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Abstract: This paper investigates a financial market where asset prices follow a multi-dimensional
Brownian motion process and a multi-dimensional Poisson process characterized by diverse credit
and deposit rates where the credit rate is higher than the deposit rate. The focus extends to evaluating
European options by establishing upper and lower hedging prices through a transition to a suitable
auxiliary market. Introducing a lemma elucidates the same solution to the pricing problem in
both markets under specific conditions. Additionally, we address the minimization of shortfall
risk and determine no-arbitrage price bounds within the framework of incomplete markets. This
study provides a comprehensive understanding of the challenges posed by the multi-dimensional
jump-diffusion model and varying interest rates in financial markets.

Keywords: jump-diffusion; different interest rates; shortfall risk minimization; completion;
multi-dimensional

1. Introduction

Pricing contingent claims in complete markets has garnered significant attention
since the seminal work of Black, Scholes and Margrabe in [1,2]. After this revolutionary
change, refs. [3–8] expanded this field of study in various aspects. In 1976, Merton priced
options with discontinuous underlying stock returns, addressing the stochastic volatility
problem and providing a solution to it. Merton examined cases where prices were driven
by jump-diffusion processes. Building upon Merton’s work, refs. [7,9] extended the jump-
diffusion model and introduced the double exponential jump-diffusion model, which
allows closed-form solutions for path-dependent options. They proposed an analytical
solution for path-dependent options and an analytic approximation for finite-horizon
American options. Refs. [10,11] provide extensive information on different aspects of
financial modeling, from the basic mathematical tools to option pricing in models with
jumps, including multi-dimensional models and, importantly, pricing and hedging in
incomplete markets. Efficient hedging of contingent claims is well established in complete
markets characterized by the same interest rate for credit and deposit accounts. (Refer
to [12] for detailed insights). However, our focus shifts to a more realistic financial market
scenario, introducing a two-interest-rate model where the credit rate surpasses the deposit
rate, aligning more closely with real-world financial markets (as discussed in [13]). In this
paper, we consider a multi-dimensional model featuring m + 2 securities, encompassing
two risk-free assets, d stocks driven by a d-dimensional Brownian motion, and m − d stocks
influenced by an (m − d)-dimensional Poisson process.

Given the incompleteness of the market with two interest rates [14], we transform it
into a suitable auxiliary market using a multi-dimensional jump-diffusion model incorpo-
rating two interest rates [15].
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When aiming to minimize the risk of expected shortfall, the investor operates with an
initial capital lower than the necessary Black–Scholes fair price. In this scenario, wherein
the value of a portfolio at the maturity time T with the initial wealth x is less than the
contingent claim at time T (i.e., Xπ

T (x) < fT), the investor seeks to determine the optimal
strategy that minimizes the expected value of their shortfall ( fT − Xπ

T (x))+, taking into
account a weighted loss function. Ref. [16] minimizes the shortfall risk in the jump-diffusion
model. For details on shortfall risk minimization, refer to [17].

Incomplete markets typically allow for infinitely many equivalent martingale mea-
sures, leading to non-uniqueness in the no-arbitrage price of a contingent claim. Researchers
address this challenge through various approaches, such as market completion by intro-
ducing specific sets of assets (refer to [18,19]). We introduce certain conditions under which
a given set of assets completes the original market, enabling the determination of the range
within which the no-arbitrage price can be obtained. The structure of this paper unfolds
as follows: Section 2 provides an overview of the market model. Section 3 delves into
contingent claim valuation within complete markets, accompanied by a theorem presenting
a comprehensive solution to the contingent claim problem in such markets. In Section 4,
we establish a martingale measure for the new auxiliary market characterized by a higher
interest rate for the credit account. Additionally, in Section 5, we explore the concept
of shortfall risk, acknowledging situations where achieving a perfect hedge might be in-
feasible, yet it remains possible to minimize the expected shortfall risk, as demonstrated
towards the end of this section. The final section will explore pricing contingent claims via
market completion in (B1, B2, Sm)-market, where we study no-arbitrage price bounds in
incomplete markets.

2. The Market Model

Let (Ω,Ft, P,F) be a filtered probability space with a complete and right-continuous
filtration F := {Ft}0≤t≤T . Assume there are m + 2 continuously traded securities, in-
cluding two risk-free assets, d stocks driven by an Rd-valued Brownian motion W(t) =
(W1(t), . . . , Wd(t))⊺, and a (m − d)-dimensional multivariate Poisson process N(t) =
(N1(t), . . . , Nm−d(t))⊺ with a positive intensity λ. This intensity is independent of W
and is denoted by λ(k)(t), representing the rate of the jump process at time t. The process
λ(k)(t) is {Ft}-predictable, positive, and uniformly bounded over [0, T].

The price of the ith stock, Si(t), is determined by the following equation

dSi(t) = Si(t−)

(
µi(t)dt +

d

∑
j=1

σij(t)dWj(t) +
m−d

∑
k=1

νik(t)dÑk(t)

)
, (1)

where Ñk(t) = Nk(t)−
∫ t

0 λ(k)(s) ds, νik(t) > −1 for all i, k, and t ∈ [0, T], σij > 0, and µi ∈
R. σ and ν are matrix-valued processes such that ith row is given by σij = (σi1, . . . , σid),
and νik = (νi1, . . . , νi(m−d)) for i = 1, . . . , m, respectively. We assume µ, σ, and ν are
uniformly bounded in (t, ω) ∈ [0, T] × Ω. Henceforth, the dynamics of the price in
Equation (1) possess a unique solution under these assumptions. We also define the
volatility coefficients σ̃(t) = [σ(t) ν(t)], forming an m × m full-rank matrix, ensuring that
det(σ̃(t) σ⊺(t)) ̸= 0 a.s. for all t ∈ [0, T].

Considering jumps and stochastic jump sizes introduces incompleteness to the market.
However, in our model, we assume that the size of the jumps is predictable. The market
incompleteness arises from denoting two different interest rates, as described below.

Let us consider one deposit account B1 with the interest rate r1 and one credit account
B2 with the interest rate r2 satisfying

dB1(t) = B1(t)r1dt,

dB2(t) = B2(t)r2dt. (2)
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Given that, in reality, the credit rate is always higher than the deposit rate, we assume
constant values for r1 and r2 such that

r2 > r1, (3)

and investors are not allowed to borrow and lend money simultaneously.
The market described above is denoted as the (B1, B2, Sm)-market.
In the (B1, B2, Sm)-market, we denote β1(t) and β2(t) as the number of units invested

in the B1 and B2 accounts, respectively, and γ(t) = (γ1(t), . . . , γm(t)), where γi repre-
sents the number of units invested in the ith stock. The portfolio process is then denoted
as follows

π(t) = (β1(t), β2(t), γ1(t), . . . , γm(t)). (4)

The value of the portfolio π is given by

Xπ(t) = β1(t)B1(t) + β2(t)B2(t) +
m

∑
i=1

γi(t)Si(t) a.s. (5)

with β1 ≥ 0, β2 ≤ 0, and
Xπ(0) = x, (6)

where x is the initial value (initial capital) of the portfolio. This portfolio is self-financing
(SF) if

dXπ(t) = β1(t)dB1(t) + β2(t)dB2(t) +
m

∑
i=1

γi(t)dSi(t). (7)

Denote the class of admissible portfolio strategies with initial capital x by

A(x) = {π ∈ Rm+2 : Xπ(0) = x, Xπ ≥ −m for all t ∈ [0, T]}. (8)

Any non-negative Ft-measurable random variable fT is called a contingent claim
with maturity time T. A market is complete if and only if any contingent claim fT can be
replicated. Namely, there exists an initial capital x and π ∈ SF such that:

Xπ
T (x) = x +

m

∑
i=1

∫ T

0
πi(t)dSi(t) = fT P-a.s. (9)

Let us consider X(t) (or Y(t)) as the investor’s wealth (or debt) at time t and call it
the wealth process (or debt process) if X(t) (or −Y(t)) is generated by a self-financing and
admissible strategy.

Since the (B1, B2, Sm)-market is not a complete market, standard methods for pricing
and investing do not work. To address this, we transform the market into an auxiliary
market (Bz, Sm)z∈[0,r2−r1]

. In this market, Bz is the bank account with the interest rate

rz = r1 + z. (10)

Note that the (Bz, Sm)-market is complete for every z satisfying z ∈ [0, r2 − r1] for any
t ∈ [0, T].

Now, we derive the dynamics of the wealth and debt processes in the (B1, B2, Sm)-
market.

By the self-financing wealth process X(T) ≥ 0,

dX(t) = β1(t)dB1(t) + β2(t)dB2(t) +
m

∑
i=1

γi(t)dSi(t), (11)
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where β1 > 0, β2 < 0. Then,

dX(t)
X(t−)

=
β1(t)B1(t)

X(t−)

dB1(t)
B1(t)

+
β2(t)B2(t)

X(t−)

dB2(t)
B2(t)

+
m

∑
i=1

γi(t)Si(t−)

X(t−)

dSi(t)
Si(t−)

. (12)

Denoting

ζ(t) =ζ1(t) + · · ·+ ζm(t)

=
γ1(t)S1(t−)

X(t−)
+ · · ·+ γm(t)Sm(t−)

X(t−)

=
m

∑
i=1

γi(t)Si(t−)

X(t−)
, (13)

then

1 − ζ(t) =
X(t−)− ∑m

i=1 γi(t)Si(t−)

X(t−)

=
β1(t)B1(t) + β2(t)B2(t) + ∑m

i=1 γi(t)Si(t−)− ∑m
i=1 γi(t)Si(t−)

X(t−)

=
β1(t)B1(t) + β2(t)B2(t)

X(t−)
.

Recalling r2 > r1, and noting 1 − ζ(t)+ = max(1− ζ(t), 0), and 1 − ζ(t)− = −min(1−
ζ(t), 0), we obtain

dX(t)
X(t−)

= (1 − ζ(t))+r1dt − (1 − ζ(t))−r2dt +
m

∑
i=1

ζi(t)
dSi(t)
Si(t−)

. (14)

Taking the same steps, one can observe that the stochastic differential equation (SDE)
of the seller is as follows:

dY(t)
Y(t−)

= (1 − ζ(t))+r2dt − (1 − ζ(t))−r1dt +
m

∑
i=1

ζi(t)
dSi(t)
Si(t−)

. (15)

A hedging strategy against f in the (B, Sm)-market is not necessarily a hedging strategy
against f in the (B1, B2, Sm)-market. In this regard, we first pay attention to contingent
claim valuation in the complete markets and then in the (B1, B2, Sm)-market.

3. Contingent Claim Valuation in Complete Markets

As mentioned in the previous section, any non-negative FT-measurable random
variable fT is called a contingent claim with maturity T. The (B, Sm)-market is complete
if and only if any contingent claim fT can be replicated. This means that there exists an
initial wealth x and a strategy π ∈ SF such that Xπ

T (x) = fT . We show that this is the only
price for a contingent claim, preventing any arbitrage opportunities. To do that, we define
a unique equivalent martingale measure. Let us consider

θ(t) := [σ(t)−1 ν(t)−1][µ(t)− r(t)] =
[

θW(t)
θN(t)

]
, (16)
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where θW(t) is an Rd-valued process, θN(t) is an Rm−d-valued process, and σ̃(t) :=
[σ(t) ν(t)] is the m × m volatility matrix process. Let us define the following processes

W̃(t) := W(t) +
∫ t

0
θW(s)ds,

Ñ(t) := N(t)−
∫ t

0
θN(s)ds.

and

ZW(t) := exp
{
−
∫ t

0
θT

W(s)dW(s)− 1
2

∫ t

0
∥θW(s)∥2ds

}
, (17)

ZN(t) := ∏
1≤k≤m−d

(
∏
n≥1

((ψ(k)(t(k)n ) + 1)1
{t(k)n ≤t}

+ 1
{t(k)n >t}

) (18)

× exp{−
∫ t

0
ψ(k)(s)λ(k)(s)ds}

)
,

where
ψ(k)(t) := −θ

(k)
N (t)/λ(k)(t),

t(k)n is the time of the n-th jump, and Nk(t) = sup{n : t(k)n ≤ t} is the number of type k
random jumps to the market by time t.

Lemma 1. The process Z defined by

Z(t) := ZW(t)ZN(t), (19)

is a P-martingale with E[Z(T)] = 1. Define an auxiliary probability measure on (Ω,FT) as

P̂(A) := E[Z(T)1A], A ∈ FT .

Then, W̃ and Ñ are martingales under P. In particular, the jump process Nk admits (P,Ft)-
stochastic intensity

λ̃(k)(t) = (ψ(k)(t) + 1)λ(k)(t).

Refer to [20].

Theorem 1. Let f be a given contingent claim. The fair price of f is given by

p = E(γ(T) f ),

and there exists a unique (up to equivalence) corresponding hedging strategy π with corresponding
wealth process X(t) satisfying

X(0) = p.

Refer to [15].

Here, E means expectation with respect to P.
The discount process γ(t) is defined as

γ(t) = exp
(
−
∫ t

0
r(s)ds

)
for t ∈ [0, T].

4. Contingent Claim Valuation When the Interest Rate for the Credit Account Is Higher
Than the Interest Rate for the Deposit Account

Now, we transform the problem of contingent claim valuation in the (B1, B2, Sm)-
market to a suitable complete market (Bz, Sm). By substituting r(t) with rz(t) and defining
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θ̂(t), Ẑ(t), Ŵ(t), P̂, and γ̂(t) as in Section 3, one can obtain the same results. Then, the fair
price p̂ of the contingent claim f in the (Bz, Sm)-market is given by

p̂ = Ê(γ̂(T) f ), (20)

where Ê is the expectation with respect to the probability measure P̂.
The following lemma relates the (Bz, Sm)-market to the (B1, B2, Sm)-market. In other

words, we obtain a condition under which the wealth processes corresponding to a portfolio
process π coincide in the (B1, B2, Sm)-market and (Bz, Sm)-market, respectively.

Lemma 2. Let ξ be a portfolio process, and X(t) and X̂(t) be the wealth processes in the market
(B1, B2, Sm) and (Bz, Sm), respectively. Denote

X̂(0) = X(0), (21)

then
X̂(t) = X(t) for t ∈ [0, T] a.s. (22)

if and only if

(r2(t)− r1(t)− z(t))(1 − ζ(t))− + z(t)(1 − ζ(t))+ = 0

for t ∈ [0, T] a.s. (23)

Proof. X̂(t) follows the stochastic differential equation

dX̂(t) =X̂(t)
[
(1 − ζ(t))rz(t)dt

+ ζ(t)
(

µi(t)dt +
d

∑
j=1

σij(t)dWj(t) +
m−d

∑
k=1

νik(t)dÑk(t)
)]

. (24)

By comparing Equation (24) to the stochastic differential equation for X(t) as

dX(t) =X(t)
[
(1 − ζ(t))+r1(t)dt + (1 − ζ(t))−r2(t)dt

+ ζ(t)
(

µi(t)dt +
d

∑
j=1

σij(t)dWj(t) +
m−d

∑
k=1

νik(t)dÑk(t)
)]

,

X(0) = x, (25)

and by the assumption
X̂(0) = X(0),

then
X̂(t) = X(t), for t ∈ [0, T] a.s.

is equivalent to

(1 − ζ(t))+r1(t)− (1 − ζ(t))−r2(t) = (1 − ζ(t))rz(t). for t ∈ [0, T] a.s. (26)

By recalling the relation a = a+ − a− for a ∈ R, one can find the equivalence of
Equations (23) and (26).

Statement 1. Let z = ((t)) be a predictable process with values in the interval

[0, r2 − r1]. (27)
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Assume that ζ(t) is the optimal hedging strategy against the claim fT in the (Bz, Sm)-market
and satisfies the condition in Equation (23).

Then, Crz(0)
(
resp. Prz(0)

)
, the initial price of the minimal hedge in (Bz, Sm) against fT , is

equal to C+
(
resp. P+

)
, the initial price of the minimal hedging strategy in (B1, B2, Sm).

Namely,
Crz(0) = C+

(
resp.Prz(0) = P+

)
. (28)

Proof. First, we demonstrate that the minimal hedging strategy ξ in the (Bz, Sm)-market is
also a hedging strategy in the (B1, B2, Sm)-market under relation Equation (23). Let Crz be
the initial capital associated with that hedge in the (Bz, Sm)-market.

If ξ satisfies Equation (23), then the stochastic differential equations of the wealth pro-
cesses X̂t and Xt in the markets (Bz, Sm) and (B1, B2, Sm), respectively, coincide. By taking
Crz as the initial price in both markets, we establish the equality between the two processes
at any time t ∈ [0, T]. Consequently,

X̂t = Xt = f (S1
T). (29)

Now, let us show that, under the assumption of Statement 1, the strategy ξ is minimal
among the hedges against f (S1

T) in the (B1, B2, Sm)-market. To achieve this aim, it is
sufficient to establish

Ê[ f (S1
T)e

−rzT ] ≤ x, (30)

where x represents the initial capital of ξ∗, an arbitrary strategy in the (B1, B2, Sm)-market.
Ê denotes the expected value under the martingale measure in Lemma 1. Let Xξ∗

t be the
wealth process corresponding to the arbitrary strategy ξ∗. We show

Ê[Xξ∗

T e−rzT ] ≤ x. (31)

Let us consider the discounted wealth process X̃t := Xξ∗

t e−rzt; then, by using Ito’s formula

dX̃t =Xξ∗

t−e−rzt
(
[(1 − ξ∗t )

−(r1 − r2)− z(1 − ξ∗t )]dt

+
( d

∑
j=1

ξ∗j (t)σij
)
dW̃t −

( m−d

∑
k=1

ξ∗k (t)νik
)
d(Nt − λ̃t)

)
. (32)

Note that
(1 − ξ∗t )

−(r1 − r2)− z(1 − ξ∗t ) ≤ 0, (33)

and ( d

∑
j=1

ξ∗j (t)σij
)
dW̃t −

( m−d

∑
k=1

ξ∗k (t)νik
)
d(Nt − λ̃t) (34)

is a P̂ local martingale.
From integrating the relation Equation (32) and taking the P̂ expectation, we obtain

Ê[X̃t] = Ê[Xξ∗

t e−rzt] ≤ x. for any t ∈ [0, T] (35)

Since ξ∗ is a hedge for fT , that yields

Xξ∗

T e−rzT = X̃T ≥ fTe−rzT . (36)

Hence,
Crz = Ê[ fTe−rzT ] ≤ Ê[X̃T ] = Ê[Xξ∗

T e−rzT ] ≤ x. (37)
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Given that the relation Equation (23) is satisfied, Crz is an initial price of a hedge for fT
in (B1, B2, Sm)-market. Therefore,

Crz = C+. (38)

For the case of Put, the proof is similar.

Following the above statement and Lemma 2, the wealth process in the (Bz, Sm)-
market, denoted as X̂t(Crz), coincides with the wealth process in the (B1, B2, Sm)-market,
denoted as Xt(Crz), and

X̂T(Crz) = XT(Crz) = f (S1
T). (39)

Therefore, we assert that the minimal hedge ζ in the (Bz, Sm)-market against fT is also
a hedge in the (B1, B2, Sm)-market if the relation Equation (23) holds.

Statement 2. Let f be a given contingent claim, and let z(t), t ∈ [0, T], be a progressively
measurable process satisfying the condition z(t) ∈ [0, r2(t) − r1(t)] for t ∈ [0, T] a.s.. If the
minimal hedging strategy ξ∗ corresponding to the solution of the contingent claim valuation
problem for f in the (Bz, Sm)-market satisfies the equation

(r2(t)− r1(t)− z(t))(1 − ζ(t))− + z(1 − ζ(t))+ = 0, for t ∈ [0, T] a.s. (40)

then ξ∗ is also a hedge against − fT in the (B1, B2, Sm)-market. Furthermore, if Crz (resp. Prz ),
the fair price of the claim in the (Bz, Sm)-market, verifies Crz = infk∈[0,r2−r1]

Crk (resp. Prz =
infk∈[0,r2−r1]

Prk ), then
Crz = C− (resp. Prz = P−), (41)

where C− (resp. P−) is the initial debt of the minimal hedge (i.e., the seller’s price). Namely,

−C−(resp. − P−) = sup{y ≤ 0/∃ξ ∈ A(x) s.t. TT ≤ − fT}. (42)

Before proving this statement, we state the following lemma.

Lemma 3. The minimal hedging strategy against fT in the (Bz, Sm) market (for the buyer) is also
the minimal hedging strategy against − fT (for the seller) in the same market.

Proof. The stochastic differential equations of the debt and wealth processes coincide in
the (Bz, Sm) market. Therefore, if ξ∗ is a hedge against fT in the (Bz, Sm) market, we have

Xξ∗ ,x
T = fT . (43)

By taking y = −x as the initial price for the debt process,

YT = −Xξ∗ ,x
T = − fT . (44)

Hence, ξ∗ is a hedge against − fT in the (Bz, Sm) market.

Now let us return to the proof of Statement 2.

Proof of Statement 2. Provided that relation Equation (23) verifies ξ∗ as a hedge in (B1, B2, Sm)
against − fT , with an initial price of −Crz , it is sufficient to find a minimal hedge in the latter
market. Assume Crz = infk∈[0,r2−r1]

Crk , and let y be the initial value for the debt process
generated by ξ, an arbitrary strategy in the (B1, B2, Sm)-market. We aim to show that

y ≤ sup
k∈[0,r2−r1]

(−Crk ) := −Crz . (45)

Accordingly, any hedging strategy against − fT has an initial value less than −Crz .
However, −Crz is the initial debt of the hedge ξ∗ against − fT in the (B1, B2, Sm)-market.
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Therefore, −Crz provides the lowest initial debt in (B1, B2, Sm). Any hedging strategy
against − fT in (B1, B2, Sm) is a hedging strategy against the same claim in (Bz∗ , Sm) where

z∗ =

{
r2 − r1, if 1 − ξt ≥ 0,
0, otherwise.

(46)

However, by definition, −Crz∗ ≤ −Crz . Therefore, y ≤ −Crz .
The proof holds for both Call and Put options.

Now, let us provide an approximation of the arbitrage-free prices for the claim fT =
(S1

T −K)+. In this scenario, we calculate the supremum and infimum over auxiliary markets
to find approximations for the upper and lower hedging prices of the claim. Therefore,
the arbitrage-free interval of prices can be approximated as follows:[

inf
z∈[0,r2−r1]

Crz , sup
z∈[0,r2−r1]

Crz

]
(47)

Example 1. Consider the European call option on Stock 1 with maturity T, exercise price K,
volatility σ11, and interest rate rz. The value of the option fT = (S1(T)− K)+ can be expressed
as follows:

Crz(t) =e−λ̂(T−t)
∞

∑
n=0

(λ̂(T − t))n

n!
CBS(T − t, S1(0)(1 − ν11)

neν11λ̂(T−t), r, σ11, K)

=S1(t)(1 − ν11)
neν11λ̂(T−t)

( ∞

∑
0

(λ̂(T − t)n

n!
eλ̂(T−t)Φ(d1)

)
−Ke−rz(T−t)

( ∞

∑
0

(λ̂(T − t)n

n!
eλ̂(T−t)Φ(d2)

)
. (48)

Here, CBS represents the price of a call option driven by the Black–Scholes formula

CBS(St, t, K, σ, r) = StΦ(d1)− Ke−rtΦ(d2) (49)

where

d1 =
ln St

K +
(

r + σ2

2

)
t

σ
√

t
,

d2 =d1 − σ
√

t.

Here, Φ(.) is the standard normal distribution function. In Example 1, λ̃(t) represents the
total jump intensity:

λ̃(t) =
m−d

∑
k=1

λ̃(k)(t). (50)

One can approximate the upper and lower hedging prices for Example 1 within the interval:[
inf

z∈[0,r2−r1]
Crz , sup

z∈[0,r2−r1]

Crz

]
. (51)

By the Call–Put parity, a similar method can be applied to

fT = (K − S1(T))+. (52)

5. The Shortfall Risk Minimization Problem

In this section, we study the case where the initial wealth x is less than the required
expected value of e−rzT fT denoted by Ê[e−rzT fT ]. In this case, it is unlikely to apply a
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perfect hedge; however, it is possible to minimize the risk of shortfall corresponding to the
initial cost constraint by considering the following optimization problem:

u(x) = inf
ξ∈A

x<Ê[ f (S1
T)e

−rzT ]

E[lp(( fT − Xξ
T(x))+)] (53)

Here, lp(x) = xp

p is the loss function with p > 1, andA = {ξ s.t E[sup0≤t≤T |Xξ
T(x)|] <

∞}, i.e., the set of all admissible portfolios with initial capital x. fT ∈ [Lp+ϵ(Ω,FT , P)] is
the contingent claim with the maturity time T for some ϵ. Xξ

T is the wealth process.
In this problem set, if x is greater than the replication cost fT , the completeness of the

market allows the investor to hedge the contingent claim fT without taking risks. On the
other hand, if x is strictly less than the replication cost of fT , there is a potential for a
shortfall. We have the option to divide this problem into a perfect hedging problem of fT
and a utility minimization problem.

In the context of a (Bz, Sm)-market, solving the problem Equation (53) involves iden-
tifying the optimal strategy for maximizing expected utility and determining the perfect
hedge for the claim fT .

Let us denote A0(α) as the set of portfolio processes ξ(t) ∈ A and Xξ
t ≥ 0, t ∈ [0, T]

a.s., where α = x fT − x. Then, the optimal solution for Equation (53) is

ξ∗ = ξ fT − ξ0 (54)

where ξ fT is the perfect hedge for fT and ξ0 is the optimal strategy for the following
optimization problem

J(α) := inf
ξ∈A0(α)

E[lp(Xξ
T(α))]. (55)

Theorem 2. (i) Let ξ0(t) be the optimal portfolio proportions for ξ0 ∈ A0(α) for every α ∈
(0, ∞). The optimal portfolio, denoted by ξ0 = (ξ1

0, ξ2
0), obtained from J(α) is given by the system

of equations:

σ1ξ1
0 + σ2ξ2

0 =
ϕ

p − 1
,

ν1ξ1
0 + ν2ξ2

0 = −
(

λ∗

λ

)q−1
.

Solving for ξ1
0 and ξ2

0, we obtain

ξ1
0 =

ϕν2

p−1 + σ2
(

λ∗
λ

)q−1

ν2σ1 − ν1σ2 ,

ξ2
0 =

ϕν1

p−1 + σ1
(

λ∗
λ

)q−1

ν1σ2 − ν2σ1 .

where q is such that 1
p + 1

q = 1.
(ii) The cost function u(x) is given by

u(x) = lp(x fT − x)e(−(p−1)aT), (56)

where x fT is the replication cost of fT , and

a = −qrz +
1
2

q(q − 1)ϕ2 − λ

(
(q − 1)− q

(
λ∗

λ

)
+

(
λ∗

λ

)q)
.
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(iii) The optimal wealth is given by

X
ξ fT

−ξ0

T (x) = fT − (x fT − x)(ZT)
q−1e(−(a+ rz

p−1 )T). (57)

See Kane and Melnikov [21].

Now, we present a solution to the problem Equation (53) in a two-interest-rate market.

Theorem 3. Let X̂ξ
t (x) be the wealth process in the (Bz, Sm) satisfying Equation (24), and Xξ

t (x)
the wealth process in the (B1, B2, Sm)-market satisfying Equation (25) with initial capital x. Assume
ξ(t), the optimal proportion for problem Equation (53) in the (Bz, Sm)-market verifies Equation (23),
and α fT , the optimal strategy hedging fT in the (Bz, Sm)-market, satisfies the conditions in State-
ment 4. Then, in the (B1, B2, Sm)-market:

(i) The cost function Equation (53) is given by Equation (56). (ii) The optimal proportions
invested are

ξ i
t =

ξ i
f X

ξ fT
t− (x fT )− ξ i

0Xξ0
t−(x fT − x)

X
ξ fT

−ξ0
t− (x)

on Si, (58)

and (1 − ξ)+ on the deposit account and (1 − ξ)− on the credit account.

Proof. The proof follows a similar structure to the one presented by Kane and Melnikov [21]
in the multi-dimensional case.

6. Pricing Contingent Claims via Market Completion in (B1, B2, Sm)-Market

In this section, our aim is to study no-arbitrage price bounds in incomplete markets.
To initiate our analysis, we examine the market (B, Sm), which is characterized by multi-
dimensional risky assets and one non-risky asset and results in a single interest rate. Our
objective is to price contingent claims in incomplete markets, prompting a transition to a
market with two different interests later on, resulting in market incompleteness.

Assuming that the dynamics of the risky assets follow Equation (1), with parameters
and assumptions identical, we introduce a non-risky asset governed by

dB(t) = B(t)r(t)dt, B(0) = 1. (59)

Let π = (β(t), γ1(t), . . . , γm(t)) be a R(m+1)-valued process for t ∈ [0, T], represent-
ing a portfolio. We assume that

∫ T
0 ∥π(t)∥2dt < ∞ almost surely under the probability

measure P.
The value of the portfolio, denoted by Xπ(t), is given by

Xπ(t) = β(t)B(t) +
m

∑
i=1

γi(t)Si(t), for all t ∈ [0, T].

It suffices to assume that our market is arbitrage-free if there exists an equivalent
martingale measure, i.e., a measure equivalent to P under which the value of any self-
financing strategy is a local martingale. The existence of this measure can be inferred by
assuming at least one predictable process κ = (κW , κN)

⊺, where κW and κN are defined
on Rm-valued Brownian motion and a (m − d)-dimensional Poisson process, respectively,
such that the process κ satisfies

σ(t)κW(t) + ν(t) · (1 − κN) = µ(t) = σ̃(t)θ(t), (60)
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where 1 represents a vector of ones. Henceforth, we assume the existence of at least one
process κ as described above. Let us define the probability measure such that

ZW
κ (t) := exp

{
−
∫ t

0
κW(s)⊺dW(s)− 1

2

∫ t

0
∥κW(s)∥2ds

}
,

ZN
κ (t) := exp

{
−
∫ t

0
λ(s) · (1 − κN(s))ds

} m−d

∏
k=1

∏
s≤t

κ
(k)
N (s)∆Nk(s), for t ≤ T.

Define
Zκ = ZW

κ ZN
κ , (61)

a non-negative local martingale (See [19]) with E[Zκ(t)] = 1 for all t ∈ [0, T]. The sufficient
condition for market completeness is the uniqueness of the equivalent martingale measure.
Therefore, our market is complete if Zκ is a martingale and Equation (60) has only one
solution such that κ

(k)
N > 0 for k ∈ {1, . . . , m − d}.

Assume Γ represents the set of all possible equivalent martingale measures in this
market, i.e., Γ is the set of all κ which solve relation Equation (60) with κ

(k)
N > 0 for

k ∈ {1, . . . , m − d}, and Zκ is a martingale in this set. Therefore, the unique parameters of
this are given by

κW(t) =θW(t),

κN(t) =λ−1(t) · (λ(t)− θN(t)). (62)

Proposition 1 ([5] Theorem 4.2). Let Ξ denote the set of all equivalent martingale measures in

the (B, S)-market, and let dQκ
dP

∣∣∣∣
Ft

= Zκ(t). Then, Qκ ∈ Ξ if and only if κ ∈ Γ.

Let us denote an FT-measurable random variable fT as a contingent claim such that
EQ[ fT ] ≤ ∞ for all Q ∈ Ξ.

Consider the case where the financial market has the same deposit and credit rates,
i.e., r1 = r2. This assumption leads to considering the same deposit and credit account
B1 = B2. Finally, with this assumption, we are describing the (B, Sm)-market with a
portfolio process π = (β, γ1, . . . , γm). In this case, the capital follows

X(t) = β(t)B(t) +
m

∑
i=1

γi(t)Si(t).

Assuming r1 = r2 = r

dX(t)
X(t−)

=
dY(t)
Y(t−)

= (1 − ξ(t))rdt +
m

∑
i=1

ξi(t)
dSi(t)
Si(t−)

.

In such a market, the unique element of Ξ is given by

κW(t) =θW(t),

κN(t) =λ−1(t) · (λ(t)− θN(t)),

where κN(t) < λ(t) for all t ∈ [0, T].
Let us return to the (B1, B2, Sm)-market where the credit rate is higher than the deposit

rate. This market is incomplete due to differing borrowing and lending rates. We establish a
no-arbitrage price bound over the set of equivalent martingale measures in this incomplete
market. When a market is incomplete, replicating all contingent claims becomes impossible.
However, by introducing specific sets of assets, we can achieve market completeness.
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We broaden the set of admissible strategies to include investment strategies with
consumption, represented by an (m + 3)-dimensional F -adapted portfolio process (π, c) =
(β1(t), β2(t), γ1(t), . . . , γm(t), c(t)), where c(t) ≥ 0 for t ∈ [0, T].

The value of such a portfolio is given by

Xπ,c(t) = β1(t)B1(t) + β2(t)B2(t) +
m

∑
i=1

γi(t)Si(t)−
∫ t

0
c(s)ds.

We then determine the upper and lower hedging prices as follows:

C∗( fT) = inf{x ≥ 0 : ∃(π, c) ∈ A(x) : Xπ,c(T) ≥ fT , P-a.s.} (63)

C∗( fT) = inf{x ≥ 0 : ∃(π, c) ∈ A(−x) : Xπ,c(T) ≥ − fT , P-a.s.} (64)

The seller price, C∗( fT), represents the smallest initial capital required for the investor
to establish their portfolio. The buyer price, C∗( fT), is the largest initial capital required for
the investor to pay, ensuring they would not want to pay more than this amount. The upper
and lower hedging prices are determined by taking the infimum and supremum over the
set of all equivalent martingale measures Qz accommodated in market with the interest
rate rz = r1 + z where z satisfying z ∈ [0, r2 − r1], for each z as follows:

C∗( fT , z) = sup
Q∈Qz

EQ[
fT
erz

],

C∗( fT , z) = inf
Q∈Qz

EQ[
fT
erz

].

Now, we consider the case discussed in Section 4 and introduce the interest rate rz as
defined in Statement 1, ensuring that the assumption for market completeness is satisfied.
We provide an approximate price by defining the upper and lower completion prices
Ĉ∗( fT ; r2) and Ĉ∗( fT ; r1) as follows

Ĉ∗( fT ; r2) = sup
z∈[0,r2−r1]

C∗( fT , z), (65)

Ĉ∗( fT ; r1) = inf
z∈[0,r2−r1]

C∗( fT , z). (66)

Example 2. In this example, we present a method for approximating the price of a contingent claim
within a two-interest-rate jump-diffusion model. The pricing formula utilized is derived from the
book [22] as follows:

C = e−λ∗T
∞

∑
n=0

(λ∗T)n

n!
CBS(T, S1

0(1 − ν1)
neν1λ∗T , r, σ1, K) (67)

where CBS denotes the price determined by the Black–Scholes formula (Equation 49). Parameters
from Model 3 of Example 4.2 in the book [23] are employed

µ1 =0.11, σ1 = 0.20, ν1 = 0.04;

µ2 =0.10, σ1 = 0.16, ν2 = 0.04;

and S0 = 100, K = 100, T = 5, r1 = 1.01%, and r2 = 6.33% over the years 1999 to 2004.
Assuming that σ2ν1 − σ1ν2 ̸= 0,

λ∗ =
(µ1 − r)σ2 − (µ2 − r)σ1

σ2ν1 − σ1ν2
,
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(See [22], pages 39–41.) Since z ∈ [0, r2 − r1] we find the interval for z as [0, 0.0532]. Using
Equations (65) and (66) we approximate the price bounds

Ĉ∗( fT ; 0.0633) = sup
z∈[0,0.0532]

C∗( fT , rz) = 29.5645,

Ĉ∗( fT ; 0.0101) = inf
z∈[0,0.0532]

C∗( fT , rz) = 20.2532.

Thus, the estimated contingent claim price lies within the interval [20.2532, 29.5345].

7. Conclusions and Future Work

In this study, we began with a multi-dimensional jump-diffusion model, termed the
(B1, B2, Sm)-market, where the credit rate surpasses the deposit rate. However, due to its
incompleteness, standard pricing and investment methods do not apply. To overcome
this, we transformed the market into an auxiliary (Bz, Sm) where z ∈ [0, r2 − r1], achieving
completeness for each rz within the range [0, r2 − r1] for any t ∈ [0, T]. By demonstrating
the coincidence of wealth processes in both the (B1, B2, Sm)-market and the (Bz, Sm)-market,
subject to condition Equation (23), we calculated upper and lower hedging prices using
supremum and infimum over auxiliary markets. For future research, expanding the model
introduced in this paper and incorporating a Levy model could enhance the accuracy of
hedging price approximations. Interested readers can explore related works in [10,24–26].
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