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Abstract: The purpose of the present paper is to further investigate the mathematical structure of
sentences—proposed in a recent paper—and its connections with human short–term memory. This
structure is defined by two independent variables which apparently engage two short–term memory
buffers in a series. The first buffer is modelled according to the number of words between two
consecutive interpunctions—variable referred to as the word interval, IP—which follows Miller’s
7 ± 2 law; the second buffer is modelled by the number of word intervals contained in a sentence,
MF, ranging approximately for one to seven. These values result from studying a large number of
literary texts belonging to ancient and modern alphabetical languages. After studying the numerical
patterns (combinations of IP and MF) that determine the number of sentences that theoretically can
be recorded in the two memory buffers—which increases with the use of IP and MF—we compare
the theoretical results with those that are actually found in novels from Italian and English literature.
We have found that most writers, in both languages, write for readers with small memory buffers
and, consequently, are forced to reuse sentence patterns to convey multiple meanings.

Keywords: alphabetical languages; extended short–term memory; human communication; human
mind; sentences; mathematical modeling; universal readability index

1. Does the Short–Term Memory Process Words with Two Independent Buffers
in Series?

Recently [1], we proposed a well–grounded conjecture that a sentence—read or pro-
nounced as the two activities are similarly processed by the brain [2]—is elaborated by
the short–term memory (STM), with two independent processing units in series that have
similar buffer size. The clues for conjecturing this model have emerged from considering
many novels belonging to Italian and English literature. In [1], we have shown that there
are no significant mathematical/statistical differences between the two literary corpora,
according to surface deep–language variables. In other words, the mathematical surface
structure of alphabetical languages—a creation of the human mind—seems to be deeply
rooted in humans, independent of the particular language used.

A two–unit STM processing can be justified according to how a human mind seems
to memorize “chunks” of information written in a sentence. Although simple and related
to the surface of language, the model seems to describe mathematically the input–output
characteristics of a complex mental process largely unknown.

According to [1], the first processing unit is linked to the number of words between
two contiguous interpunctions, the variable for which is indicated by Ip—termed the
word interval (Appendix A lists the mathematical symbols used in the present paper)—
approximately ranging within Miller’s 7 ± 2 law range [3–12]. The second unit is linked
to the number MF of Ips contained in a sentence, referred to as the extended STM, or E–
STM, ranging approximately from one to six. We have shown that the capacity (expressed
in words) required to process a sentence ranges from 8.3 to 61.2 words, values that can
be converted into time by assuming a reading speed. This conversion gives the range
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2.6∼19.5 s for a fast reader [13], and 5.3 ∼ 30.1 s for an average reader of novels, values
that are well-supported by the experiments reported in the literature [14–29].

The E–STM must not be confused with the intermediate memory [30,31]. It is not
modelled by studying neuronal activity, but by studying the surface aspects of human
communication, such as words and interpunctions, whose effects writers and readers have
experienced since the invention of writing.

The modeling of the STM processing by two units in a series has never been considered
in the literature before [1,32]. The reader is very likely aware that the literature on the
STM and its various aspects is very large and multidisciplinary, but nobody—as far as
we know—has never considered the connections we have found and discussed in [1,32].
Moreover, a sentence conveys meaning; therefore, the theory we are further developing in
the present paper might be a starting point to arrive at the information theory that includes
meaning.

Currently, some attempts are being made by many scholars to arrive at a “semantic
communication” theory or a “semantic information” theory, but the results are still, in our
opinion, in their infancies [33–41]. These theories, as those concerning the STM, have not
considered the main “ingredients” of our theory—namely IP and PF—as a starting point
for including meaning, which is still a very open issue.

Figure 1 sketches the flowchart of the two processing units [1]. The words p1, p2,. . . pj
are stored in the first buffer up to j items—approximately in Miller’s range—until an
interpunction is introduced to fix the length of IP. The word interval IP is then stored in
the second buffer up to k items, from about one to six, until the sentence ends. The process
is then repeated for the next sentence.
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Figure 1. Flowchart of the two processing units of a sentence. The words p1, p2,. . . pj are stored in
the first buffer up to j items to complete a word interval IP, which is approximately in Miller’s range,
when an interpunction is introduced. IP is then stored in the E–STM buffer, up to k items, i.e., in MF

cells, approximately one to six, until the sentence ends.

The purpose of the present paper is to further investigate the mathematical structure
underlying sentences, both theoretically and experimentally, by considering the novels
previously mentioned [1] listed in Table A1 for Italian literature and in Table A2 for English
literature.

After this introduction, in Section 2, we study the probability distribution function
(PDF) of sentence size—measured in words—that is recordable by an E–STM buffer made
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of CF cells (this parameter plays the role of MF). In other words, in this section, we study
and discuss the length of sentences that humans can possibly conceive with an E–STM
made of CF memory cells.

In Section 3, we study the number of sentences, with the same number of words, that
CF cells can process. In this section, we study and discuss the complementary issue of
Section 2, namely, how many sentences with a constant number of words humans can
conceive, based solely on the E–STM of CF cells.

In Section 4, we compare the number of sentences that authors of Italian and English
literature actually wrote for their novels to the number of sentences theoretically available
to them, by defining a multiplicity factor. In Section 5, we define a mismatch index, which
synthetically measures to what extent a writer uses the number of sentences that are
theoretically available. In Section 6, we show that the parameters studied increase with the
year of novel publication. Finally, in Section 7, we summarize the main results and propose
future work.

2. Probability Distribution of Sentence Length versus E–STM Buffer Size

First, we study the conditional PDF of sentence length, measured in words W—i.e.,
the parameter which in long texts, such as chapters, gives PF of each chapter—recordable in
an E–STM buffer made of CF cells, i.e., the parameter which gives MF in chapters. Second,
we study the overlap of the PDFs because this overlap gives interesting indications.

2.1. Probability Distribution of Sentence Length

To estimate the PDF of sentence length, we run a Monte Carlo simulation based on the
PDF of IP obtained in [1] by merging the two literatures listed in Section 1.

In [1], we have shown that the PDF of IP, PF and MF—as previously mentioned, these
averages refer to single chapters of the novels—can be modelled with a three-parameter
log–normal density function [42] (natural logs):

f (x) =
1√

2πσx(x − 1)
exp

{
−1

2

[
ln(x − 1)− µx)

σx

]2
}

x ≥ 1 (1)

In Equation (1), µx and σx are, respectively, the mean value and the standard deviation
the log–normal PDF. Table 1 reports these values for the three deep-language variables.

Table 1. Mean value µx and standard deviation σx of the log–normal PDF of the indicated variable [1].

µx σx

IP 1.689 0.180

PF 3.038 0.441

MF 0.849 0.483

The Monte Carlo simulation steps are as follows:

1. Consider a buffer made of CF cells. The sentence contains CF word intervals: for
example, if CF = 3, the sentence contains two interpunctions followed by a full stop,
a question mark, or an exclamation mark.

2. Generate CF independent values of IP according to the log–normal model given
by Equation (1) and Table 1. The independence of IP from a cell to another cell is
reasonable [1]. In detail, from a random number generator of standard Gaussian
density variables Xi (zero mean and unit standard deviation), we get the relationship
Xi = (yi − µx)/σx; therefore, the three-parameter log–normal variable IP,i ≥ 1 is then
given by IP,i = exp(yi) + 1 = exp(σxXi + µx) + 1.
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3. Add the number of words contained in the CF cells to obtain W:

W = ∑CF
i=1 Ip,i (2)

4. Repeat steps one through three many times (we repeated these steps 100,000 times,
i.e., we simulated 100,000 sentences of different length) to obtain a stable conditional
PDF of W.

5. Repeat steps one through four for another CF and obtain another PDF.

Figure 2 shows the conditional PDF for several values of CF. Each PDF can be very
well-modelled by a Gaussian PDF fCF (x) because the probability of getting unacceptable
negative values is negligible in any of the PDFs shown in Figure 2. For example, for
CF = 3 , the mean value and the standard deviation are, respectively, m3 = 18.00 words
and s3 = 1.79 words.
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Figure 2. Conditional PDFs of words per sentence versus an E–STM buffer of CF cells from two to
eight. Each PDF can be modelled with a Gaussian PDF fCF (x) with a mean value proportional to CF

and a standard deviation proportional to
√

CF.

In general terms [42], the mean value of Equation (2) is given by:

mCF = < W > = < ∑CF
i=1 Ip,i > = ∑CF

i=1 < IP,i > = CF< Ip > (3)

Therefore, mCF is proportional to CF. As for the standard deviation of W, if the Ip,i’s
are independent—as we assume—then the variance s2

CF
of W is given by:

s2
CF

= ∑CF
i=1 σ2

IP,i
= CF × σ2

IP
(4)

Therefore, the standard deviation sCF is proportional to
√

CF. Finally, according to the
central limit theory [42], the PDF can be modelled as Gaussian in a significant range about
the mean.

In conclusion, the Monte Carlo simulation produces a Gaussian PDF with a mean
value proportional to CF and a standard deviation proportional to

√
CF. These findings

are clearly evident in the PDFs shown in Figure 2, in which mCF and sCF increase as
theoretically expected; therefore, the mean values and standard deviations of the other
PDFs can be calculated by scaling the values found for CF = 3. For example, for CF = 6,
m6 = 2 × 18.00 = 36.00 words and s6 =

√
2 × 1.79 = 2.53 words.

Figure 3 shows the histograms corresponding to Figure 2. The number of samples for
each conditional PDF, out of 100,000 considered in the Monte Carlo simulation, is obtained
by distributing the samples according to the PDF of MF given by Equation (1) and Table 1.
The case CF = 3 gives the largest sample size.
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Figure 3. Conditional histograms of words per sentence versus an E–STM buffer of CF cells from two
to eight, obtained from Figure 1, by simulating 100,000 sentences weighted with the PDF of MF.

The results shown above have an experimental basis because the relationship between
< PF >, the average of words per sentence for the entire novel which is calculated by
averaging the PF of single chapters via weighting single chapters with the fraction of novel
total word, as discussed in [32], versus < MF >, the average of MF of a novel calculated as
PF, is linear, as Figure 4 shows by drawing < PF > versus < MF > concerning the Italian
and English novels mentioned above.
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2.2. Overlap of the Conditional Probability Distributions

Figure 2 shows that the conditional PDFs overlap; therefore, some sentences can be
processed by buffers of diverse CF size, either larger or smaller. Let us define the probability
of these overlaps.
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Let Wth be the intersection of two contiguous Gaussian PDFs, for example, fCF−1(x)
and fCF (x); therefore, the probability pHL that a sentence length can be found in the nearest
lower Gaussian PDF (going from CF → CF − 1) is given by [42]:

pHL =
∫ Wth

−∞
fCF (x)dx ≈

∫ Wth

0
fCF (x)dx (5)

Similarly, the probability that a sentence length can be found in the nearest higher
Gaussian PDF (going from CF − 1 → CF ) is given by:

pLH =
∫ ∞

Wth

fCF−1(x)dx (6)

For example, the threshold value between fCF=3(x) and fCF=4(x) is Wth = 20.9 words
and pHL = 6.6%, while pLH = 5.5%.

Figure 5 draws these probabilities (%) versus CF − 1 (lower CF). Because sCF increases
with

√
CF, therefore pHL > pLH . However, this is not only a mathematically obvious result,

but it also meaningful because it indicates that: (a) a human mind can process sentences
of lengths belonging to the contiguous lower or higher MF (the probability of going to
more distant PDFs is negligible) and (b) the number of these sentences is larger in the case
CF → CF − 1 , which simply means that an E–STM buffer can process to a larger extent
data matched to a smaller capacity buffer than data matched to a larger capacity buffer.
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Figure 5. Overlap probability (%) versus CF − 1 (lower CF); pHL and pLH are given by Equations (5)
and (6).

Finally, notice that each sentence conveys meaning—theoretically, any sequence of
words might be meaningful, although this may not always be the case, but we do not
know the proportion—therefore, the PDFs found above are also the PDFs associated with
meaning. Moreover, the same numerical sequence of W words can carry different meanings,
according to the words used. Multiplicity of meaning, therefore, is “built in” in a sequence
of W words. We will further explore this issue in the next sections by considering the
number of sentences that authors of Italian and English literature actually wrote.
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So far, we have explored the processing of the words of a sentence by simulating
sentences of diverse length that are conditioned to the E–STM buffer size. In the next
section, we explore the complementary processing concerning the number of sentences
that contain the same number of words.

3. Theoretical Number of Sentences Recordable in CF Cells

We study the number of sentences of W words that an E–STM buffer, made of CF cells,
can theoretically process. In summary, we ask the following question: how many sentences
S(CF)

W containing the same number of words W (Equation (2)) can be theoretically written in
CF cells?

Table 2 reports these numbers as a function of W and CF. We calculated these data first
by running a code and then by finding the mathematical recursive formula that generates
them, given by the following:

S(CF)
W = S(CF)

W−1 + S(CF−1)
W−1 (7)

For example, if W = 20 words and CF = 4, we read S(CF=4)
19 = 816 and S(CF−1=3)

19 =

153; therefore, S(CF=4)
20 = 816 + 153 = 969.

Table 2. Theoretical number of sentences S(CF)
W (columns) recordable in an E–STM buffer made of CF

cells with the same number of words (items) indicated in the first column.

Words W (Items
Storeable)

E–STM Buffer Made of CF Cells

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0

3 1 2 1 0 0 0 0 0

4 1 3 3 1 0 0 0 0

5 1 4 6 4 1 0 0 0

6 1 5 10 10 5 1 0 0

7 1 6 15 20 15 6 1 0

8 1 7 21 35 35 21 7 1

9 1 8 28 56 70 56 28 8

10 1 9 36 84 126 126 84 36

11 1 10 45 120 210 252 210 120

12 1 11 55 165 330 462 462 330

13 1 12 66 220 495 792 1254 792

14 1 13 78 286 715 1287 2046 2046

15 1 14 91 364 1001 2002 3333 4092

16 1 15 105 455 1365 3003 5335 7425

17 1 16 120 560 1820 4368 8338 12,760

18 1 17 136 680 2380 6188 12,706 21,098

19 1 18 153 816 3060 8568 18,894 33,804

20 1 19 171 969 3876 11,628 27,462 52,698

21 1 20 190 1140 4845 15,504 39,090 80,160

22 1 21 210 1330 5985 20,349 54,594 119,250

23 1 22 231 1540 7315 26,334 74,943 173,844
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Table 2. Cont.

Words W (Items
Storeable)

E–STM Buffer Made of CF Cells

1 2 3 4 5 6 7 8

24 1 23 253 1771 8855 33,649 101,277 248,787

25 1 24 276 2024 10,626 42,504 134,926 350,064

26 1 25 300 2300 12,650 53,130 177,430 484,990

27 1 26 325 2600 14,950 65,780 230,560 662,420

28 1 27 351 2925 17,550 80,730 296,340 892,980

29 1 28 378 3276 20,475 98,280 377,070 1,189,320

30 1 29 406 3654 23,751 118,755 475,350 1,566,390

31 1 30 435 4060 27,405 142,506 594,105 2,041,740

32 1 31 465 4495 31,465 173,971 768,076 2,635,845

33 1 32 496 4960 35,960 205,436 973,512 3,403,921

34 1 33 528 5456 40,920 241,396 1,178,948 4,377,433

35 1 34 561 5984 46,376 282,316 1,461,264 5,556,381

36 1 35 595 6545 52,360 328,692 1,789,956 7,017,645

37 1 36 630 7140 58,905 381,052 2,118,648 8,807,601

38 1 37 666 7770 66,045 439,957 2,499,700 10,926,249

39 1 38 703 8436 73,815 506,002 2,939,657 13,425,949

40 1 39 741 9139 82,251 579,817 3,519,474 16,365,606

41 1 40 780 9880 91,390 662,068 4,099,291 19,885,080

42 1 41 820 10,660 101,270 753,458 4,761,359 23,984,371

43 1 42 861 11,480 111,930 854,728 5,514,817 29,499,188

44 1 43 903 12,341 123,410 966,658 6,369,545 35,014,005

45 1 44 946 13,244 135,751 1,090,068 7,336,203 41,383,550

46 1 45 990 14,190 148,995 1,225,819 8,426,271 48,719,753

47 1 46 1035 15,180 163,185 1,374,814 9,652,090 58,371,843

48 1 47 1081 16,215 178,365 1,537,999 11,026,904 68,023,933

49 1 48 1128 17,296 194,580 1,716,364 12,564,903 79,050,837

50 1 49 1176 18,424 211,876 1,910,944 14,281,267 91,615,740

51 1 50 1225 19,600 230,300 2,122,820 16,192,211 105,897,007

52 1 51 1275 20,825 251,125 2,353,120 18,315,031 122,089,218

53 1 52 1326 22,100 273,225 2,604,245 20,668,151 140,404,249

54 1 53 1378 23,426 296,651 2,877,470 23,272,396 161,072,400

55 1 54 1431 24,804 320,077 3,174,121 26,149,866 184,344,796

56 1 55 1485 26,235 344,881 3,494,198 29,323,987 210,494,662

57 1 56 1540 27,720 371,116 3,839,079 32,818,185 239,818,649

58 1 57 1596 29,260 398,836 4,210,195 36,657,264 272,636,834

59 1 58 1653 30,856 428,096 4,609,031 40,867,459 309,294,098

60 1 59 1711 32,509 458,952 5,037,127 45,476,490 350,161,557
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Figure 6 draws the data reported in some lines of Table 2 for a quick overview. We
see how fast the number of sentences changes with CF for constant W. For example, if
W = 20 words, then SW=20 ranges from 1 (CF = 1) to 52,698 sentences (CF = 8). Maxima
are clearly visible for W = 5 and W = 10 words at CF = 3 and CF = 5 or 6, respectively.
Values become fantastically large for larger W and CF, well beyond the ability and creativity
of single writers, as we will show in Section 4.
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Figure 6. Number of sentences S(CF)
W made of W words versus an E–STM buffer capacity of CF.

Figure 7 draws the data reported in some columns of Table 2, i.e., the number of
sentences S(CF)

W versus W, for fixed CF. In this case, it is useful to adopt an efficiency factor

ε, which is defined as the ratio between S(CF)
W and W for a given CF:

ε =
S(CF)

W
W

(8)

This factor explains, summarily, how a buffer of CF cells is efficient in providing
sentences with a given number of words, its units being sentences per word.
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Figure 8 shows ε versus W. It is interesting to note that for W ≲ 10 words, the buffer
CF = 2 can be more efficient than the others. Beyond W = 10, the larger buffers become
very efficient with very large ε.
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If a writer uses short buffers—e.g., deliberately because of his/her style, or necessarily
because of the reader’s E–STM memory size—then he/she has to repeat the same numerical
sequence of words many times, according to the number of meanings conveyed. For
example, if CF = 2 and W = 10, the writer has only nine different choices, or patterns, of
two numbers whose sum is 10 (Table 2). Therefore, Table 2 gives the minimum number of
meanings that can be conveyed. The larger the CF, the larger is the variety of sentences that
can be written with W words.

The following question naturally arises: How many sentences authors do write in
their texts as compared to the theoretical number available to them? In the next section,
we will compare these two sets of data by studying the novels taken from the Italian and
English literature listed in Appendix B, by assuming their average values < PF > and
< MF > and by defining a multiplicity factor.

4. Experimental Multiplicity Factor of Sentences

We compare the number of sentences that authors of Italian and English literature
actually wrote for each novel to the number of sentences theoretically available to them,
according to the < PF > and < MF > of each novel. In this analysis, we do not consider
the values of PF and MF of each chapter of a novel because the detail would be so fine as to
miss the general trend given by the average values < PF >, < MF > of the complete novel.

As is well known, the average value and the standard deviation of integers very likely
are not integers, as is always the case for the linguistic parameters; therefore, to apply the
mathematical theory of the previous sections, we must do some interpolations and only at
the end of the calculation consider the integers.

Let us compare the experimental number of sentences S(MF)
PF

in a novel, as reported

in Tables A1 and A2, to the theoretical number S(CF)
W available to the author, according to

the experimental values < PF > (which plays the role of W) and < MF > (which plays the
role of CF) of the novel.

By referring to Figure 7, the interpolation between the integers of Table 2 to find the
curve of constant CF—given by the real number < MF >—is linear along both axes. At
the intersection of the vertical line (corresponding to the real number < PF >) and the
new curve (corresponding to the real number < MF >), we find the theoretical S(CF)

W by
rounding the value to the nearest integer toward zero. For example, for David Copperfield,
in Table A2 we read S(MF)

PF
= 19, 610, and the interpolation gives S(CF)

W = 1553. Figure 9

shows the result of this exercise. We see that S(CF)
W increases rapidly with < MF >. The

most displaced (red) circle is due to Robinson Crusoe.
The comparison between S(MF)

PF
and S(CF)

W is performed by defining a multiplicity factor

α, defined as the ratio between S(MF)
PF

(experimental value) and S(CF)
W (theoretical value):

α =
S(MF)

PF

S(CF)
W

(9)

The values of α for each novel are reported in Tables A1 and A2. For example, for
David Copperfield, α = 19, 610/1553 = 12.63. Figure 10 shows α versus S(MF)

PF
. We notice a

fairly significant increasing trend of α with S(MF)
PF

.
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α = 6028/S(CF)
W English (11)
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Figure 11. Multiplicity factor α versus theoretical number of words S(CF)
W for Italian (blue circles and

blue line) and English (red circles and red line) novels.

The correlation coefficient of log values is −0.9873 for Italian and −0.9710 for English.
Based on Equations (10) and (11), α = 1 when S(CF)

W = 3886 for Italian novels and

S(CF)
W = 6028 for English novels; therefore, novels with sentences in the range 4000 ∼ 6000

use, on average, the number of sentences theoretically available for their averages < PF >
and < MF >.

Figure 12 shows α versus < MF >. In this case, an exponential law is a good fit:

α = 26, 027 × e−2.923×MF Italian (12)

α = 15, 855 × e−2.649×MF English (13)

For the Italian literature in question, (correlation coefficient of linear–log values is
−0.9697) α = 1 when MF = 3.48; for the English literature (correlation coefficient of linear–
log values is −0.9603), α = 1 when MF = 3.65. Therefore, novels with sentences in the
range 4000∼ 6000 use, on average, the same E–STM buffer size of MF ≈ 3.5 cells.

From Figures 10–12, we can draw the following conclusion: in general, α > 1 is more
likely than α < 1 and often α ≫ 1. When α ≫ 1, the writer reuses the same pattern
of number of words many times. The multiplicity factor, therefore, indicates also the
minimum multiplicity of meaning conveyed by an E–STM besides, of course, the many
diverse meanings conveyed by the same sequence of Ips obtainable by only changing
words. Few novels show α < 1. In these cases, the writer has enough diverse patterns to
convey meaning, but most of them are not used.

Finally, it is interesting to relate α to a universal readability factor GU , which is a
function of both PF and IP [43].

The universal readability index, as compared to the current readability indices for the
few languages for which they are available (mainly for English [43]), considers also the
reader’s short-term memory processing capacity. It can be used to assess the readability of
texts written in any alphabetical language, as described in [43].
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Figure 13 shows α versus GU . Because the readability of a text increases as GU increases,
we can see that the novels with α < 1 tend to be less readable than those with α > 1. The
less-readable novels have, in general, large values of < PF > and therefore may contain
more E–STM cells (large < MF >).
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In conclusion, if a writer does use the full variety of sentence patterns available, or
even overuses them, then he/she writes texts that are easier to read. On the other hand, if
a writer does not use the full variety of sentence patterns available, then he/she tends to
write texts that are more difficult to read. In the next section, we define a useful index, the
mismatch index, which describes these cases.

5. Mismatch Index

We define a useful index, the mismatch index, which measures to what extent a writer
uses the number of sentences that are theoretically available according to the averages
< PF > and < MF > of the novel. For this purpose, we define the mismatch index:

IM =
S(MF)

PF
− S(CF)

W

S(MF)
PF

+ S(CF)
W

=
α − 1
α + 1

(14)

According to Equation (14), IM = 0 when S(MF)
PF

= S(CF)
W ; hence, α = 1, and in this case

the experiment and theory are perfectly matched. They are overmatched when IM > 0
(α > 1) and undermatched when IM < 0 (α < 1).

Figure 14 shows the scatterplot of IM versus MF. The mathematical models drawn
are calculated by substituting Equations (12) and (13) in Equation (14). We can reiterate
that when IM > 0 (overmatching, MF ≲ 3.5), the writer repeats sentence patterns because
there are not enough diverse patterns to convey all the meanings. The texts are easier to
read. When IM < 0 (undermatching, MF ≳ 3.5), the writer has theoretically many sentence
patterns to choose from, but he/she uses only a few or very few of them. The texts are
more difficult to read.
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Figure 15 shows the scatterplot of IM versus S(CF)
W . The mathematical models drawn

were calculated by substituting Equations (10) and (11) in Equation (14). Overmatching
was found for S(CF)

W < 3886 for Italian and S(CF)
W < 6028 for English.
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Finally, Figure 16 shows IM versus α, Equation (14), a picture that summarizes the
entire analysis of mismatch.
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As we can see by reading the years of publication in Tables A1 and A2, the novels
span a long period. Do the parameters studied depend on time? In the next section, we
show that the answer to this question is positive.

6. Time Dependence

The novels considered in Tables A1 and A2 were published in a period spanning
several centuries. We show that the multiplicity factor α and the mismatch index IM do
depend on time.

Figure 17 shows the multiplicity factors versus the years of publication of the novels
since 1800. It is evident that writers tend to use larger values of α—therefore the E–STM
buffers are of smaller sizes—as we approach the present epoch and a possible saturation at
α ≈ 100. The English literature shows a stable increasing pattern while the Italian literature
seems to contain samples that come from two diverse sets of data, one of which evolved
in agreement with English literature, the other (given by the novels labelled with “*” in
Table A1) is always increasing with time but with a diverse slope.
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Figure 17. Multiplicity factor IM versus the year of novel publication for Italian (blue circles) and
English (red circles) novels.

Figure 18 shows the mismatch index versus the year of novel publication.
Figure 19 shows the universal readability index versus time. In both Figures 18

and 19, we can observe the same trends shown in Figure 17, which therefore reinforces
the conjecture that: (a) the writers are partially changing their style with time by making
their novels more readable, i.e., more matched to less-educated readers according to the
relationship between GU and the schooling years in the Italian school system, as discussed
in [43]; (b) a saturation seems to occur in all parameters in the novels written in the second
half of the XX century, at least according to the novels of Appendix B.
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7. Summary and Future Work

In the present paper, we have further investigated the mathematical structure of
sentences and its connections with human short–term memory. This structure is defined
by two independent variables which apparently engage two short-term memory buffers
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in series. The first buffer is modelled according to the number of words between two
consecutive interpunctions—variable-termed word interval IP—which follows Miller’s
7 ± 2 law; the second buffer is modelled by the number of word intervals contained in
a sentence, MF, ranging approximately from one to seven. These values arise from an
extensive analysis of alphabetical texts [44].

We have studied the numerical patterns (combinations of IP and MF) that determine
the number of sentences that theoretically can be recorded in the two memory buffers—
which increases with IP and MF—and we have compared the theoretical results with
those that are actually found in novels from Italian and English literature. We have found
that most writers, in both languages, write for readers with small memory buffers and,
consequently, are forced to reuse sentence patterns to convey multiple meanings. In this
case, texts are easier to read, according to the universal readability index.

Future work should consider other literatures to confirm what, in our opinion, is
general because the topic is connected to the human mind. The same analysis performed
on ancient languages, such as Greek and Latin—for which there are large literary corpora—
would show whether these ancient writers/readers displayed similar short–term mem-
ory buffers.
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Appendix A. List of Mathematical Symbols

Symbol Definition

CF Cells of E–STM buffer

GU Universal readability index

IM Mismatch index

Ip Word interval

MF Word intervals in a sentence, chapter average

< MF > Word intervals in a sentence, novel average

PF Words in a sentence, chapter average

< PF > Words in a sentence, novel average

S(MF)
PF

Experimental sentences

S(CF)
W

Theoretical sentences written in CF cells

W Words in a sentence

f (x) Three–parameter log–normal density function

fCF (x) Gaussian PDF

mCF Mean value of Gaussian PDF

sCF standard deviation of Gaussian PDF

α Multiplicity factor
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ε Efficiency factor

µx Mean value of log–normal PDF

σx standard deviation of log–normal PDF

Appendix B. List of the Novels Considered from Italian and English Literature

Tables A1 and A2 list the authors, the titles of the novels, and their years of publication
in either Italian and English literature as considered in the paper, with deep–language
average statistics, multiplicity factor α, and mismatch index IM. The averages < CP >,
< PF >, < IP >< MF > have been calculated by weighting each chapter value with its
fraction of the total number of words in the novel, as described in [32].

Table A1. Authors of novels of Italian literature. Number of total sentences (sentences ending with
full stops, question marks, or exclamation marks); average number of characters per word, < CP >;
average number of words pr sentence, < PF >; average number of word intervals, < IP >; average
number word intervals per sentence, < MF >; multiplicity factor α; and mismatch index IM.

Author (Literary Work, Year) Sentences <CP> <PF> <IP> <MF> α IM

Anonymous (I Fioretti di San Francesco, 1476) 1064 4.65 37.70 8.24 4.56 0.004 −0.99

Bembo Pietro (Prose, 1525) 1925 4.37 37.91 6.42 5.92 0.001 −1.00

Boccaccio Giovanni (Decameron, 1353) 6147 4.48 44.27 7.79 5.69 0.001 −1.00

Buzzati Dino (Il deserto dei tartari, 1940) 3311 5.10 17.75 6.63 2.67 6.90 0.75

Buzzati Dino (La boutique del mistero, 1968 *) 4219 4.82 15.45 6.37 2.41 18.83 0.90

Calvino (Il barone rampante, 1957 *) 3864 4.63 19.87 6.73 2.91 4.37 0.63

Calvino Italo (Marcovaldo, 1963 *) 2000 4.74 17.60 6.59 2.67 4.28 0.62

Cassola Carlo (La ragazza di Bube, 1960 *) 5873 4.48 11.93 5.64 2.11 87.66 0.98

Collodi Carlo (Pinocchio, 1883) 2512 4.60 16.92 6.19 2.72 5.74 0.70

Da Ponte Lorenzo (Vita, 1823) 5459 4.71 26.15 6.91 3.78 0.51 −0.32

Deledda Grazia (Canne al vento, 1913, Nobel
Prize 1926) 4184 4.51 15.08 6.06 2.48 18.35 0.90

D’Azeglio Massimo (Ettore Fieramosca, 1833) 3182 4.64 29.77 7.36 4.03 0.12 −0.78

De Amicis Edmondo (Cuore, 1886) 4775 4.55 19.43 5.61 3.41 2.48 0.42

De Marchi Emilio (Demetrio Panelli, 1890) 5363 4.70 18.95 7.06 2.68 8.95 0.80

D’Annunzio Gabriele (Le novelle delle Pescara,
1902) 3027 4.91 17.99 6.38 2.79 5.35 0.68

Eco Umberto (Il nome della rosa, 1980 *) 8490 4.81 21.08 7.46 2.81 8.70 0.79

Fogazzaro (Il santo, 1905) 6637 4.79 14.84 6.33 2.34 37.08 0.95

Fogazzaro (Piccolo mondo antico, 1895) 7069 4.79 16.08 6.10 2.64 20.98 0.91

Gadda (Quer pasticciaccio brutto. . . 1957 *) 5596 4.76 18.43 4.98 3.68 2.69 0.46

Grossi Tommaso (Marco Visconti, 1834) 5301 4.59 28.07 6.56 4.23 0.16 −0.72

Leopardi Giacomo (Operette morali, 1827) 2694 4.70 31.78 6.90 4.54 0.03 −0.95

Levi Primo (Cristo si è fermato a Eboli, 1945 *) 3611 4.73 22.94 5.70 4.02 0.47 −0.36

Machiavelli Niccolò (Il principe, 1532) 702 4.71 40.17 6.45 6.23 0.0001 −1.00

Manzoni Alessandro (I promessi sposi, 1840) 9766 4.60 24.83 5.30 4.63 0.33 −0.51

Manzoni Alessandro (Fermo e Lucia, 1821) 7496 4.75 30.98 7.17 4.30 0.12 −0.78

Moravia Alberto (Gli indifferenti, 1929 *) 2830 4.81 36.00 6.74 5.34 0.003 −0.99

Moravia Alberto (La ciociara, 1957 *) 4271 4.56 29.93 7.28 4.12 0.12 −0.78
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Table A1. Cont.

Author (Literary Work, Year) Sentences <CP> <PF> <IP> <MF> α IM

Pavese Cesare (La bella estate, 1940) 2121 4.54 12.37 5.97 2.06 31.19 0.94

Pavese Cesare (La luna e i falò, 1949 *) 2544 4.47 17.83 6.83 2.60 5.64 0.70

Pellico Silvio (Le mie prigioni, 1832) 3148 4.80 17.27 6.50 2.69 7.00 0.75

Pirandello Luigi (Il fu Mattia Pascal, 1904,
Nobel Prize 1934) 5284 4.63 14.57 4.94 2.93 16.72 0.89

Sacchetti Franco (Trecentonovelle, 1392) 8060 4.37 22.43 5.82 3.83 1.41 0.17

Salernitano Masuccio (Il Novellino, 1525) 1965 4.40 19.20 5.14 3.68 0.79 −0.12

Salgari Emilio (Il corsaro nero, 1899) 6686 4.99 15.09 6.36 2.36 34.46 0.94

Salgari Emilio (I minatori dell’Alaska, 1900) 6094 5.01 15.24 6.25 2.44 27.21 0.93

Svevo Italo (Senilità, 1898) 4236 4.86 16.04 7.75 2.07 32.34 0.94

Tomasi di Lampedusa (Il gattopardo, 1958 *) 2893 4.99 26.42 7.90 3.33 0.47 −0.36

Verga (I Malavoglia, 1881) 4401 4.46 20.45 6.82 3.00 4.21 0.62

Table A2. Authors of the novels of English literature. Number of total sentences; average number of
characters per word, < CP >; average number of words pr sentence, < PF >; average number of
word intervals, < IP >; average number word intervals per sentence, < MF >; multiplicity factor
α; and mismatch index IM. Notice that for Dickens’ novels, Table 1 of [45] reported the number
of sentences ending only with full stops; sentences ending with question marks and exclamation
marks were not reported, contrarily to all other literary texts there reported. Moreover, the analysis
conducted in [45] was performed by considering only the sentences ending with full stops; this is why
the values of < PF > and < MF > there reported are larger (upper bounds) than those listed below.

Literary Work (Author, Year) Sentences <CP> < PF > <IP> < MF > α IM

The Adventures of Oliver Twist (C. Dickens,
1837–1839) 9121 4.23 18.04 5.70 3.16 9.46 0.81

David Copperfield (C. Dickens, 1849–1850) 19,610 4.04 18.83 5.61 3.35 12.63 0.85

Bleak House (C. Dickens, 1852–1853) 20,967 4.23 16.95 6.59 2.57 56.98 0.97

A Tale of Two Cities (C. Dickens, 1859) 8098 4.26 18.27 6.19 2.93 11.89 0.84

Our Mutual Friend (C. Dickens, 1864–1865) 17,409 4.22 16.46 6.03 2.73 43.41 0.95

Matthew King James (1611) 1040 4.27 22.96 5.90 3.90 0.15 −0.73

Robinson Crusoe (D. Defoe, 1719) 2393 3.94 52.90 7.12 7.40 0.00002 −1.00

Pride and Prejudice (J. Austen, 1813) 6013 4.40 21.31 7.16 2.95 5.20 0.68

Wuthering Heights (E. Brontë, 1845–1846) 6352 4.27 17.78 5.97 2.97 9.83 0.82

Vanity Fair (W. Thackeray, 1847–1848) 13,007 4.63 21.95 6.73 3.25 5.26 0.68

Moby Dick (H. Melville, 1851) 9582 4.52 23.82 6.45 3.64 1.56 0.22

The Mill On The Floss (G. Eliot, 1860) 9018 4.29 23.84 7.09 3.35 2.17 0.37

Alice’s Adventures in Wonderland
(L. Carroll, 1865) 1629 3.96 17.19 5.79 2.95 2.90 0.49

Little Women (L.M. Alcott, 1868–1869) 10,593 4.18 18.09 6.30 2.85 17.34 0.89

Treasure Island (R. L. Stevenson, 1881–1882) 3824 4.02 18.93 6.05 3.09 3.79 0.58

Adventures of Huckleberry Finn
(M. Twain, 1884) 5887 3.85 19.39 6.63 2.94 7.05 0.75

Three Men in a Boat (J.K. Jerome, 1889) 5341 4.25 10.55 6.14 1.72 130.27 0.98
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Table A2. Cont.

Literary Work (Author, Year) Sentences <CP> < PF > <IP> < MF > α IM

The Picture of Dorian Gray (O. Wilde, 1890) 4292 4.19 14.30 6.29 2.21 33.02 0.94

The Jungle Book (R. Kipling, 1894) 3214 4.11 16.46 7.14 2.29 14.10 0.87

The War of the Worlds (H.G. Wells, 1897) 3306 4.38 19.22 7.67 2.48 6.72 0.74

The Wonderful Wizard of Oz (L.F. Baum, 1900) 2219 4.017 17.90 7.63 2.34 7.02 0.75

The Hound of The Baskervilles (A.C. Doyle,
1901–1902) 4080 4.15 15.07 7.83 1.91 43.87 0.96

Peter Pan (J.M. Barrie, 1902) 3177 4.12 15.65 6.35 2.44 13.07 0.86

A Little Princess (F.H. Burnett, 1902–1905) 4838 4.18 14.26 6.79 2.09 46.97 0.96

Martin Eden (J. London, 1908–1909) 9173 4.32 15.61 6.76 2.30 46.33 0.96

Women in love (D.H. Lawrence, 1920) 16,048 4.26 11.62 5.22 2.22 216.86 0.99

The Secret Adversary (A. Christie, 1922) 8536 4.28 8.97 5.52 1.62 294.34 0.99

The Sun Also Rises (E. Hemingway, 1926) 7614 3.92 9.43 6.02 1.56 237.94 0.99

A Farewell to Arms (H. Hemingway,1929) 10,324 3.94 9.05 6.80 1.32 356.00 0.99

Of Mice and Men (J. Steinbeck, 1937) 3463 4.02 8.63 5.61 1.54 133.19 0.99
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