this case, the industry directly purchases
oranges from the producers (e.g., farmers or first-level organizations), decreasing the price
per unit of the fruit. This orange commercialization pathway evidences more incomes for
farmers since the traditional pathway dilutes the intermediaries’ incomes. Moreover, juice
production creates a specialized market with a greater demand for quality and size. Two
modes are presented under this type of distribution [23]. The first mode is purchasing the
fruit from the producer (industry only). The second mode is when the fruit producer also
performs the processing (industrial orchard) [23]. The objective of the second mode is to
maximize the crop proportion marketed as fresh fruit, processing only the fruit that cannot
be sold due to external quality, fruit size, trade barriers, or excess production. In primary
or secondary processing, fruit selection is needed. Then, the packing operations are an
essential link in the citrus production, processing, and commercialization [24]. The stacked
fruit for storage and transport is distributed according to weight. A standard packaged box
corresponds to 90 lb (approximately 41 kg) [20]. Figure 2 presents the simplified flowchart
of orange processing.

The orange processing industry generates different types of products and by-products.
The most known orange-based products are juice, jellies, marmalades, and essential oils [25,26].
Since 1980, about 30% of the oranges grown worldwide have been processed [27]. Orange
juice is considered the most significant product. After packing house operations (industrial
orchard) or harvesting for industry, oranges are conveyed to the processing plant. In
countries like the USA, Brazil, and China, the packing house operations are not considered
because the processing plant is near the crop [24]. In contrast, countries such as Argentina
and Colombia must include the packing and transport stages [10]. The next step is to deliver
the oranges to the processing facility. Then, the fruits are washed (with 200 ppm of chlorine)
and revised to identify low-quality fruits [21]. The juice extraction process is carried out
after washing. This step is the “heart” of the juice production process. Orange juice is
obtained by mechanical extraction. Juice extraction seeks to obtain as much juice as possible
from the fruit, avoiding albedo and oil in the juice. These impurities can cause bitterness in
the juice flavor and decrease product quality [22,28]. Thus, orange juice extraction is the key
to defining product quality. Different equipment has been designed for producing orange
juice, since the efficiency of the process means more income [28]. Essential oil extraction is
mandatory, no matter the orange juice equipment. Nevertheless, some industries do not
consider this step, adding fractions of essential oil to their products. Figure 3 shows the
commercial schemes for extracting the juice and essential oil from oranges.
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Orange juice extractors can be classified into different types. The rotative press extrac-
tor, the squeezer, and the reamer type are the most used extractors in orange processing
plants [22,28]. Table 1 shows the advantages and disadvantages of these types of extrac-
tion equipment. Different outlet streams are obtained according to the extractor model.
Each stream is upgraded (valorized or treated) in a specific processing line in the orange
agro-industry (see Figure 3). These extractor models with oil removal produce a diluted oil
stream. This stream must be sent to an equipment series to concentrate the oil [29].

Table 1. Extraction equipment: advantages and disadvantages [22,28].

Feature Rotative Press Extractor Squeezer-Type Extractor Reamer-Type Extractor

Outlet streams Juice and peel. Juice, oil emulsion, core (rag,
seeds, and pulp), and peel. Juice (pulp, seeds, and rag) and peel.

Advantages
The extractor has less
investment and has greater
capacity per unit.

The extractor provides excellent
juice, oil, and peel separation.

The extractor gives higher quality pulp
(longer and larger cell fragments).

Disadvantages The extractor has the lowest
yield and juice quality.

The extractor damages the peel
and generates a diluted
oil emulsion.

The extractor requires two separation
steps to extract juice and oil from
the fruit.

Capacity 1500 L/h 2500 L/h 2500 L/h

Three pathways for industrial orange processing have been elucidated based on the
juice extraction model. The three industrial orange processing pathways involve some or
all of the outlet streams presented in Figure 3. The first orange processing pathway has the
lowest complexity at the industrial level (see Figure 4). The first processing pathway aims
to produce only orange juice, leaving aside the possible upgrading of other compounds
present in the fruit. The resulting juice in this process has essential oil traces, decreasing
the juice quality. This processing line has been implemented in small-scale facilities,
producing large amounts of OPW with a high concentration of essential oil, fiber, protein,
and pectin [23].
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The second orange processing pathway involves an additional processing line com-
pared to the first pathway. Thus, this pathway has a medium complexity level since orange
juice and essential oil are produced simultaneously. The juice quality is better than in the
case of the first pathway since essential oil traces are not present in the juice. The OPW
produced in this process has a lower content of essential oil. Thus, lower yields will be
obtained if some experiments are carried out. Nevertheless, this OPW can have a higher
biogas production potential since limonene (the most important compound in essential oil)
has been considered an inhibitor in this process. Figure 5 presents the block diagram of the
second orange processing pathway [23].
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Figure 5. Second pathway for industrial orange processing: medium complexity—orange juice and
essential oil production.

The third orange processing method involves three lines (i.e., orange juice, essential oil,
and peel juice). This process configuration has been defined as the most sustainable orange
processing configuration since oranges are used as much as possible. Nevertheless, this
process configuration is common in large-scale processes since the capital and operational
expenditures are the highest of the processing lines mentioned above. Figure 6 presents the
block diagram of this industrial process [23].

Biomass 2024, 4, FOR PEER REVIEW 6 
 

 
Figure 5. Second pathway for industrial orange processing: medium complexity—orange juice and 
essential oil production. 

The third orange processing method involves three lines (i.e., orange juice, essential 
oil, and peel juice). This process configuration has been defined as the most sustainable 
orange processing configuration since oranges are used as much as possible. Nevertheless, 
this process configuration is common in large-scale processes since the capital and opera-
tional expenditures are the highest of the processing lines mentioned above. Figure 6 pre-
sents the block diagram of this industrial process [23]. 

 
Figure 6. Third pathway for industrial orange processing: high complexity—orange juice, essential 
oil, and peel juice production. 

The orange juice production line includes filtration, clarification, cooling, and juice 
concentration [30]. Orange juice comes out with 20–25% pulp. The first stage of the juice 
line consists of removing about 50% of the pulp. For this, the juice is pumped through a 
finisher, where solid particles are separated from the juice. On the other hand, the juice is 
clarified for finishing by removing seed fragments, filaments of the core material, and 
other undesirable high-density materials. Then, the juice must be pasteurized and cooled 
to 4 °C to minimize possible microbial activity. The juice can be labeled as original or con-
centrated. The original juice is fresh and has not been concentrated. The original juice is 
more popular than concentrated juice due to its image as a healthy and good flavor prod-
uct [30]. The concentrated juice is diluted with water until reaching the required Brix de-
grees (°Bx) to be sold. Original juice is often more expensive than concentrated. After ex-
traction, the juice is pasteurized. Finally, the final product is stored in refrigeration tanks 
[23]. 

Figure 6. Third pathway for industrial orange processing: high complexity—orange juice, essential
oil, and peel juice production.

The orange juice production line includes filtration, clarification, cooling, and juice
concentration [30]. Orange juice comes out with 20–25% pulp. The first stage of the juice
line consists of removing about 50% of the pulp. For this, the juice is pumped through a
finisher, where solid particles are separated from the juice. On the other hand, the juice is
clarified for finishing by removing seed fragments, filaments of the core material, and other
undesirable high-density materials. Then, the juice must be pasteurized and cooled to 4 ◦C
to minimize possible microbial activity. The juice can be labeled as original or concentrated.
The original juice is fresh and has not been concentrated. The original juice is more popular
than concentrated juice due to its image as a healthy and good flavor product [30]. The
concentrated juice is diluted with water until reaching the required Brix degrees (◦Bx) to be
sold. Original juice is often more expensive than concentrated. After extraction, the juice is
pasteurized. Finally, the final product is stored in refrigeration tanks [23].

The juice concentration stage is the most energy-demanding process in the orange
processing system. Nevertheless, other alternatives for this process have been researched,
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since the concentration stage decreases the antioxidant activity of the final product (i.e.,
degradation of ascorbic acid, anthocyanins, hydroxycinnamic acid, and flavonoids) [31,32].
For instance, juice concentration using membranes has been reported with relevant re-
sults [33]. Ultrafiltration has been used as a promising technology for removing impurities
and concentrating the juice. This technology reduces the degradation of antioxidant com-
pounds in juice by about 58% compared to thermal concentration [28]. Cryoconcentration
is another alternative for the concentration of orange juice. This technique consists of
juice cooling until reaching solid–liquid equilibria [28]. This step produces high-purity ice
crystals. Then, water removal is carried out with the removal of the crystals [34]. Based
on this concentration technique, the loss of aroma due to volatility or steam snatching is
almost invisible. Despite the benefits in terms of quality, this technique has high investment
costs, high energy consumption, and reaches a lower concentration (50 ◦Brix) [35].

On the other hand, the essential oil line comprises the separation and purification of
the oil resulting from the extraction process (see, Figure 2) [36]. The resulting emulsion
contains fruit substances—including peel, pulp particles, soluble pectin, and sugars. The
essential oil extraction process comprises four steps (i.e., finishing, centrifugation, polishing,
and traces removal). The first step is to pass the emulsion through a finisher unit to remove
large shell pieces. The filtered emulsion contains approximately 0.5 to 2% of oil. The second
step is to centrifuge the emulsion to concentrate the oil to 70 or 90% by weight. In this step,
a three-phase centrifuge is used to obtain three streams (concentrated oil emulsion is the
light phase, the heavy phase is the particulate matter, and the medium phase is water). The
third step corresponds to polishing the oil in a second centrifuge. In this step, the oil is
concentrated to more than 99% by weight. Finally, the oil goes through a winterization
process. This process involves removing traces of wax dissolved in the oil. At temperatures
of 1 ◦C or less, the waxes precipitate and sediment [37]. This step usually takes 30 days.
Subsequently, the oil is decanted and packaged.

Finally, the orange peel processing line is upgraded to utilize the highest amount of
the fruit. Then, most waste produced after orange processing is generated in this line. The
most representative residue is known as OPW [38]. OPW is composed of the membrane
residues resulting from juice extraction, seeds, and peel [39]. Different ways to upgrade
OPW at the industrial level have been reported [40–42]. Some of the alternatives to take
advantage of the side streams obtained are described.

Juice line waste: The pulp is the main waste obtained in this line. This residue is
traded as “cells.” Usually, this subproduct is used in juice drinks to provide a natural
appearance to the product [22].

Peel line waste: OPW is the most important waste produced in orange processing.
Indeed, this residue is a problem in the citrus industry since the chemical composition is
complex compared to other agro-industrial residues such as peels and seeds. The most
important factor related to OPW complexity is the high moisture content (i.e., 80%), which
encourages rotting and fungi issues in the plant (i.e., OPW is considered a source of
cross-contamination). Therefore, OPW management is key in orange processing facilities
beyond finding new valorization alternatives. One common way for OPW disposal is to
sell this waste without further treatment to nearby farmers for directly feeding ruminants
or silage [43,44]. However, stabilizing the peels by drying them is often necessary because
there will not always be a constant demand for fresh pulp feed near the processing plant.
Another alternative is to extract the pectin present in OPW. This allows us to obtain juice rich
in gelling compounds with potential applications in the food and pharmaceutical industry.

Oil line waste: This waste can be used to produce essences, which correspond to the
volatile components recovered during the oil concentration process (see, Figure 2). This by-
product can be obtained from the first centrifugation stage (aqueous phase). Water-soluble
components such as essence aroma can be added to the concentrated product or juice [37].

The abovementioned orange juice production pathways are applied by different
companies worldwide. Information to match a company with the current orange juice
production line is difficult since primary data are required. Nevertheless, the most impor-
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tant players related to the orange juice market are Astral Foods, Bar-S Foods, Campofrio
Food Group, Cargill, and The Kraft Heinz Company, among others. These multinational
companies are the leading orange juice producers today [20].

3. OPW Characterization and Potential Upgrading Routes

Several residues after orange fruit processing are produced. OPW is the most repre-
sentative fraction [11]. This section presents an overview of the OPW chemical composition
reported in the open literature. Chemical characterization refers to different compounds
present in the matrix of the residue. The most important OPW components are pectin,
cellulose, hemicellulose, lignin, protein, and fats. Nevertheless, components such as soluble
sugars, terpenes, and phenolic compounds can be found [45]. Several ways for reporting
the OPW composition have been published. For instance, Sanchez-Orozco [46] reported
OPW characterization in terms of cellulose, hemicellulose, protein, and lignin, giving values
of 11.93%, 14.46%, 5.97%, and 2.17% on a dry basis. Alvarez et al. [47] reported the cellulose,
hemicellulose, pectin, and lignin mass fractions of OPW as 17.1%, 16.6%, 35.3%, and 28.7%,
respectively. In the same way, different OPW chemical composition reports can be found
in the open literature. Table 2 summarizes the OPW chemical compositions reported in
the literature.

Table 2. OPW chemical characterization reported in the open literature (% wt., dry basis).

Item Sanchez-
Orozco [46]

Álvarez et al.
[47]

Mohsin et al.
[48]

Ahmed et al.
[49]

Rivas-Cantú
et al. [37] **

Ortiz-Sanchez
et al. [41]

Cellulose 11.93 17.10 34.53 17.52 33.98 30.17

Hemicellulose 14.46 16.60 11.38 N.R 9.99 9.35

Lignin 2.17 28.70 * 7.20 14.38 6.93 5.07

Pectin N.R. 35.30 15.28 15.72 20.90 11.18

Protein 5.97 N.R. 7.80 N.R. 9.00 4.83

Fat N.R. N.R. 3.63 4.15 3.85 5.18

Ash N.R. 2.30 2.81 16.59 2.46 3.61

Total sugars N.R. N.R. N.R. 31.62 9.00 N.R.

Flavonoids N.R. N.R. N.R. N.R. 4.00 N.R.

Total
extractives *** N.R. N.R. N.R. N.R. N.R. 30.55

N.R. No reported value; * lignin + sugars + proteins. ** Values given as a review of the chemical characterizations
given by other authors. *** Extractives in water and ethanol.

OPW chemical composition differs regarding the constituents and values (see Table 2).
The chemical composition varies depending on factors such as orange variety, size, weather,
soil properties, agrochemicals used, and ripening time. For instance, Citrus × Tangelo
has higher juice yields than the Valencia variety. Thus, Citrus × Tangelo has a lower
peel/pulp ratio. These aspects are related to the morphology of the fruit. On the other
hand, the chemical characterization of OPW chemical composition varies depending on
the agrochemicals used in the agronomic stage. This statement has been corroborated in
other agronomic products such as cocoa, since the use of agrochemicals can increase the
presence of heavy metals such as cadmium and lead. Finally, the lignocellulosic content
can be increased based on the water supply to the orange plant. Indeed, low water levels
produce oranges with a higher peel/pulp ratio [50].

Cellulose, hemicellulose, lignin, ash, protein, fat, sugars, flavonoids, and pectin are the
most common fractions reported in the open literature. The chemical composition analysis
is stated based on the aim of the study [51]. For instance, only pectin is characterized
if the research objective is to valorize this fraction [52]. Proposals for the stand-alone
valorization of OPW can use a partial chemical characterization. Nevertheless, a complete
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chemical characterization is required for proposing OPW valorization processes based on
the biorefinery concept since these facilities allow for the upgrading of almost a fraction
of the raw material into a series of value-added products and energy vectors [53]. A
complete chemical characterization refers to determining the mass fractions of different
components as much as possible (e.g., bioactive compounds, essential oil, fats, pectin,
cellulose, hemicellulose, lignin, proteins, ashes, minerals, fixed carbon, volatile matter, and
moisture content). Chemical characterization allows us to elucidate the potential upgrading
pathways and biorefinery schemes for the integral OPW processing. Indeed, the biorefinery
concept has been applied to upgrade OPW at different levels [54,55].

OPW valorization has been guided toward several important high value-added com-
pounds such as food-grade additives, D-limonene, dietary fibers, flavonoids, anthocyanins,
carotenoids, and citric acid. Several OPW upgrading routes have been proposed based
on the chemical composition. The OPW upgrading pathways are related to physical,
thermochemical, biotechnological, and chemical processes. Physical upgrading has been
applied to obtain essential oil, polyphenolic compounds, and terpenes by steam distil-
lation and solvent extraction, respectively [56,57]. Thermochemical processing has been
reported for producing energy vectors (e.g., biochar, ethanol, pellets, and butanol) and
bioenergy [58–60]. Biotechnological upgrading refers to using microorganisms and en-
zymes to produce value-added products such as organic acids, alcohols, biogas, and ethers.
The most common biotechnological pathways for upgrading OPW are related to the pro-
duction of lactic acid [61], biogas [62], ethanol [14], mucic acid (i.e., galactaric acid) [40],
docosahexaenoic acid [63], and sugars [52]. Finally, chemical routes have been applied to
produce sulfonated carbon catalysts and polyurethane foams [64,65].

OPW valorization can also be classified depending on the technological readiness level
(TRL) of the upgrading process. Indeed, the TRL of the production process is a key factor in
elucidating those products with a high potential to be implemented at the industrial level.
Applications with low TRL (i.e., 1–5) are addressed to obtain high value-added compounds
through biotechnological and chemical pathways [48], for instance, fermentation products
after pectin and cellulose hydrolysis. This statement is true when analyzing the research
data related to the OPW conversion.

In contrast, high TRL (i.e., 6–9) applications are addressed to obtain products derived
from thermochemical and physical processes such as combustion, torrefaction, pelletizing,
and milling [66]. These mature upgrading processes are guided to produce pellets, animal
feed, compost, and bioenergy [66–68]. These products can be produced at different scales,
promoting rural bioeconomy trends or market alternatives at regional and national levels.
In contrast, the scientific perspective requires more effort to scale up novel technologies and
processes. Nevertheless, the high market value and bio-based plus can boost new market
trends to replace oil-based products. Therefore, more efforts are necessary to decrease the
gap between academics and the industry toward boosting a bioeconomy model based on
the valorization of this agro-industrial waste to increase the product portfolio of the orange
industry. Several alternatives for valorizing OPW are presented in Figure 7.

Different biorefinery schemes addressed to upgrade OPW are presented in Figure 8.
OPW-based biorefineries have involved valorization technologies such as anaerobic diges-
tion, simultaneous saccharification and fermentation, pyrolysis, combustion, pyrolysis, and
pelletizing, among others. Several authors have proposed and studied different biorefinery
configurations [67–69]. The integral OPW upgrading is a potential option to produce differ-
ent value-added products. Nevertheless, technical, economic, environmental, and social
assessments are necessary to define feasible biorefinery schemes for industrial analysis.
The link between academics and the industry is the analysis of the abovementioned factors,
since these analyses elucidate potential options and investment requirements.
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4. OPW as a Source of Bioactive Compounds

OPW has been considered a raw material for producing several products. Nevertheless,
bioactive compound extraction has been one of the most studied areas [15,70]. OPW
has been recognized as a potential source of antioxidants, phenolic compounds, and
nutraceutical products [57]. Therefore, several extraction methods have been reported. This
review paper focuses on the extraction of bioactive compounds using different technologies
such as agitated solvent extraction, microwave-assisted extraction, ultrasound-assisted
extraction, and supercritical fluid extraction [9,71]. Polyphenolic compounds are bioactive
substances found in different plants, fruits, and vegetables. These compounds present
antioxidant properties, sensory characteristics, and nutritional benefits. For these reasons,
polyphenolic compounds are widely produced at the industrial level. These compounds
can be applied in different sectors. For instance, polyphenolic compounds are used in
cosmetics and paints, as coloring and flavoring in the food industry, as ingredients in
nutraceuticals, as dietary supplements, as additives to antibiotics, and in anti-inflammatory
and antiallergic medicines in the pharmaceutical industry. The polyphenolic compound
market will increase in the next few years, which will increase the interest of different
industries to produce them [72].

OPW is a source of polyphenolic compounds. Gallic acid, ferulic acid, and para-
coumaric acid are the most important compounds present. These compounds can be
extracted through different ways. Supercritical fluid extraction, conventional solvent
extraction, microwave-assisted extraction, and the utilization of deep eutectic solvents are
some of the ways reported in the open literature [73]. The methods, conditions, and typical
yields are summarized in Table 3.

Table 3. Total polyphenolic compound (TPC) yields using different methods.

Extraction Method Conditions Yield * Ref.

Agitated solvent Ethanol: 80%; temperature: 35 ◦C 15.80 mgGAE/g RM [57]

Microwave-assisted Power: 125 W; temperature: 35 ◦C 23.40 mgGAE/g RM [57]

Supercritical fluid Temperature: 40–60 ◦C; pressure: 15–35 MPa 18–21 mgGAE/g RM [78]

Deep eutectic solvents Choline chloride + glycerol or ethylene glycol, time:
100 min, and temperature: 30 ◦C 1.28–2.91 mgGAE/g RM [57]

Ultrasound-assisted + Pulse Electric field Ethanol: 50%, time: 30 min, and temperature: 35 ◦C 34.71 mgGAE/g RM [16]

* RM: raw material dry weight.
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Solvents used for polyphenolic compound extraction are a key point for defining the
final extract application. Indeed, solvents such as ethanol, acetic acid, water, or mixtures of
both have been reported in the open literature as promising solvents, since these have been
generally recognized as safe (GRAS) for use in the cosmetic and food industries [79]. New
methods for extracting bioactive compounds have been reported in the open literature
(e.g., deep eutectic solvents and pulse electric field). These novel extraction methodologies
are addressed to improve extraction under lower conditions of temperature and solvent
concentration. Nevertheless, these research efforts must be contextualized in a real process
since the technological readiness level (TRL) of the new extraction methods is lower
than seven (i.e., system prototype demonstration in a space environment). In addition,
the economic and environmental performance of these extraction methods has not been
reported widely in the open literature. Thus, this research area has been identified as a
promising field for new developments.

OPW is considered an essential oil source. Essential oil is a terpenes combination
produced by plants as secondary metabolites. Thus, these components are not needed
for plant growth. The most important terpene produced in oranges is D-limonene. This
compound can be found in higher quantities (i.e., concentrations higher than 90% %wt.) in
OPW essential oil. Nevertheless, compounds such as camphene, α-pinene, and β-pinene
can be extracted. Several methods for extracting essential oil have been researched. These
methods are related to the dilation of the cell wall and the disruption of the OPW ligno-
cellulosic matrix. The essential oil extraction methods are cold press, solvent extraction,
steam distillation, supercritical fluids, and microwave-assisted extraction. The methods,
conditions, and typical yields of essential oil extraction are summarized in Table 4.

Table 4. Common OPW essential oil extraction yields after using different methods.

Extraction Method Conditions Yield Ref.

Soxhlet extraction Solvent: hexane, temperature: 80 ◦C–100 ◦C, and time:
120–240 min. 0.57–3.24% [80]

Supercritical fluid extraction Temperature: 40 ◦C, pressure: 20 MPa, and
CO2 ratio: 5–75 kg/kg peel 4–12% [9]

Steam explosion Pressure: 10 bar; time: 240 s 1.34% [81]

Hydrodistillation N.R. 1.2% [82]

Steam distillation Time: 45 min 1.09% [82]

Microwave-assisted steam distillation Time: 35 min; power: 150 W. 1.150% [82]

Finally, OPW can supply healthy properties to dietary supplements through phyto-
chemicals such as vitamin C, folic acid, potassium, pectin, polyphenols, minerals, dietary
fibers, essential oils, and carotenoids which present better antioxidant, disease-preventive
properties than other parts of the fruit. In this sense, several health uses of orange peel
can be cited: citrus flavonoids can replicate hepatic lipid metabolism, cure scurvy, and
degenerative diseases [83,84]. The food and functional products industry has shifted its
efforts to bio-based ingredients that can contribute to human health more than synthetic
ingredients to establish a circular bioeconomy. OPW versatility encourages us to research
the production of food products. Table 5 presents some studies conducted for OPW to
obtain food products.
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Table 5. Food products based on bioactive compound extraction from OPW.

Product Features and Uses Technology and Complexity Product Yield

Polyphenolic
compounds

These compounds present antioxidant
properties, sensory characteristics, and
nutritional benefits. In fact, these
compounds can be applied in different
sectors. For instance, polyphenolic
compounds are used in cosmetics and
paints, as coloring and flavoring in the
food industry, as ingredients in
nutraceuticals, as dietary supplements,
as additives to antibiotics, and in
anti-inflammatory and antiallergic
medicines in the pharmaceutical
industry [8]. The polyphenolic
compound market will increase in the
next few years, which will increase the
interest of different industries to
produce them. Modern studies show
the use of OPW in various
pharmaceutical/nutraceutical
products [67].

OPW is a source of polyphenolic
compounds [68]. Indeed,
hesperidin, narangin, gallic acid,
ferulic acid, and para-coumaric acid
are the most important compounds
present in OPW [69]. These ones
can be extracted through different
methods. Supercritical fluid
extraction, conventional solvent
extraction, microwave-assisted
extraction, and the utilization of
deep eutectic solvents are some of
the ways reported in the open
literature to obtain polyphenolic
compounds from orange peel [12].

Solvent extraction [80]:
Ethanol 80% v/v, 35 ◦C,
60 min, and 15.80 mgGAE/g.
Microwave-assisted
extraction [80]:
125 W, 35 ◦C, and
23.40 mgGAE/g.
Supercritical fluid
extraction [78]:
40–60 ◦C, 15–35 MPa, and
18–21 mgGAE/g.
Deep eutectics solvents [57]:
Choline chloride + glycerol or
ethylene glycol, 100 min, 30 ◦C,
and 1.28–2.91 mgGAE/g.

Essential oil

Essential oil is a combination of
terpenes produced by plants as
secondary metabolites. Thus, these
components are not essential for plant
growth. The most important terpene
produced in the orange fruit is
limonene. This compound can be
found in higher quantities (i.e.,
concentrations higher than 90%) in the
orange peel essential oil. Nevertheless,
other compounds such as camphene,
α-pinene, and β-pinene can be found.

These methods are related to the
dilation of the cell wall as well as
the disruption of the lignocellulosic
matrix of the OPW. The physical
methods used to remove essential
oil are distillation (steam,
steam/water. and water) and cold
pressing, since cold pressing is the
conventional method for the.
However, essential oils have some
disadvantages (the elevated
temperatures and large time of the
extraction). These shortcomings
have boosted the use of new
technologies such as supercritical
fluid extraction, ultrasound
extraction, subcritical water
extraction, and
microwave-assisted extraction.

Steam distillation [82]:
45 min and 1.095% w/w.
Hydrodistillation [81]:
45 min and 1.2% w/w.
Steam explosion [81]:
10 bar, 240 seg, and
1.34% w/w.
Supercritical fluid
extraction [9]:
40 ◦C, 20 MPa, CO2 ratio
5–75 kg/kg peel, and
1.34% w/w.
Microwave-assisted steam
distillation [82]
35 min, 150 W, and
1.150% w/w.

5. Case Study: Bioactive Compound Extraction from OPW Using Different Methods
5.1. Raw Material Source and Conditioning

OPW from an orange juice factory (FLP Procesados) located in Colombia was used
as the raw material for assessing the extraction performance of different methods. The
orange juice company has a constant supply of 200 tons/month. The orange fruits are
harvested from nearby fields (4◦59′43.4′′ N 75◦36′07.2′′ W). OPW is obtained by the indus-
trial mechanical extraction of the fruit juice. The OPW samples were frozen at −4 ◦C for
preservation after the extraction process. Then, the samples were dried in a convective
oven at 40 ◦C until reaching a moisture content lower than 15%.

OPW samples were milled to a particle size of 0.4 mm (i.e., ASTM 40 Mesh). This
was carried out in a knives mill (Gyratory mill SR200 Gusseisen, Retsch GmbH, Haan,
Germany). The decrease in particle size guarantees the homogeneity of the sample and
increases the transfer area in the extraction of polyphenolic compounds.
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5.2. Extraction Methods

OPW has been used as a raw material for extracting bioactive compounds using
several technologies such as agitated solvent extraction, ultrasound-assisted extraction,
and Soxhlet extraction. All of the assays were conducted using 4 g of OPW. The solid to
liquid ratio was 1:100.

5.2.1. Agitated Solvent Extraction (SLE)

Agitated solvent extraction was conducted using the conditions shown in Table 6 [41].
The OPW samples were mixed in an Erlenmeyer with the solvent. The extraction was
carried out at room temperature (25 ◦C) in a shaker (Pro Digital Orbital Shaker SK-O330)
at 200 rpm. The solvent was a mixture composed of 70% methanol, 28% water, and 2%
acetic acid [10]. This mixture was selected since high hesperidin (an important flavone)
extraction yields can be obtained [10]. After the extraction time (40 min), the mixture was
vacuum filtered. The extract was stored in an amber bottle at 4 ◦C to avoid polyphenolic
compound degradation. The solid was dried in a convective oven at 40 ◦C until it reached
a constant weight.

Table 6. Extraction methods and conditions applied to OPW [41,51,85].

Method Temperature (◦C) S:L Time (min) Conditions

SLE 25 1:100 40 200 rpm

UAE 25 1:100 40 30 kHz; 100% amplitude

SE Boiling temperature 1:100 40 N.A.*

SLE + UAE 25 1:100 40 200 rpm

SFE 70 N.A. 60 350 bar

* N.A. Not Apply.

5.2.2. Ultrasound-Assisted Extraction (UAE)

The ultrasound-assisted extraction process (UAE) was carried out using the compact
lab homogenizer UP-50H (Hielscher Ultrasound Technology) in a continuous pulse cycle.
This equipment allows for the sonication of samples using a sonotrode. The amplitude
was set to 100%. This value was kept constant in all assays. The extraction process was
carried out with a probe working at 30 kHz. The provided power was 50 W. The operating
conditions are shown in Table 6. These operating conditions were based on the results
reported by Li et al. [83]. After the extraction time, the mixture was vacuum filtered. The
extract was stored at −4 ◦C, and the solid was dried at 40 ◦C in a convective oven until it
reached a constant weight [85].

5.2.3. Soxhlet Extraction (SE)

The sample was placed in a porous vessel (thimble). Then, milled OPW was placed
into a Soxhlet apparatus working at constant reflux for 40 min. The extracts were stored in
amber bottles at a temperature of 4 ◦C. The solid was dried at 40 ◦C in a convective oven
until it reached a constant weight [86]. The Soxhlet extraction was conducted following
the procedures described by the National Renewable Energy Laboratories (NREL) for
extracting taxes, soluble sugars, and other polar components [87].

5.2.4. Agitated Solvent and Ultrasound-Assisted Extraction (SLE + UAE)

The extraction consisted of subjecting the mixture to a sound for 10 min (using the
UP50H Ultrasound Processor Hielscher Ultrasound Technology), after which time the
mixture was subjected to agitated solvent extraction for 30 min at room temperature. This
extraction method was based on previous experiences related to the bioactive compound
extraction from fruit wastes [41,51,85]. Then, the mixture was vacuum filtered. The extract
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was stored at −4 ◦C, and the solid was dried at 40 ◦C in a convective oven until it reached
a constant weight [85].

5.2.5. Supercritical Fluid Extraction (SFE)

The supercritical fluid extraction of bioactive compounds from OPW was conducted
using lab-scale equipment (working volume 254 mL). The extraction conditions are pre-
sented in Table 6. The sample was introduced into the extraction tank. Carbon dioxide
(CO2) was used as the solvent. A solid to solvent (CO2) ratio of 1:18 and a solid to co-solvent
ratio (ethanol 10% + water 90%) of 1:5 were fixed. The extracts obtained were stored in
amber containers at a temperature of 4 ◦C. Restrepo-Serna et al. [88] has described the used
equipment in previous studies.

5.3. Quantification of Phenolic Compound Content, Total Antioxidant Capacity, and
Hesperidin Content

The global yield after the extraction process was determined to elucidate the weight
loss after the extractions. The total phenolic compound content (TPC), total antioxidant
activity (TAA), and hesperidin content were determined for the OPW extracts resulting
from the above-described experiments. TPC allows for the determination of any phenolic
compound present in the extracts. TAA allows for the estimation of the antioxidant activity
of the extracts by an inhibition method. Finally, the hesperidin content was determined
via high-performance liquid chromatography (HPLC). These assays provide sufficient
information for analyzing potential valorization pathways based on the extraction of the
bioactive compounds.

5.3.1. Global Yield

The global yield was calculated as the ratio between the sample weights before and
after extraction. This indicator helps to determine the best extraction method through
weight loss. Nevertheless, the global yield does not provide specific information about the
extracted compounds.

Global Yield (%) =

(
ODbefore − ODafter

ODbefore

)
× 100 (1)

where OD before is the oven-dried sample before extraction and OD after is the oven-dried
sample after extraction.

5.3.2. Total Polyphenol Content (TPC)

The total polyphenol content was measured with the Folin–Ciocalteu colorimetric
method with modifications [85,89]. The method consists of mixing 150 µL of the extract
with 2.4 mL of distilled water, 150 µL of Folin–Ciocalteu solution (1N), and 300 µL of
sodium carbonate (20% w/v). The mixture was incubated for 2 h in the absence of light. Ab-
sorbance was read at 765 nm in a spectrophotometer of microplates (SpectraMax ABS Plus,
Molecular Devices, LLC, San Jose, CA, USA) linked to the software SoftMax Pro v.7.0 [85].
A calibration curve was prepared at different dilutions of gallic acid from the stock solution.
Distilled water was used as blank. The total polyphenol content is expressed in mg of gallic
acid equivalent per 100 g of dry sample (mg GAE/100 g sample).

5.3.3. Total Antioxidant Activity (TAA)

The antioxidant activity was measured by the inhibition of the DPPH (2, 2-diphenyl-1-
picryl-hydrazyl-hydrate) radical and the ABTS+ (2, 2′-azino-bis-(3-ethylbenzothiazoline-6-
sulphonic acid) cation radical decolorization test. The DPPH radical inhibition assay was
conducted according to the method described by Marinova et al. [90], Molyneux et al. [91],
and Brand-Williams et al. [92]. The reaction was performed in a spectrophotometer of
microplates (SpectraMax ABS Plus) by mixing 10 uL of OPW extract with 200 uL of DPPH
solution at 60 uM. The mixtures were allowed to react for 1 h in the absence of light. The
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samples were measured in a spectrophotometer of microplates (SpectraMax ABS Plus,
Molecular Devices, LLC, San Jose, CA, USA) linked to the software SoftMax Pro v.7.0
at a wavelength of 517 nm [85]. The stock solution was prepared using ethanol. The
radical inhibition was calculated using Equation (2). This equation has been reported
everywhere [79]. A calibration curve was prepared with a standard solution of Trolox
diluted in ethanol (100, 200, 250, 300, 350, 400, and 430 µM). Inhibition was reported
considering the following units: µmol of Trolox/100 g of dry sample.

Inhibition of absorbance λ517 =

(
1 − Af

Ao

)
× 100 (2)

The ABTS+ cation radical decolorization assay was determined based on the method
described by Re et al. [93] and Ozgen et al. [94]. Dilutions of 1:150, 1:300, and 1:500 of
the samples were prepared in ethanol. A total of 150 mL of extract was mixed with 3 mL
of 60 µM solution of ABTS. This mixture was stirred and left in an ultrasound bath at
room temperature for 20 min. Then, the samples were stored in the dark at 4 ◦C for 24 h.
After this time, the solution was diluted with 20 mM of acetate buffer solution (pH 4.5)
to an absorbance of 0.700 ± 0.01 at 734 nm. The mixture was left for 1 h in the absence
of light. The samples were measured in a spectrophotometer of microplates (SpectraMax
ABS Plus) linked to the software SoftMax Pro v.7.0 at a wavelength of 734 nm [85]. The
inhibition percentage was calculated using Equation (2). The results were reported as µmol
of Trolox/100 g of dry sample.

5.3.4. Hesperidin Quantification

Hesperidin quantification was performed via high-performance liquid chromatog-
raphy (HPLC) with a UV-visible detector (LC-2010A HT—Shimadzu, Bogotá, Colombia).
The chromatographic method reported by Adam [95] was used. The chromatographic
separation was performed with a C18 column (150 mm, 4.6 mm, and 5 µm). An isocratic
mobile phase condition was used. The mobile phase was composed of two solvents, 50%
methanol (solvent A) and 50% water–phosphoric acid at a ratio of 99.9: 0.1 (solvent B).
The flow rate, injection volume, column temperature, and absorbance were 0.9 mL/min,
20 µL, 30 ◦C, and 280 nm. Hesperidin quantification was carried out using the standard
internal method.

5.4. OPW Extracts: Results and Discussion of the Case Study

The case study was proposed to evaluate the best polyphenolic compound extraction
method using an acidified methanol solution and ethanol. The acidification of the solution
was carried out to dilate the cell membrane of raw materials [73]. Different authors report
higher extraction yields of polyphenolic compounds with acidified solvents. For example,
Bisognin et al. [96] reported an increase of about 13% in the TPC for Ilex paraguariensis leaf
with a solution of methanol (70% v/v) and hydrochloric acid (1% v/v). Piovesana et al. [97]
presented the use of acidified water as a better extraction solvent to obtain total phenolic
acids, anthocyanins, flavonoids, and phenolic compounds compared to other studies using
extraction with industrial organic solvents for Hibiscus sabdariffa L. Solvent acidification
disrupts the lignocellulosic matrix of biomass. Thus, higher extraction yields can be
achieved. Some phenolic compounds, flavonoids, and anthocyanins are covalently bound
to the cell membrane layers of the raw material. The solvent acidification makes these layers
more permeable (i.e., cellulose, hemicellulose, lignin, and pectin). Thus, the solvent can
extract phenolic compounds more easily than without an acidified solvent. The addition
of weak acids, such as citric acid, is recommended at pH between 3 and 4.8 to increase
flavonoid extraction [98]. For this reason, this work studied the mixture of methanol,
water, and acetic acid as a solvent in four (agitated solvent extraction, ultrasound-assisted
extraction, Soxhlet extraction, and agitated solvent and ultrasound-assisted extraction)
extraction methods. In the case of supercritical fluid extraction, the solvent used in the test
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was carbon dioxide. To solubilize hesperidin, a mixture of ethanol–water was analyzed as
a co-solvent. The overall extraction performance results are presented in Figure 9.
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Figure 9. Global yield of different extraction methods applied to OPW.

Soxhlet extraction (SE) had the highest global performance with a value of 60.35%.
Ultrasound-assisted extraction (UAE) was the method with the second highest extraction
performance. On the other hand, SLE + UAE had a yield of 47.51%. Finally, agitated
solvent extraction (SLE) and supercritical fluid extraction (SFE) had a yield of 46.14% and
17.75%, respectively. The global yield refers to the loss of mass suffered by the sample in
the extraction time. Thus, higher yields are related to higher extraction performance. The
SE global yield increased by 23.54% compared to the SLE process. The UAE global yield
was lower (14.25%) than the SLE. On the other hand, the SLE + UAE process obtained
a lower performance than the UAE process (8.2%). SFE had an extraction performance
3.4-fold higher than the SE method. The low overall performance in terms of loss of
mass in the extraction with supercritical fluids is because by varying the conditions of
temperature, pressure, and concentration of the co-solvent, the extraction becomes selective
to a metabolite of interest [99].

SE was the best method for extracting compounds (see Figure 9). Nevertheless, the
process temperature does not guarantee high-quality extracts, since several polyphenolic
compounds can degrade at higher temperatures (>50 ◦C) [100]. For this reason, a compar-
ison not only in terms of global yield must be performed. A comparison between TPC,
TAA (ABTS and DPPH), and value-added compound concentration (e.g., hesperidin) must
be performed.

The results obtained are better than some studies reported in the literature. For
example, Zia-ur-Rehman et al. [101] reported a global extraction yield of 11% for an ethanol
extractor of dried and ground citrus peel. This result is lower than those presented. The
same author reports a yield of 19.87% using methanol as a solvent. Goulas et al. [102]
reported a global extraction yield with methanol (100%) of 70.2% by Soxhlet extraction for
30 min and a solid/liquid ratio of 1:0.26 w/v. This result is 14% higher than that obtained
after OPW extraction. This difference could be attributed to the solid/liquid ratio applied
in this case study. Goulas et al. [102] obtained more concentrated extracts, so the weight
loss was higher. However, this result does not reflect higher concentrations of polyphenolic
compounds (e.g., hesperidin). The extraction of flavonoids, glucosides, limonoids, and
organic acids (e.g., ascorbic acid and citric acid) can be higher using methanol as the solvent.
The TPC results are presented in Figure 10.
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Figure 10. TPC content after OPW extraction by applying different methods.

The TPC content in the extracts allows us to elucidate the extraction efficiency better
than the global yield. In the global yield, the loss of mass suffered by the samples is not
directly related to the extraction of polyphenolic compounds. Conversely, other bioactive
compounds present in OPW can be solubilized (e.g., soluble sugars). Indeed, OPW extracts
can have a soluble sugar concentration between 29 and 44 g/100 g of sample [90]. The
TPC content has a similar behavior to global yield. However, when comparing UAE with
SE, the TPC content was 38.84% higher. In the SLE + UAE case, the TPC content was
similar to SE (2.53% lower). Finally, the SFE provides a TPC content 3-fold higher than
SE. This result reflects the high potential of SFE to obtain extracts rich in polyphenolic
compounds. Saini et al. [91] reported a TPC content of 28.30 mg GAE/g of citric waste
through ultrasound-assisted extraction with acetone and water as the solvents (1:3 v/v).
The yield obtained in this case study by UAE was 8.18-fold higher than that reported by
Saini et al. [91]. Moreover, the SLE + UAE process obtained a yield 8.59-fold higher than that
reported by Saini et al. [91]. Goulas et al. [102] reported a TPC content of 108.5 mgGAE/g
OPW through Soxhlet extraction. The TPC content was 2.3- and 7.0-fold higher than that
reported by Goulas et al. [102]. Therefore, solvent acidification improves polyphenolic
compound extraction. However, TPC analysis does not allow us to determine if SE is better
for hesperidin extraction.

TAA was quantified in terms of DPPH and ABTS. The results of the OPW extractions
are presented in Figure 11. Initially, the free radical scavenging activity of the extracts is
analyzed by the DPPH scavenging assay. The SFE extracts had a higher antioxidant capacity
compared to the other extracts. This behavior allows us to confirm that the hesperidin
content in the supercritical fluid extraction was higher compared to the evaluated methods.
Similar results were obtained using the ABTS method.

SFE had the highest hesperidin extraction yield (see Figure 12). The hesperidin
concentration increased by 58%, compared to SLE. In addition, the hesperidin concentration
was similar in the SLE and UAE processes (increases of 6.16%). Goulas et al. [102] reported
a hesperidin content of OPW of 6.02 g/kg by SE. In this case study, a hesperidin content of
8.18 g/kg of OPW was obtained via SFE. This yield is higher than those reported in the
open literature [102].
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Figure 11. Antioxidant capacity of (a) DPPH and (b) ABTS after OPW bioactive compound extraction.
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6. Conclusions

Factors such as variety, agricultural practices, soil properties, and orange juice pro-
duction methods influence OPW chemical composition. Specific applications based on
OPW chemical composition and production context must be proposed. Thus, several OPW
upgrading possibilities can be implemented at the industrial level. Nevertheless, more
efforts should be made to bring academic proposals to the industrial sector, boosting the
production of high value-added products such as essential oils, antioxidants, and organic
acids. The gap between academics and the industry related to OPW valorization is at-
tributed to the lack of a comprehensive analysis of OPW valorization pathways involving
technical, economic, environmental, and social aspects based on a specific context (i.e.,
research based on industrial and market needs). Thus, more research efforts should be
made on this topic.

OPW chemical composition is the basis for proposing different applications. Never-
theless, stand-alone applications must be evolved into a biorefinery system. This transition
will increase the feasibility of OPW valorization schemes. Bioactive compound extraction
is presented as a fundamental step when valorizing OPW, since these components have
several applications at the industrial level. Exhausted OPW can be used as a source of bulk
chemicals and bioenergy. The technological readiness level (TRL) must be considered when
proposing valorization alternatives since higher innovative processes with a high TRL will
be implemented faster than applications with a low development grade.

Supercritical fluid extraction is one of the most favorable methods to obtain bioactive
or polyphenolic compounds at the technical level since high extraction yields and selectivity
can be obtained. This statement is evidenced in the experimental results obtained in the case
study. Nevertheless, the scale of the process should be analyzed based on economic aspects.
The extraction of hesperidin with carbon dioxide under supercritical conditions yielded 58%
more product than conventional stirred solvent extraction. Thus, this technology can be
proposed as a potential alternative to valorize OPW. Bioactive compound extraction using
methanol and acetic acid as the solvents was higher than the extraction yields reported
in the open literature using other solvents (e.g., ethanol). Thus, the addition of a weak
acid to the extraction process enhances the process. Ultrasound-assisted extraction was
the second-best alternative to extract bioactive compounds. Nevertheless, more efforts are
needed to scale up this technology.

7. Perspectives and Future Work

OPW is a raw material with high availability and the potential to be upgraded for
different value-added products and energy vectors. Nevertheless, the gap between aca-
demics and the industry must be overcome to implement new valorization alternatives.
Indeed, more studies focused on real OPW use as a raw material to give a solution for
industries should be conducted. More contextualized valorization alternatives should be
proposed based on regional and national market needs and technologies with a high TRL
level. In contrast, research studies should present new upgrading alternatives to industrial
stakeholders based on technical, economic, environmental, and social assessment. This fact
will be the starting point to develop a bioeconomy based on the use of residual biomass.

On the other hand, integral OPW upgrading should be based on chemical com-position
analysis and physicochemical characteristics, since more reliable and feasible products can
be proposed. Indeed, bioactive compounds will play an important role in OPW valorization,
but structural polymers (i.e., pectin, cellulose, hemicellulose, and lignin) must be valorized
toward sustainable production. Then, the chemical composition must be considered a key
point when proposing valorization alternatives.

Finally, the assessment of different extraction methods should be addressed to op-
timize the extraction of bioactive compounds considering the origin and variety of the
raw material.
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