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Abstract: We report on progress towards a probabilistic framework for consistent uncertainty quan-
tification and propagation in the analysis and numerical modeling of physics in magnetically confined
plasmas in the stellarator configuration. A frequent starting point in this process is the calculation
of a magnetohydrodynamic equilibrium from plasma profiles. Profiles, and thus the equilibrium,
are typically reconstructed from experimental data. What sets equilibrium reconstruction apart
from usual inverse problems is that profiles are given as functions over a magnetic flux derived
from the magnetic field, rather than spatial coordinates. This makes it a fixed-point problem that is
traditionally left inconsistent or solved iteratively in a least-squares sense. The aim here is progressing
towards a straightforward and transparent process to quantify and propagate uncertainties and their
correlations for function-valued fields and profiles in this setting. We propose a framework that
utilizes a low-dimensional prior distribution of equilibria, constructed with principal component
analysis. A surrogate of the forward model is trained to enable faster sampling.

Keywords: inverse problem; fixed-point problem; Bayesian analysis; dimensionality reduction;
polynomial chaos expansion; uncertainty quantification; application

1. Introduction

A frequent starting point for calculations in magnetic confinement fusion is the magne-
tohydrodynamic equilibrium. Ideal magnetohydrodynamics (MHD) [1] describes plasma
as a single quasi-neutral fluid under the assumptions of infinite electrical conductivity,
small ion gyroradius and negligible electron momentum. An MHD equilibrium is a solu-
tion to the static MHD equations (Equations (1)—(3)), describing the magnetic field (B) and
its relation to the current density (J) and the pressure (p):

J xB=Vp, 1
VXB:HOII (2)
V-B=0. 3)

The solutions to Equations (1)—(3) are typically obtained in magnetic flux coordinates [2],
curvilinear coordinates that greatly simplify calculations, for example, by aligning in such
a way that B appears straight. A large part of a typical MHD solution is, therefore, the
mapping from flux coordinates to real-space coordinates. Inferring an MHD equilibrium
from experimental diagnostics, a task known as equilibrium reconstruction, is of great
interest for fusion experiments, to gain insight into unmeasurable or hard-to-measure
quantities [3], such as flux surface geometry.
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This task is routinely performed for tokamaks [4,5], where the toroidal symmetry
further simplifies the MHD equations but proves to be more complicated for three dimen-
sional (3D) systems, like stellarators. Typically, MHD solvers take the pressure and toroidal
current profile as functions of a radial flux coordinate p as input and solve for the optimal
geometry of the magnetic flux surfaces. From the resulting equilibrium configuration,
synthetic diagnostic signals can be calculated and compared to the corresponding real
physical measurements. This makes 3D equilibrium reconstruction a fixed-point problem
that is traditionally solved iteratively in a least-squares sense [3,6,7]. While the least-squares
approach can result in suitable reconstructed parameters and uncertainty estimates [8],
evaluations of the forward model are computationally demanding (a single equilibrium
reconstruction can take up to several hours [9,10]), and common error estimates might
fail to capture relevant uncertainties when high levels of noise are present for the equi-
librium diagnostics [11]. Existing Bayesian frameworks [12] are also limited by the high
computational costs of the forward model. Therefore, we aim to build a Bayesian frame-
work for 3D equilibrium reconstruction that allows for fast sampling from the posterior
distribution of equilibria while maintaining relevant physical constraints. In this work, we
present, as a proof of concept, such a framework for a configuration of the Wendelstein 7-X
stellarator (W7-X).

2. Methods

For the proposed equilibrium reconstruction approach using the Bayesian formalism,
two major components are required: a prior distribution of equilibria and a fast evalu-
ation of the likelihood function, both of which are not readily accessible. A schematic
depiction of the steps taken to obtain these major components is shown in Scheme 1. To
define the prior distribution of equilibria, a physically motivated prior distribution over
equilibrium-defining parameters is formulated (Section 2.1). Samples from this prior dis-
tribution are then propagated into the space of equilibria using the Variational Moments
Equilibrium Code (VMEC) [13] (Section 2.2) and subsequently into the space of synthetic
equilibrium diagnostic signals with the code DIAGNO [14]. Since the space of equilibria
is very high-dimensional, dimensionality reduction is performed on the equilibria using
principal component analysis (PCA) (Section 2.3). In this way, a low-dimensional distri-
bution over equilibrium configurations, which enables the training of polynomial chaos
expansion (PCE) [15] surrogate models, can be defined (Section 2.4). These models map
low-dimensional parameters c; onto the space of synthetic equilibrium diagnostic signals
and thus circumvent high computational costs arising from the DIAGNO forward model.
Through the combination of the surrogates with the low-dimensional equilibrium prior,
the low-dimensional posterior distribution of equilibrium parameters can be inferred using
Markov Chain Monte Carlo (MCMC) sampling in a Bayesian formalism, based on a set of
(synthetic) measurement signals (Section 3).
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Scheme 1. Overview of the proposed framework.
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2.1. Prior Distribution of Current and Pressure Profiles

We define a prior distribution for pressure p(s) and toroidal current I(s) profiles. They
% and define an MHD equilibrium together
with the total toroidal flux (y). Here, ¥ denotes the toroidal flux. Often, reconstruction
methods utilize simple parameterized functions [3,7,8], for example, two-power profiles,
for describing equilibrium profiles. In order not to restrict the method to only favorable
profiles, a broader prior is desired. Following similar concepts already realized in the
MINERVA framework [10,12,16], we propose the use of a Gaussian Process [17] (GP) as
a function generator for the profile gradients. This allows us to more easily specify the
length scales and smoothness constraints based on physics information. For the pressure
profile, the correlation length scales are larger at the core of the plasma than at the boundary,
which is encoded in the GP kernel used in the MINERVA framework for W7-X [10]. We
further constrain the pressure profile to be monotonic and 0 at the plasma boundary and
enforce these constraints with exponentiation and integration, as well as a renormalization.
For the current profile GP, a smooth rational quadratic kernel [17] is used, since detailed
information on the current profile shape can be hard to capture with magnetic diagnostics
alone [11] and the toroidal current is expected to be comparatively low for standard W7-X
equilibria. Again, exponentiation and integration ensure monotonicity, but in contrast to
the pressure profile, the current is 0 at the magnetic axis, and the scaling factor can be
positive or negative. Using exponentiation as a positivity transform for the profile gradients
allows for steep gradients but discourages many local plateaus that are found when using
the absolute value as the transform.

are functions of normalized toroidal flux s =

ﬁ(S) ~ GPyinerva P(S) = S < — /.1 eXp(ﬁ) ds’ 4)
Jo exp(p) ds’ /s

I(s) ~ GPro I(s) = 1170~ /S exp(I) ds’ 5)
Jo exp(I) ds’ /1

Finally, the GP is approximated with a PCA to allow for the space-filling latin hyper-
cube sampling of the parameter space. Six shape parameters for the pressure profile and
three shape parameters for the current profile correspond to an explained variance ratio of
99% each. Combined with a parameter ¢ for the total toroidal magnetic flux, this gives
us 12 equilibrium-defining parameters, as detailed in Table 1. Several realizations of the
equilibrium profile shapes obtained with the described procedure are visualized in Figure 1.
From the prior defined in Table 1, 4000 samples are drawn and propagated into the space
of MHD equilibria using VMEC.

Table 1. The prior parameters and their distribution.

Symbol Distribution Description
) Uniform in [—2.5 Wb, —1.6 Wb] Total toroidal magnetic flux
po Uniform in [0,200 kPal Pressure at the magnetic axis
op =1 Pressure profile shape factors
Pshape Acore =02 reduced to 6 principal components
GPMinerva )\edge =01
S0 =09
Sw =01
I Uniform in [~10 kA, 10 KA] Total toroidal current
I o =2 Current profile shape factors
shape GPro|l A =02 reduced to 3 principal components

a =2
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Figure 1. Samples drawn from the prior distribution of (left) the pressure profile shape and (right)
the current profile shape.

2.2. VMEC

VMEC solves Equations (1)—(3) using a double-Fourier basis for the inverse coordinate
representation x(p, 0,{) = (R, Z,¢). Here, p = /s denotes the magnetic flux surfaces, and 6
and ( are poloidal and toroidal angle-like flux coordinates. VMEC uses an energy functional
in place of the local formulation, which is guaranteed to converge to an equilibrium in the
absence of magnetic islands. This is not guaranteed for 3D geometries like stellarators [2],
but VMEC can provide a suitable approximation of magnetic flux surfaces. In contrast
to many other equilibrium codes, VMEC does not require a fixed plasma boundary but
can calculate equilibrium flux surfaces, including the last closed flux surface, given a coil
current configuration [iy...i5], as well as o, p(s) and I(s).

A VMEC equilibrium can be fully described by the Fourier series for cylindrical coor-
dinates R(p, 6, ), Z(p,0, ) and potential A(p, 6, {), rotational transform profile ((p) = %
and total toroidal flux iy = P(p = 1). Here, x denotes the poloidal flux, and the cylindrical
angle (¢) is a periodic continuation of the toroidal angle ({) with the number of field periods
(Ngp). The straight-field-line angle (6* = 6 4+ A(p, {,0)) can be calculated from A. With
stellarator symmetry, the Fourier series for R only contains cosine components, while Z
and A only contain sine components. For the radial direction, VMEC uses a finite difference

scheme and a linear spacing in the normalized toroidal flux s = p? = %

The pressure profile (p(p)) can be calculated with a weak formulation of the radial
force balance [13] under the assumption that Equation (1) is fulfilled:

Ho(J) dp \dp

where (Q) = ﬁ JJ Q d6d{ denotes an average over a flux surface and 7 is the determi-
nant of the Jacobian.

p(m:/pl ! d“’(d<3§>+[;p<39>)dp ©)

2.3. Dimensionality Reduction

With § = 99 radial points, M = 25 poloidal modes and N = 12 toroidal modes, a
VMEC equilibrium can be described using S - M - N parameters for R, Z and A, respectively;
S parameters for 1; and a single parameter for ¢p. With a total of 85,636 non-zero parameters,
this space is difficult to handle with Bayesian methods. To reduce the dimensionality,
principal component analysis (PCA) was applied on the VMEC equilibria.

To compensate for the incomparable units of the five quantities, they were all rescaled
such that the total variance of each group of parameters was 1. For the total explained
variance ratio of 99.9%, it was found that 11 principal components were sufficient to
represent the equilibrium prior. The comparatively low dimensionality now facilitates
Bayesian inference directly on the equilibrium parameters and also significantly reduces
the number of data needed to represent the posterior distribution or a collection of samples.
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For each of the five quantities R, Z, A, 1 and ), the reconstruction error due to dimen-
sionality reduction was evaluated using the L2 metric (Figure 2). The relative error stayed
below 1% for all quantities except A. This lead to lower quality of the direction of B and
derived quantities like p. The distribution of the low-dimensional parameters (c;) was
approximated with kernel density estimation (KDE) and assumed to be independent. This
assumption held well enough and marginally increased the width of the total prior.

In Figure 3, the pressure profile is shown for a validation sample drawn from the prior
distribution, together with a pressure profile calculated with Equation (6), and the same
calculation applied after the validation sample was pushed through the dimensionality
reduction. Indeed, the pressure profile can be calculated from the five quantities R, Z, A, ¢
and g, which determine J and B, with only a small deviation near the magnetic axis,
where VMEC is known to be inaccurate. However, dimensionality reduction significantly
reduces the accuracy of this calculation.
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Figure 2. Relative L2 error of the low-dimensional equilibrium representation, evaluated for the
samples from the prior.
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Figure 3. Input pressure profile p compared with the pressure derived from Vp = J x B for a

validation sample drawn from the prior and its low-dimensional representation.

2.4. Synthetic Diagnostics Surrogate Model

We trained polynomial chaos expansion (PCE) surrogate models that map from equilib-
rium coefficients c; to magnetic equilibrium diagnostics of W7-X. The aim of these surrogate
models was to circumvent prohibitively high computational costs arising from DIAGNO
forward model evaluations, which occur during sampling. The magnetic equilibrium
diagnostics considered were saddle coils, diamagnetic loops and segmented Rogowski
coils [18]. PCEs were built using the linear regression methods provided in the chaospy [19]
Python package. The polynomials used in the expansions were chosen through hyperbolic
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truncation. In this truncation scheme, all multivariate polynomials, where the associated
degrees of the univariate polynomials «; fulfill [20]

1/h
d > (D«?) : @)

are retained. Here, d denotes the maximum polynomial degree occurring in the expansion,
and h € (0, 1] determines the number of retained polynomials. While several other methods
for choosing the basis polynomials in a sparse sense exist [21], we found that the hyperbolic
truncation scheme with d = 6 and & = 0.8 worked well in the considered case. To
estimate the performance of the resulting PCEs, the relative leave-one-out error X [22]
was calculated for each surrogate model. The resulting eX | for these PCEs are visualized in
Figure 4, grouped in terms of the synthetic diagnostic signal that is being approximated.
Note that ¢R is given relative to the variance present in the training data.

R
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Figure 4. Relative leave-one-out error ¢} = of the polynomial chaos expansion surrogate models,
mapping from the low-dimensional equilibrium parameters to the synthetic diagnostics.

3. Results

With the previously discussed prior on the low-dimensional parameters (c;) and the
synthetic diagnostic surrogate, we tried to reconstruct a W7-X standard configuration
equilibrium from a set of corresponding synthetic magnetic equilibrium diagnostic signals.

A set of equilibrium-defining parameters from the distribution discussed in Section 2.1
were propagated using the VMEC/DIAGNO forward model, providing a known ground
truth. The resulting synthetic magnetic equilibrium diagnostic signals were then used
together with a Gaussian likelihood function and the low-dimensional equilibrium prior
to estimate the posterior distribution of c;. For the likelihood function, the synthetic
diagnostics were assumed to be uncorrelated with a 5% error. Two methods for estimating
the posterior were used: Laplace’s approximation and MCMC sampling. In both methods
the evaluation of the synthetic magnetic equilibrium diagnostics was performed with the
PCE surrogate models. For the MCMC method, samples were drawn using NUTS [23].
Figure 5 depicts one-dimensional projections of the posterior estimates for the parameters c;
with respect to the associated prior distribution. Seen with respect to the prior width, there
is a high uncertainty in the posterior distribution of parameters cy4 to c19. However, they
contribute little to the explained variance of the equilibrium PCA. To visualize how this
estimated uncertainty appears in the physically relevant space, the maximum a posteriori
estimate (MAP) and several samples were transformed back into the space of VMEC
equilibria. The flux surface geometry, total toroidal flux and rotational transform profile
are visualized in Figures 6-8, respectively. In addition to the reconstructed equilibria, the
ground-truth evaluation of VMEC is visualized. One can observe that the MAP estimate
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is comparatively close to the ground-truth values and that for all three quantities, the
ground-truth value is covered within the area spanned by the posterior samples.

C1 G C3

Cs Ce Cy

1.0 0.5

—— MCMC KDE
—-= prior

—-=- Laplace
— ground truth

0.0 0.2 0.0 0.2 02 -01 00 01 02

Figure 5. One-dimensional projections of the low-dimensional equilibrium parameter prior distribu-
tion, kernel density estimation (KDE) and Laplace’s approximation of the posterior distribution.
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Figure 6. Posterior samples of the flux surface geometry in comparison to the ground truth. The solid
lines are linearly spaced contours of constant p, and the dashed lines are constant-6* contours.
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Figure 7. Posterior kernel density estimation (KDE) of the total toroidal flux (ip).
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Figure 8. Rotational transform profiles i(p) drawn from the posterior distribution in comparison to
the ground truth.

With Equation (6), the radial pressure profile of the posterior samples can be estimated
(Figure 9). Significant differences between the MAP estimate and the ground-truth profile
can be observed. However, the ground-truth profile is still covered within the space
spanned by the posterior samples, and the magnetic diagnostics used for this reconstruction
are rather insensitive to the pressure profile. The systematic discrepancy close to the
magnetic axis can be attributed to the use of VMEC, which is known to have problems in
this region. Additionally, the profile shapes expose nonphysical values near the last closed
flux surface, as well as non-monotonicity, which was not present in the pressure profile
prior. One reason for this, as shown above in Figure 3, is that PCA dimensionality reduction
affects the derived pressure profile more than magnetic quantities, like the rotational
transform profile (Figure 2).
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Figure 9. Pressure profiles calculated from the posterior using Vp = J x B together with the ground-
truth pressure profile.

4. Discussion

The results presented in Section 3 show that the presented framework is able to recon-
struct an equilibrium configuration drawn from the prior distribution. That is, the ground
truth lies within the region of high probability of the estimated posterior distributions, and
the MAP estimate closely matches the true flux surface geometry and rotational transform
profile. While the MAP estimate and posterior mean are found to be equivalent, Laplace’s
approximation is not sufficient to model the posterior. Quantities that are derived from the
magnetic quantities R, Z, A, 1 and 9, such as pressure profile p(], B) are not reconstructed
well, partially due to dimensionality reduction, but also because the considered magnetic
diagnostics are not very sensitive to the pressure profile. While the derived pressure profiles
fulfill the weak force balance by construction, they lack the physically motivated constraints
that are encoded into the profile prior distribution in Section 2.1. In particular, they can
violate the positivity constraint. However, the true profile does lie within the posterior
distribution, and a pressure-sensitive diagnostic could be used to determine it, particularly
as the mapping between real-space and flux coordinates is reconstructed well.

The presented framework offers a flexible prior distribution of profiles but directly
reconstructs the flux surface geometry from magnetic diagnostics, allowing samples of the
flux surface geometry to be drawn from the posterior. The equilibrium prior has to be con-
structed once for each device configuration, e.g., coil currents, but it offers reusability from
this point onward and can be well described with only a few principal components. This
not only allows Bayesian methods to be applied effectively but also significantly reduces
the number of data needed to describe a posterior distribution or collection of samples.
The PCE surrogate model similarly reduces the computational cost of 3D equilibrium
reconstruction and offers fast access to uncertainties.

With the presented methods, we provide a proof of concept for a fast Bayesian equilib-
rium reconstruction framework. The accurate reconstruction of the derived quantities and
thus the physical consistency of the posterior samples warrant further investigation. This
could be achieved with different dimensionality reduction methods, for example, using a
variational autoencoder with additional physics constraints, or different surrogate models,
as well as more accurate MHD solvers.
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