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Abstract: Since its inception in 2004, nested sampling has been used in acoustics applications. This
work applies nested sampling within a Bayesian framework to the detection and localization of
sound sources using a spherical microphone array. Beyond an existing work, this source localization
task relies on spherical harmonics to establish parametric models that distinguish the background
sound environment from the presence of sound sources. Upon a positive detection, the parametric
models are also involved to estimate an unknown number of potentially multiple sound sources.
For the purpose of source detection, a no-source scenario needs to be considered in addition to the
presence of at least one sound source. Specifically, the spherical microphone array senses the sound
environment. The acoustic data are analyzed via spherical Fourier transforms using a Bayesian model
comparison of two different models accounting for the absence and presence of sound sources for
the source detection. Upon a positive detection, potentially multiple source models are involved to
analyze direction of arrivals (DoAs) using Bayesian model selection and parameter estimation for the
sound source enumeration and localization. These are two levels (enumeration and localization) of
inferential estimations necessary to correctly localize potentially multiple sound sources. This paper
discusses an efficient implementation of the nested sampling algorithm applied to the sound source
detection and localization within the Bayesian framework.

Keywords: nested sampling; Bayesian model comparison; Bayesian model selection; parameter
estimation; sound source detection; sound source localization

1. Introduction

Nested sampling (NS) was introduced by Skilling [1] as a numerical method for
efficient Bayesian calculations. Soon afterward, this method was applied to acoustics
problems [2], where Jasa and Xiang explored using Lebesgue integral as the mathemat-
ical foundation of the NS algorithm. Since then, that effort has resulted in a series of
publications in acoustic applications [3–5]. This paper showcases that the NS algorithm
has recently been applied in sound source detection and localization within a Bayesian
framework. To detect and localize sound sources, the sound environment is sensed by a
spherical microphone array whose signals are processed using a spherical Fourier transform.
Spherical harmonics are exploited to process the acoustic data and to formulate the signal
models. This paper emphasizes that source detection represents a model comparison
problem, source enumeration represents a model selection problem, and source localization
represents a parameter estimation problem, all of which can be efficiently accomplished
within the Bayesian framework using the NS algorithm.

This paper presents a further development from the previous work [6] in that a
background model for a no-source scenario needs to established. The source detection
problem is critically based on the model comparison between the no-source and one-source
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models. Special attention is given to the spherical harmonics when dealing with the
background model and is separately dealt with in Section 2.2. In addition to these model
improvements, higher-order (fourth) spherical components have been achieved due to the
further development of a 32-channel microphone array as illustrated in Figure 1.

Figure 1. Spherical microphone array of radius a = 3.5 cm. Altogether, 32 microphones are nearly
uniformly flush-mounted over the rigid spherical surface.

2. Spherical Microphone Data and Models

This section briefly introduces the data processing and the prediction models used for
the sound source detection, enumeration, and direction of arrival estimations.

2.1. Microphone Array Data

When Q microphones are arranged flush on a rigid sphere of radius a nearly equidis-
tantly, the sound pressure signals P mic are processed by

D(Θ) =
4π

Q

N

∑
n=0

n

∑
m=−n

Ym
n (Θ)

B(k a)

Q

∑
q=1

P mic(Θq)Ym
n (Θq)

∗, (1)

with the third sum over q = 1, . . . , Q being a spherical Fourier transform of Q microphone
signals P mic(Θq) at angular positions Θq, and symbol ∗ standing for a complex conjugate.
Function B(k a) is a modal strength of the rigid sphere of radius a,

B(k a) = jk
[

jn(k a)− j′n(k a)
h′n(k a)

hn(k a)
]

, (2)

where j =
√
−1, k = ω/c is the propagation coefficient of sound waves. Functions jn(·) and

hn(·) are spherical Bessel and Hankel functions, and j′n(·) and h′n(·) are their derivatives,
respectively. Θ = {θ, ϕ}, collectively represents elevation and azimuth angles, while Θq
specifies Q microphone locations flush-mounted on the spherical surface of the rigid sphere
of radius a. Figure 1 shows a spherical microphone array of Q = 32 channels developed for
this research. The spherical array is built upon a rigid sphere of radius a = 3.5 cm. In the
following, we denote D = {D(Θ)} as a two-dimensional matrix (vectors) representing the
experimental data in the context of Bayesian inferential inversion.

2.2. Prediction Models

In Equation (1), Ym
n (Θ) is so-called spherical harmonics of order n and degree m, it is

orthonormal and complete in a sense, and

g(Θs, Θ) = 2
√

π
N

∑
n=0

n

∑
m=−n

Ym
n (Θs)

∗Ym
n (Θ)→ δ(cos θ − cos θs)δ(ϕ− ϕs), (3)
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when N → ∞. Θs is the source angle in the form of the direction of arrival (DoA). δ(·)
represents the Kronecker delta function. Using Equation (3), we establish a predictive model
of spherical beamforming as

MS(ΘS, Θ) =
S

∑
s=1

As g2(Θs, Θ)

max[ g2(Θs, Θ)]
, (4)

where As counts for different source energy strengths of individual sound sources. Note
that ΘS = {A1, A2, . . . , AS, Θ1, Θ2, . . . , ΘS} collectively denotes both strength vector AS
and angular directions (vectors) of S sound sources, and each angular vector contains one
pair of elevation and azimuth angles Θs = {θs, ϕs}. Variable Θ represents the angular
range for possible sound sources to be localized. For S ≥ 1, the kernel function g(Θs, Θ)
in Equation (3) is processed for the upper order (N + 1)2 ≤ Q. This means that the
integer-valued order N of the spherical harmonics is limited by the number of microphone
channels instead of infinity. Figure 2 illustrates a superposition of two simultaneous
sources of equal amplitudes predicted by the model kernel in Equation (3) for N = 4 before
squaring the operation to build source energy. The finite upper order N is responsible
for the width of lobes rather than middle-form ones. Figure 3a illustrates the spherical
microphone data for the presence of two simultaneous sound sources, processed using
Equations (1) and (2), while Figure 3b illustrates the predicted map of the two simultaneous
sound sources using the model in Equation (4). The angular range is evaluated over
Θ = {0 ≤ θ ≤ 180◦; 0 ≤ ϕ ≤ 360◦}.

Figure 2. Beamforming superposition of two sound sources using a spherical order N = 4.

Figure 3. Comparison between the experimental data (a) processed according to Equation (1) with
the prediction model (b) in Equation (4) of two sound sources using a spherical order N = 4.



Phys. Sci. Forum 2023, 9, 26 4 of 7

When processing the microphone array data, there is no prior knowledge about the
incoming sound field either with the presence or absence of sound sources. It does not
make sense to pursue direction of arrival analysis if no sound sources are present in
the incoming microphone signals. For the model-based Bayesian detection, we need to
establish a background model. Special attention has to be given to the spherical harmonics
processing in this case. Specifically, M0 represents the no-source model for S = 0. In this
case, the kernel function g(Θ0, Θ) in Equation (3) is only calculated for N = 0, namely the
zero-order of the spherical harmonics.

M0(Θ) =
A0 g2(Θ)

max[ g2(Θ)]
, (5)

where the direction of ‘no-source’ Θ0 is irrelevant over the angular range Θ. For notation
purpose, we collectively denote MS = {M0, M1, . . . , MS} as being the prediction models
for the directional of arrival analysis, while we denote MD = {M0, M1} for the sound
source detection, a small subset of MS.

3. Bayesian Calculations

Given the data D as formulated in Section 2.1 and the prediction models MS(ΘS) in
Section 2.2, this work relies on Bayes theorem:

p(ΘS|D, MS) × Z = L(ΘS) × Π(ΘS),
posterior × evidence = likelihood × prior,

(6)

with Π(ΘS) = p(ΘS|MS) being the prior probability and L(ΘS) = p(D|ΘS, MS) being
the likelihood function. The prior and the likelihood are both prior probabilistic in nature
and need to be assigned a priori. This work applies the principle of maximum entropy
(MaxEnt), which leads to a uniform prior and a Student-T distribution for the likelihood
(see Ref. [6] for details). The evidence Z in Equation (6) plays a central role for the source
detection and source enumeration problems and is determined by

Z =
∫

ΘS

L(ΘS)Π(ΘS)dΘS =
∫ 1

0
L(µ)dµ, (7)

where
µ(Lϵ) =

∫
L(ΘS)>Lϵ

Π(ΘS)dΘS (8)

is the prior mass with L(µ(Lϵ)) = Lϵ, and 0 ≤ Lϵ ≤ Lmax as derived by Skilling [7]. The NS
algorithm generates a monotonically increasing partition of the likelihood range [0,Lmax]

0 < L0 < L1 < · · · < LT−1 < LT < Lmax, (9)

via constrained sampling such that Lt with t ∈ {0, 1, . . . , T} is sampled from the domain
(ΘS : L(ΘS) > Lt−1). Observe that as Lϵ increases from 0 to Lmax, µϵ decreases from
1 to 0, where µϵ = µ(Lϵ) and the partition of Equation (9) generates the monotonically
decreasing sequence

1 > µ0 > µ1 > · · · > µT−1 > µT > 0. (10)

Using the sequences in Equations (9) and (10), the one-dimensional integration on the
far-right-hand side of Equation (7) is well approximated by

Z ←
T

∑
t=0
Lt ∆µt, (11)

with
∆µt = µt − µt+1, or ∆µt = µt−1 − µt. (12)
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Skilling [7] pointed out that the constrained prior mass is a statistical quantity and
follows a shrinkage of

µt ≈ e−t/P, (13)

after t iterations, with P being an integer number for initializing random samples. A
detailed proof of this result was given using order statistics in Appendix B of Jasa and
Xiang [3].

NS was shown by Jasa and Xiang [3] to be a numerical implementation of Lebesgue
integration, where Equation (11) represents the sum of weighted integrands of simple func-
tions that are generated by partitioning the range rather than the domain of the function.
An early account of this connection of the NS algorithm to Lebesgue integration can also be
found in Jasa and Xiang [2], published in the Proceedings of the 25th International Work-
shop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
(MaxEnt 2005).

4. Sound Source Detection, Enumeration, and Localization

The above described calculation is implemented for P = 500 [in Equation (13)],
the initial population with uniformly distributed prior ranges of all pending parameters,
including sound source strength As, the elevation θS, and azimuth angles ϕS. For potentially
simultaneous sound sources up to four (S ≤ 4), the parameter space is of dimensions up to
3× S. The NS is applied to estimating Bayes factors for model order from 1 to 4 via evidence.
It is used to rank a potential model accounting for an unknown number of simultaneous
sound sources, in a so-called sound source enumeration process. This process has also been
described previously in Xiang and Landschoot [6], followed by a DoA analysis based on the
selected model MS that is carried out by Bayesian parameter estimation. When examining
this effort critically, the authors recognize that the source enumeration, even if representing
a higher level of inference via Bayesian model selection, would still be incomplete if the
machine sensory modality, such as in this application of a spherical microphone array, is
not notified that the absence of sound sources often represents predominant portions of the
sound environment in practical scenarios. It will only make sense to pursue sound source
enumeration and DoA analysis if any sound source is ever detected.

The sound source detection is carried out in the scope of this current work using
Bayesian model comparison. The prediction models MD = {M0, M1} solely involve two
models, M0 in Equation (5) and M1 in Equation (4) for S = 1. Note that Equation (5) is
separately described because the g2(Θ0, Θ) needs special attention, in which the spherical
order is set to N = 0, while ,for MS for S ≥ 1, the spherical order N = 4 due to the
32-channel spherical microphone array used for this work.

For the source detection, Bayesian evidence is estimated using the NS based on the ‘no-
source’ model M0 against the ‘one-source’ model M1. Specifically, for M0-based sampling,
there is still one pending parameter A0 to sample. Figure 4 (left) shows an experimental
investigation when the microphone array data contain no sources but noisy background
signals. The evidence estimation using the NS demonstrates insignificant differences to
that of M1, indicating that the source detection is negative. Figure 4 (right) shows that if
the microphone array data contain sound sources, yet an unknown number, the evidence
estimation clearly shows significant differences in comparison with those of ’no-sources’.
The source detection is positive.

Upon a positive detection of sound sources, a further process involves Bayesian
model selection. A set of sound source models from M0 to M4 is involved for estimating
Bayes factors:

Bi,i−1 = 10 lg
(
Zi
Zi−1

)
, [decibans] (14)

for i = 1, 2, . . . 4. Figure 5 illustrates one set of Bayes factor estimations. In this work, the
evidence and Bayes factors are calculated in units [decibans] denoting 10 times logarithm
base 10 [10 lg] in honor of Thomas Bayes [8]. In this case, the source enumeration using
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Bayesian model selection suggests that two sources are contained in the data. At this stage,
the interest in specific DoA parameters is pushed into background. Upon the selection of a
two-source model using the NS, the exploration samples during the iterative NS process
also provide posterior samples for the model M2 as a byproduct; they are readily available
once the evidence Z2 for two sound sources is sufficiently explored. The posterior samples
provide parameter estimates of two sound sources in terms of source strength A2, and
angular parameters Θ2. The data processed using Equation (1) and the model prediction
according to the posterior estimates are compared in Figure 3.

Figure 4. Sound source detection based on Bayesian model comparison. Bayesian evidence is
estimated using both ’no-source’ model M0 and one-source model M1. The evidence is expressed in
unit [decibans] in honor of Thomas Bayes [8].

Figure 5. The sound source enumeration based on Bayes factor estimation. The Bayes factors are
expressed in unit [decibans] in honor of Thomas Bayes [8]. A two-source model is preferred by the
Bayesian model selection. The evidence estimated using nested sampling also provides the posterior
as a byproduct.

5. Concluding Remarks

From its introduction into Bayesian calculations, Skilling’s nested sampling [1] had an
immediate impact on room-acoustic research [2], where an early account of the Lebesgue
integral view on the nested sampling was first exposed in the MaxEnt Community in 2005.
A thorough handling of its mathematical foundation of the Lebesgue integral was given at
a later point [3]; ‘Interpreting nested sampling as a statistical approximation of a Lebesgue
integral opens the possibility of a large body of existing research to be applied in the analysis
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and possible extension of the algorithm’. Over the past 15 years, a stream of applications
using NS in acoustics science and engineering has emerged. Among others, this paper
reports on an acoustic application of nested sampling using a spherical microphone array
within the Bayesian framework.
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