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Abstract: Antimicrobial resistance (AMR) is a silent pandemic that presents an urgent threat to
human health. Recently, polymyxins have been revived as a last-line therapeutic option, despite their
toxicity. As such, there is a need for fast and reliable approaches to devise novel polymyxin analogues.
In this work, machine learning was employed to devise a semi-quantitative model of the activity of
polymyxin-like molecules. Four learning algorithms and ten families of molecular descriptors were
explored. Top performance was observed for an AdaBoost model using the Kier and Hall topological
indexes, allowing for the exploration of the systematic changes in the structure of polymyxin B.
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1. Introduction

Antimicrobial resistance represents one of the largest current health threats world-
wide, whose impact has been heightened by the escalation of multidrug-resistant (MDR)
pathogens, with the Gram-negative bacteria Pseudomonas aeruginosa, Acinetobacter bauman-
nii, and Klebsiella pneumoniae heading the World Health Organization’s list of priority
pathogens not responding to front-line antibiotics. Polymyxins (PMs) B and E are the two
most-studied and utilized variants of the antimicrobial peptide PM group and are used
in last-resort treatments for Gram-negative bacterial infections [1] due to their nephro-
toxic and neurotoxic side effects. Nevertheless, improved dosing regimens and the rise
of Gram-negative MDR strains has led to a renaissance of their clinical use [2]. Sadly, PM
resistance has also emerged [3]. This, along with PM’s poor bioavailability, toxicity, and
narrow-spectrum activity, compromises what is already the last available treatment option.

In this work, we endeavor to explore several approaches to model the antimicrobial
activity of PM-like molecules towards an assortment of microbial species using different
Machine Learning (ML) strategies, and the best-performing model is further explored in
terms of its response to systematic mutations of the PM-B structure to gain new insights
into the most preponderant features of highly active PM derivatives.

2. Methodology

A dataset containing the Minimum Inhibitory Concentration (MIC) for 408 molecule/
microorganism pairs was collected from PubChem [4]. The information regarding the
targeted microorganism was condensed into two variables, namely its taxonomic genus
(TxG) and a broader classification of the type of microorganism (MTyp): Gram-negative
bacteria, Gram-positive bacteria, or fungi. Several families of molecular descriptors were
calculated using the RDKit software package: H-bond donor and acceptor counts (Hb),
Kier and Hall topological indexes (CPK), functional group counts (FG), two-dimensional
autocorrelation functins (AC2D), eigenvalues of the adjacency matrix weighted by the van
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der Waals volume (BCUT2D), as well as van der Waals Surface Area (VSA) contributions to
charge distribution (PEOE_VSA), refractive index (SMR_VSA), Log(P) (SlogP_VSA), and
molecular electrostatic potential (EState_VSA). Four learning algorithms were used: logistic
regression, decision tree, random forest, and AdaBoost, as implemented in the Scikit-learn
package, version 1.0.2. The variables TxG and MTyp were added to each set of molecular
descriptors to form the feature set used by each model. Each algorithm/descriptor set pair
was trained, targeting a multi-class prediction of the MIC quartile (among the full data)
using a 65:35 split between the training and the testing data. All numerical fields were
first scaled to zero mean and unit standard deviation and TxG and MTyp were codified
using one-hot encoding. A 5-fold cross validation scheme was used to optimize some
hyper-parameters of the random forest models (number of estimators, nest, fraction of
samples, ns, and features, nf, considered by each tree) and of the AdaBoost models (nest, as
well as the depth of each tree, dest, and the learning rate, rL).

3. Results and Discussion

Of the 399 data points that were collected, 287 were related to Gram-negative bacteria,
79 to Gram-positive bacteria, and 33 entries were related to antifungal activity. Among
the bacteria, the most represented genera were Escherichia, Pseudomonas, Salmonella, and
Staphylococcus, making up about 82.5% of the bacterial data. The collected MIC values were
quite asymmetrical, with the boundary of the first quartile (Q1) located at 1.25 µM and the
upper limit of the third quartile (Q3) at 32.0 µM, with a median of 4.0 µM.

Figure 1 depicts the behavior of the 40 models considered in this work. Overall,
the logistic regression models performed the worst (Figure 1a). Likewise, the decision
tree models showed considerable over-fitting behavior, as well as low f(Q1|Q1) scores
(i.e., the correct prediction of a molecule/target combination belonging to Q1, Figure 1b).
On the other hand, both the random forest and the AdaBoost models yielded better scores
(Figure 1c and 1d, respectively). In particular, the AdaBoost model trained using the CKP
set showed a good overall accuracy, high f(Q1|Q1) and very low f(Q1|Q4) scores. This
prompted the AdaBoost model devised using the CKP set of descriptors to be selected for
further studying. Indeed, the Kier and Hall descriptors forming the CPK set are widely
used for the analysis of the biological activity of compounds, mainly due to their lipophilic
and hydrophilic affinity [5,6]. The good performance of this set of descriptors in this
particular application is consistent with these compounds’ established mode of action [2].
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of descriptors and algorithms: (a) logistic regression; (b) decision tree; (c) random forest, and (d) 
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Figure 1. Values of different scores (overall accuracy, f(Q1|Q1) and f(Q1|Q4) scores) for each
family of descriptors and algorithms: (a) logistic regression; (b) decision tree; (c) random forest, and
(d) AdaBoost. The f(Q1|Q1) score refers to the fraction of data points belonging to Q1 rightfully
classified as Q1, whereas f(Q1|Q4) refers to the fraction of data points in the Q4 range wrongfully
classified as Q1.

To obtain a more immediate sense of the model’s response, the structure of PM-B was
systematically mutated in positions 1 to 3 and 5 to 10 using glycine (Gly, Figure 2b), leucine
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(Leu, Figure 2c), lysine (Lys, Figure 2d), and glutamic acid (Glu, Figure 2e). The predicted
MIC of these “mutations” against P. aeruginosa are shown in Figure 2. Considering that
the combination PM/P. aeruginosa is ranked Q2 (Figure 2a), the substitution of Leu7 by
Gly appears to improve the antimicrobial activity, whereas the contrary is observed when
replacing Phe6 with Gly. Replacing each amino acid residue with Leu, Lys, or Glu usually
resulted in a more optimistic prediction of antimicrobial activity. The major exception to
this trend was Leu7, for which the model predicted no substantial improvement over the
original PM-B structure. Overall, the model’s predictions may be linked to an increase in
lipophilicity, perceived by the model via the increase in the amino acid side chains.
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4. Conclusions

In this work, we applied the AdaBoost algorithm to generate a semi-quantitative
model of the antimicrobial activity of PM-B analogs using well-established and readily
available molecular descriptors, which can be used to rapidly determine whether a pro-
posed structure can be considered a viable candidate for novel PM-derived antibiotics.
Moreover, exploration of the model’s predictions using systematic mutations of the PM-B
framework proved valuable for discerning which would be the most favorable modification
to this molecular scaffold. Future work will be carried out to apply novel game strategies
to suggest optimal PM-B derivatives effective against a determined bacterial genus.
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