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Abstract: Actinobacteria from the genus Streptomyces feature complex primary and secondary
metabolism, developmental cycle, and ability to produce a variety of natural products. These
soil bacteria are major producers of antibiotics and other bioactive compounds and have been exten-
sively investigated due to the medical and industrial relevance of Streptomyces-derived secondary
metabolites. However, the genetic toolbox for Streptomyces engineering as well as yield optimization
strategies for the production of relevant metabolites are limited. On the one hand, the genetic potential
of these organisms has not been fully utilized due to many “silent” or poorly expressed biosynthetic
gene clusters, whose activation depends on environmental stimuli and nutrient availability. On the
other hand, these GC-rich Gram-positive bacteria are difficult to manipulate, and traditional genetic
manipulation strategies are time-consuming and have low efficiency. Recent studies of Streptomyces
metabolism and genomes provided new insights into possibilities to overcome these challenges.
In this review, advances and approaches for Streptomyces manipulations and secondary metabolite
production optimization are discussed. Special focus is given to understanding the interplay be-
tween primary and secondary metabolism in Streptomyces and the supply of nitrogen-containing
compounds into secondary metabolism. Existing strategies to manipulate cellular metabolism in
Streptomyces are reviewed.

Keywords: Streptomyces; biotechnology; nitrogen metabolism; metabolic engineering; secondary
metabolites; synthetic biology

1. Streptomyces sp. as a Source of Secondary Metabolites

Streptomycetes are an excellent source of identified natural products due to their
impressive ability to form a variety of interesting secondary products [1,2]. This has made
these bacteria the focus of applications in industry and in research. These include applica-
tions in numerous fields in medicine, agriculture, and biotechnology. Streptomyces-derived
natural product discoveries started in 1947 and peaked in the 1960s following a significant
decline in the following decades. The development of combinatorial chemistry in combi-
nation with high-throughput screening and a rather limited funding for drug discovery
contributed to this decline. Recently, new methods of genetic engineering, fermentation
optimization protocols, and bioinformatics technologies including genome mining in addi-
tion to classic bioprospecting and bioassay-guided isolation reactivated the field. Different
studies claim that the genus can synthesize some 150,000 more antimicrobial compounds
than those currently known. These factors influenced recent constantly increasing interest
in natural product discovery in the genus Streptomyces [3].

1.1. Streptomycetes as Biological Natural Product Producers

The secondary metabolites produced by Streptomycetes show structural diversity—the
underlying chemical structure includes aminoglycosides, polyketides, non-ribosomal syn-
thesized peptides, polypeptides, glycosides, terpenoids, lipoproteins, alkaloids, polyethers,
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lantibiotics, and other compounds. Examples of secondary metabolites include antibiotics
(e.g., chloramphenicol, lincomycin, neomycin, streptomycin, tetracycline), immunosuppres-
sants (FK-506, FK-520), antimycotics/fungicides (e.g., nystatin, natamycin, amphotericin
B), herbicides (phosphinothricin), anti-tumor substances (doxorubicin), anthelmintic sub-
stances (avermectin), growth promoters in ruminant animal feed (monensin), anticholes-
terol and coccidiostatic substances (e.g., lasalocid), and insecticides (milbemycin) [2,4].

Despite the great diversity, many secondary metabolites in Streptomyces are based on
similar biosynthetic mechanisms. Basic units and main stages are defined by a systematic
regulated production process consisting of biosynthetic steps that can be found in different
production strains. More than two-thirds of all known antibiotics are synthesized by strep-
tomycetes [5], but there are many more unknown compounds produced by Streptomyces [6].
In the search for new natural products, different paths have been taken including biological
and chemical screening as well as genome mining [7]. These strategies allow us to reveal
the entire potential of Streptomyces including silent biosynthetic gene clusters [8]. Strep-
tomycetes are not only the source of many bioactive compounds but are also important
biotechnological producers of such substances. Polyketides are a particularly large and
diverse group of secondary metabolites produced in complex biosynthesis.

1.1.1. Secondary Metabolites as a Bacterial Survival Strategy

Secondary metabolites are not essential for primary metabolism and homeostasis
in Streptomycetes, but they protect cells from environmental stress and selective pres-
sure [9]. For instance, siderophores serve to improve the absorption of iron from the
environment [10], in which biosynthesis is induced by intracellular iron deficiency and
can have a growth-promoting effect on the host organism [11,12]. Another example is the
colored terpenoid carotenoids [13] produced to protect against photo-oxidative damage
and oxygen radicals [14]. Their biosynthesis in Streptomycetes can be induced by light but
is rather inconsistent [15]. Furthermore, pigments such as melanin can protect against UV
damage [16,17]. Melanin has been shown to have antibiotic and antimicrobial activities
and to act as a cation chelator and antioxidant [18]. Another important group of secondary
metabolites from Streptomycetes is terpenoids that can act as antibiotics, hormones, odor-
ants, and flavorings. For example, albaflavenone, a tricyclic sesquiterpene antibiotic [19],
and ectoine are effective against osmotic stress [20] and are able to prevent protein mis-
folding [21,22]. In S. coelicolor A3(2), it was shown that hopanoids are formed during the
transition from substrate hyphae to aerial hyphae [23]. Other secondary metabolites such
as antibiotics also represent a fitness advantage in the fight for nutrients.

1.1.2. Secondary Metabolite Production in Streptomycetes

Antibiotics are low-molecular-weight metabolites (M < 2000 Da) with a diverse
chemical structure derived from living microorganisms, usually at low concentrations
(<200 µg/mL), in stepwise biosynthesis, and can inhibit the growth of other microor-
ganisms [24,25]. Under laboratory conditions, the production of many antibiotics can be
influenced by the medium or nutrient sources available from the medium. Diverse chem-
ical compounds acting as activators for signaling cascades that promote the production
of certain antibiotics [26] may induce cryptic gene clusters that are not activated under
standard conditions.

The natural role of antibiotics can be studied only in habitat-like environments where
they are in response to interactions with different organisms [27]. The actual concentrations
of antibiotics are difficult to estimate in nature since their production depends, among
other things, on the availability of nutrients [28]. Sites of action of antibiotics include
essential processes such as nucleic acid synthesis, protein biosynthesis, cell membrane and
cell wall-associated enzymes, and lipid acid biosynthesis of the cell [29,30], allowing killing
or growth retardation of other microorganisms.

On the other hand, experiments with sub-inhibitory antibiotic concentrations (SICs),
e.g., concentrations below the minimum inhibitory concentration (MIC), were shown
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to influence transcription, biofilm formation, and gene expression [31–33]. Secondary
metabolites have also been described as auto-inducers of antibiotic production that can
affect the biosynthesis of other antibiotics depending on the concentration of an inducer
compound, which can be an antibiotic itself [34].

The biosynthesis of secondary metabolites is usually expensive to the cell, the costs of
which are defined by the benefits of genes whose expression is often limited and subject
to complex regulation. Diverse proteins are required for the biosynthesis of antibiotics,
which are usually located in gene clusters with tightly regulated expression [35,36]. The
number and organization of genes within biosynthetic gene clusters can vary greatly;
mostly, these genes are required for backbone formation, modification, export, regulation,
and resistance [37].

The regulation of secondary metabolism in Streptomycetes is very complex and is
coordinated on different levels that are strictly coordinated with each other. The cell relies
on the perception of growth-related signals that must be integrated into the complex regula-
tory network. The central components of the global as well as specific regulatory cascades
are extra- and intracellular effector molecules. The transition from primary to secondary
metabolism goes hand in hand with the morphological and physiological differentiation of
Streptomycetes. On solid media, the onset of secondary metabolism is mostly associated
with aerial mycelium formation involving the bld genes. In liquid culture, the start of
secondary metabolism correlates with entry into the stationary growth phase, which is
typically linked to nutrient limitation. For instance, it has been shown that low phosphate
concentrations and a lack of amino acids that are sensed by the effector molecule ppGpp
can act as a trigger for the production of secondary metabolites [38,39]. Furthermore, a
relationship has been demonstrated between elevated cAMP (cyclic adenosine monophos-
phate) levels and increased production of secondary metabolites, particularly antibiotics
but also other biologically active substances [40]. Another example is the γ-butyrolactones
that represent a group of extracellular effector molecules in Streptomycetes [41] and other
Actinomycetes [42]. They are involved in the regulation of secondary metabolism and
morphological differentiation. In addition to global regulatory mechanisms, there are also
biosynthetic cluster-specific regulators or regulations on systems. These are regulatory
proteins that activate the transcription of genes of associated gene clusters, as well as
proteins that repress the transcription of target genes. The underlying regulatory cascades
can be very complex and interconnected [43].

1.2. Strategies for Discovery and Optimization of Secondary Metabolite Production
in Stretpomyces

In most cases, secondary metabolite biosynthetic genes are clustered, and all genes
required for synthesis, export, or resistance are located next to each other in the genome [37].
To date, only a few exceptions have been reported, e.g., gene clusters for ansamitocin [44]
and pristinamycin [45].

Until recently, most of the secondary metabolites in Streptomyces were discovered
using bioassay-guided isolation and chemical characterization of compounds of interest.
Because of the biochemical complexity of biosynthetic gene clusters (BGCs), the discovery
of new secondary metabolites has been challenging. This limitation has been overcome
recently with the development of a genome mining approach, in which advances in DNA
and RNA sequencing technologies have resulted in a rapid increase in the number of
high-quality Streptomyces genome sequences as well as transcriptomics data. The large
number of genome sequences from this genome mining provides resources for novel
secondary metabolite discovery using bioinformatic analysis of Streptomyces genomes in
silico. Interestingly, recent reports have revealed that each sequenced Streptomyces genome
contains approximately 20–50 BGCs, a greater number than previously known.

Most BGCs are not expressed or poorly expressed in Streptomyces under labora-
tory conditions (silent BGCs) [46]. Genomes of well-studied strains such as S. coelicolor,
S. griseus, and S. avermitilis encode more than 30 BGCs; however, only three to five secondary
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metabolites were detected in these strains. For the activation of silent BGCs in Strepto-
myces strains, diverse methods have been applied, including heterologous gene expression,
promoter replacement, overexpression, or repression of regulatory genes, refactoring of
targeted BGCs, etc. A non-directed activation of silent BGCs has also been achieved
using co-cultivation methods as well as the One Strain–Many Compounds (OSMAC)
method [47–49].

1.2.1. Bioinformatics-Based Approaches for Natural Product Discovery

For the identification of secondary metabolite BGCs from data obtained with full-
genome sequencing, genome-mining tools have been developed. Some of the recently
proposed bioinformatics tools include ClustSCAN, NP searcher, GNP/PRISM, and an-
tiSMASH [46]. AntiSMASH is considered to be the most widely used genome mining
pipeline that features a user-friendly web interface with the possibility to predict the broad
spectrum of secondary metabolite BGCs [46] (Table 1).

For the selection of genes for precursor synthesis, a genome-wide in silico reconstruc-
tion of the metabolism (genome-scale metabolic networks) has been proposed [50–52]. It
is possible to simulate the growth rate, production rate, and mutation of genes. Further-
more, BGCs may be identified using low-coverage sequencing of a plasmid library with a
small insert size and subsequent database comparison. These short sequences then serve
as a starting point for probe design and the screening of a cosmid or BAC library [53].
Reverse genetics is another approach for Streptomyces engineering. It is based on the fact
that secondary metabolite BGCs contain conserved core domains. Using alignments of
known proteins that have similar functions in the biosynthesis of secondary metabolites, it
is possible to identify previously unknown genes from genome libraries. The availability
of a large number of accessible secondary metabolite biosynthesis gene cluster sequences
offers a good starting point to look for specific biosynthetic gene clusters [54].

Information about secondary metabolite BGCs obtained with genome mining is essen-
tial for secondary metabolite discovery. Furthermore, it is a resource for rational design
facilitation of BGCs and yields improvement in compounds of interest. In particular,
polyketides (PKs) and non-ribosomal peptides (NRPs) can be redesigned because these
compounds are synthesized by connected modular enzymes, which are able to recognize
module-specific amino acids or CoAs. An example is a successful replacement of module
7 of AveA3 and AveA1 in the BGC of avermectin of S. avermitilis with MilA1 and MilA3
in the biosynthetic gene cluster of S. hygroscopicus that led to milbemycin production in
S. avermitilis [55].

For the activation of silent BGCs and triggering the production of a compound of in-
terest, various strategies have been developed. One possibility is to induce BGC expression
in a native Streptomyces host. An example of the application of this strategy is the titer
optimization of KF-506 in S. tsukubaensis [56]. The advantage of this strategy is that such
a host is genetically tractable and genetic manipulations of the host genome are possible,
including the overexpression of regulatory genes and removal of competitive pathways
with gene cluster knock-out, deactivation of negative regulatory genes, and replacement
of native promoters with stronger promoters. Another possibility is to clone and/or
refactor BGCs and transfer them into another non-native Streptomyces host for heterolo-
gous expression. This is useful for the activation of silent BGCs in genetically intractable
Streptomyces sp. [46].

1.2.2. Genetic Tools for Streptomyces Engineering

Classical tools for genetic manipulation of Streptomycetes include DNA overexpres-
sion, deletion, disruption, and replacement as well as the use of suicide and temperature-
sensitive plasmids, which require selection and screening for single- and double-crossover
recombination events (Table 1). These strategies are time-consuming and have comparably
low efficiency—double-crossover mutants are rather rarely obtained in Streptomyces, which
demonstrates inefficient DNA homologous recombination. To address these limitations,
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diverse genome editing technologies were introduced. On the one hand, techniques to
express BGCs in a heterologous host have been optimized: acquisition of the target SM-
BGC from the native host genome (e.g., using a genomic library of cosmids, fosmids,
BAC, and PAC), ligation/assembly of the BGC to the vector (sticky/blunt end ligation,
Gibson cloning, recombination in different hosts), transfer of the SM-BGC-encoded vector
to the heterologous host for expression (conjugation, protoplast transformation), and tar-
get secondary metabolite production with the expression of an integrative or replicative
BGC vector. On the other hand, new techniques have been proposed, including the PCR-
targeting system [57], Cre-loxP recombination system [58], I-SceI promoted recombination
system [59], SpCas9-based genome editing [60–63], CRISPRi-mediated gene repression for
single cells [64], FnCpf1-based genome editing and CRISPRi [65], base editing tools [66,67],
and alternative CRISPR/Cas-based genome editing [68]. Recent discoveries on CRISPR (the
clustered regularly interspaced short palindromic repeat) and CRISPR-associated protein
(Cas)-based tools further improved the genetic manipulation of Streptomyces sp., accelerat-
ing natural product discovery, strain improvement, and genome research [46]. Application
of genetics parts, such as synthetic promoters (e.g., constitutive ermE, SF14P, kasOP, gapdh,
and rpsL promoters as well as inducible tipA nitA and xylA promoters), ribosome-binding
sites (AAAGGAGG and diverse native or synthetic RBSs), terminators (e.g., Fd, TD1) and
reporter genes (e.g., genes luxAB, amy, xylE, and gusA as well as eGFP, sfGFP, mRFP, and
mCherry) further expanded the toolbox for Streptomyces engineering [46] (Table 1).

For improvement in the yield of secondary metabolites, different genetically modified
Streptomyces hosts (also referred to as “super-hosts”) were generated by removing endoge-
nous BGCs as well as nonessential genes and genomic regions. These include optimized
Streptomyces strains as heterologous expression hosts that were generated by removing
BGCs resulting in strains that can conserve energy and SM building blocks and have a
specific precursor pool. For example, engineered strains of S. coelicolor, S. lividans, S. albus,
S. avermitilis, S. chattanoogensis, and multiple others demonstrated improved secondary
metabolite production of target compounds and reduced background chemical profiles [69].

Streptomycetes possess mechanisms to control metabolic pathways, including the pro-
duction of secondary metabolites, in response to external signals and nutrient availability.
Antibiotic production can be induced by substrates for antibiotic-producing enzymes or by
regulation of the biosynthesis, activity, and stability of these enzymes. Nitrogen-containing
compounds were shown to indirectly regulate antibiotic production by affecting the primary
metabolism that provides precursor molecules for secondary metabolite biosynthesis [70].
Feedback/feedforward regulation and the regulation of nutrient supply, especially in the
production of antibiotics, have been demonstrated to be mechanisms that can lead to the
enhancement and overproduction of secondary metabolites for industrial needs.

Table 1. A combined list of technologies for Streptomyces engineering.

Technology Category Feature Reference

ClustSCAN Bioinformatics Semi-automatic annotation of modular BGCs and in silico
prediction of new chemical structures [71]

NP searcher Bioinformatics Automated genome mining for natural products and
rapid screening for compounds with potential value [72]

GNP/PRISM Bioinformatics

Identification of biosynthetic gene clusters, prediction of
genetically encoded non-ribosomal peptides and type I
and II polyketides, and bio- and cheminformatic
dereplication of known natural products

[73]

antiSMASH Bioinformatics
Software pipeline for genome mining with a user-friendly
web interface as well as prediction of the broad spectrum
of BGCs

[74]

MultiMetEval Bioinformatics Genome-wide in silico metabolism reconstruction [50–52]
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Table 1. Cont.

Technology Category Feature Reference

Acquisition of the target BGC
Genetic
manipulation
strategy

Transfer from the native host genome using a genomic
library of cosmids, fosmids, BAC, and PAC [75]

Ligation/assembly of the BGC
to the vector

Genetic
manipulation
strategy

Sticky/blunt end ligation, Gibson cloning, and
recombination in different hosts [46]

Transfer of the BGC-encoded
vector to theheterologous host
for expression

Genetic
manipulation
strategy

Conjugation and protoplast transformation [46]

Target secondary metabolite
production by expression of
the BGC vector

Genetic
manipulation
strategy

Expression of integrative (pSET152, pCAP01, pESAC) or
replicative (pSKC2 and pUWL201) vectors [46]

PCR-targetingsystem
Genetic
manipulation
strategy

Nonpolar as well as in-frame deletion of genes or gene
clusters in Streptomyces [57]

Cre-loxP recombination
system

Genetic
manipulation
strategy

Can be used in combination with the PCR-targeting
system or can be independently used to knock out large
fragments of DNA in Streptomyces

[58]

I-SceI promoted
recombination system

Genetic
manipulation
strategy

I-SceI meganuclease can recognize an 18 bp unique
sequence and cause DNA double-strand breaks (DSBs),
which promote double-crossover recombination events

[59]

SpCas9-based genome editing
Genetic
manipulation
strategy

CRISPR/Cas-based technology does not require the
pre-integration of a unique enzyme recognition sequence
into the genome, but uses a transcribed synthetic guide
RNA to direct Cas proteins to any site on the genome.
Editing plasmids: pCRISPomyces-1/2, pKCas9dO,
pCRISPR-Cas9-ScaligD, and pWHU2653

[60–63]

CRISPRi-mediated gene
repression for single cells

Genetic
manipulation
strategy

Gene repression tool based on dCas9 or ddCpf1 and the
base editors (BEs) for targeted base mutagenesis based on
dCas9 or Cas9n

[64]

FnCpf1-based genome editing
and CRISPRi

Genetic
manipulation
strategy

Editing plasmids: pKCCpf1, pKCCpf1-MsmE, and
pSETddCpf1 [65]

CRISPR/Cas-based base
editing tools

Genetic
manipulation
strategy

Editing plasmids: pCRISPR-cBEST/-aBEST, and
pKC-dCas9-CDA-ULstr [66,67]

Alternative
CRISPR/Cas-based genome
editing

Genetic
manipulation
strategy

Editing plasmids: pCRISPomyces-FnCpf1,
pCRISPomyces-Sth1Cas9, and pCRISPomyces-SaCas9 [68,76]

Synthetic promoters Genetics parts Constitutive ermE, SF14P, kasOP, gapdh, rpsL promoters as
well as inducible tipA nitA and xylA promoters [46]

Ribosome-binding sites Genetics parts AAAGGAGG and diverse native or synthetic RBSs [46]

Terminators Genetics parts Fdand TD1 [46]

Reporter genes Genetics parts Genes luxAB, amy, xylE, and gusA as well as eGFP, sfGFP,
mRFP, and mCherry [46]

2. Importance of Nitrogen for Secondary Metabolism in Streptomyces
2.1. Nitrogen as a Key Element for Cellular Metabolism

Nitrogen is one of the essential elements in living systems along with carbon, hydrogen,
and oxygen. It makes up to 14% of the cellular dry weight. It is a key element for the
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biosynthesis of nucleotides and amino acids—building blocks of DNA, RNA, and proteins.
Soil, a natural environment for Streptomyces, is characterized by comparatively low nitrogen
availability (<0.1 mM) and, at the same time, variable nitrogen amounts [77].

The main source of nitrogen in the soil is plant matter, but it is rather low because the
major component of plant cell walls (~50%) is the unbranched polysaccharide cellulose [78].
Nitrogen has a major influence on morphological and physiological differentiation in
bacteria [79]. A limitation of nitrogen is considered a signal to initiate aerial mycelium
formation and sporulation in Streptomycetes [80]. Furthermore, the production of many
secondary metabolites is subject to nitrogen repression in Streptomycetes [81]. For instance,
the formation of actinorhodin in S. coelicolor has been demonstrated to be inhibited by high
ammonium concentrations [82].

Limited nitrogen availability in the soil is reflected in Streptomycetes in the control of
primary nitrogen metabolism and the supply of nitrogen into secondary metabolism. For
instance, feedback inhibition in amino acid biosynthetic pathways allows for the control of
nitrogen availability, ensuring amino acid uptake from soil [78].

In addition to being important as a nutrient in primary metabolism, nitrogen also
plays a key role in the morphological and physiological differentiation of Streptomyces.
These two processes generally are temporally coupled and share genetic control elements.
A signal to trigger morphological differentiation is nutrient limitation [83]. For example,
it has been demonstrated that nitrogen deficiency and initiation of aerial mycelium and
sporulation are coupled [80].

The formation of many secondary metabolites in Streptomycetes depends on nitro-
gen availability—the presence of nitrogen-containing compounds influences secondary
metabolite synthesis [81]. For example, the formation of actinorhodin in S. coelicolor [82]
and the production of pristinamycin in S. pristinaespiralis is inhibited at high ammonium
concentrations [84].

2.1.1. Nitrogen Assimilation in Streptomyces

The preferred source of nitrogen for Streptomyces is ammonium [85]. However, in soil,
nitrogen is predominantly available from nitrogen-containing compounds like proteins,
amino acids, monoamines, and polyamines that are released from dead animal and plant
matter [86]. Other nitrogen-containing compounds in soil include nitrate, nitrite, and urea,
as well as high-molecular-weight nitrogen-containing compounds such as polymers or nu-
cleic acids [87]. High-molecular-weight compounds are first broken down by exoenzymes
into smaller molecules like glutamate and ammonium, which are then taken up from the
extracellular environment and metabolized in the cell [86] (Figure 1).

Due to naturally low levels of nitrogen in the soil habitat, nitrogen assimilation in
Streptomycetes occurs mainly via glutamine synthetase (GS) and glutamine-2-oxoglutarate-
aminotransferase (GOGAT) [85]. GS allows nitrogen assimilation under conditions of
nitrogen deficiency (<0.1 mM) because GS has a high substrate affinity (e.g., in E. coli:
KM = 0.2 mM for ammonium). GS provides condensation of ammonium and glutamate;
it catalyzes the synthesis of glutamine under ATP consumption [87]. Glutamate can be
regenerated through the conversion of glutamine to alpha-ketoglutarate, which is then
converted into two glutamate molecules via transamination. Furthermore, in many bacteria,
glutamate is generated from glutamine and 2-oxyglutarate by glutamine-2-oxoglutarate-
aminotransferase (GOGAT). Glutamine synthetase fulfills two important tasks: on the
one hand ammonium assimilation and, on the other hand, the synthesis of the nitrogen
donor glutamine. In addition to GS-catalyzed ATP-dependent nitrogen assimilation, many
bacteria including Streptomyces sp. possess an alternative glutamine biosynthetic pathway.
At high ammonium concentrations (>1 mM), glutamate can be formed directly from
ammonium and alpha-ketoglutarate via the glutamate dehydrogenase (GDH) enzyme.
This enzyme has a low affinity for substrate ammonium [85,87]. Functional glutamine
synthetases have been described to occur in three forms: GSI, GSII, and GSIII. Many
Streptomycetes possess multiple GS and GS-like enzymes. For instance, S. coelicolor contains
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two functional glutamine synthetases, GlnA (GSII) and GlnII (GSII), as well as three GS-like
enzymes, GlnA2, GlnA3, and GlnA4, which can catalyze glutamylation reactions [86]
(Figure 1).
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Figure 1. Schematic illustration of primary nitrogen metabolism in S. coelicolor. GS, glutamine
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2.1.2. Regulation of Primary Nitrogen Metabolism in Streptomyces

GS is regulated at different levels. In Streptomyces, GSI expression can be detected
throughout all growth phases, while significant GSII expression is detected only during
the stationary phase. This suggests that the corresponding enzymes are active during
these growth phases [89]. While GSI can be modified post-translationally, a modification
of GSII by adenylation has not been observed so far. The enzyme activity of GSI in
S. coelicolor is analogous to E. coli and is regulated post-translationally via reversible covalent
modification of the adenyltransferase GlnE [89].

The regulation of GSs is linked to the nitrogen content in cells, which is a protective
mechanism to maintain the intracellular glutamate pool. In contrast to GlnE in E. coli,
where GlnD and the two PII proteins GlnK and GlnB modify GlnE depending on nitrogen
availability, GlnE in S. coelicolor is not regulated through the interaction with the PII protein
GlnK but is indirectly regulated via adenyltransferase GlnD, depending on the nitrogen
concentration [90]. At low nitrogen concentrations, GlnK is adenylated at the conserved
Tyr-51 residue, while an increase in nitrogen concentration leads to the deadenylation
of GlnK [90]. Adenyltransferase GlnD is responsible for the modification of GlnK in S.
coelicolor [90], although such adenylation is unusual for prokaryote PII modification and
has been observed only in C. glutamicum [91]. Further interactions between GlnK and other
components of nitrogen metabolism and resulting involvement in their regulation are very
likely [92]. The deletion of glnK in S. coelicolor has been demonstrated to lead to a loss
of antibiotic production [93]. However, the mechanism of action of GlnK on antibiotic
production in S. coelicolor is still unclear (Figure 2).
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A central regulator of nitrogen metabolism in Streptomyces is GlnR [94]. It regulates
the transcription of the GSI encoding gene glnA and the GSII encoding gene glnII as well
as gdhA (encodes the Gdh), nirB (encodes the nitrite reductase), ureA (encodes the urease),
and the amt operon amtB-glnK-glnD (encodes the ammonium transporter AmtB, the PII
signaling protein GlnK, and the adenyltransferase GlnD). It has been shown that under
nitrogen deficiency conditions, GlnR activates the expression of glnA, glnII, nirB, and the
amt operon and represses the expression of gdhA and ureA [95]. Thus, GlnR regulates
essential steps of nitrogen assimilation at lower nitrogen availability through the activation
of the transport of ammonium into the cell, nitrite reduction to ammonium, and synthesis
of glutamine. In the case of nitrogen deficiency, GlnR represses the splitting of urea into
ammonium and CO2 and the synthesis of glutamate via glutamate dehydrogenase. The
DNA-binding affinity of GlnR is modulated by post-translational modifications in response
to changing N-conditions in order to elicit a proper transcriptional response [96]. An
acetylation version of GlnR has been demonstrated to bind to the promoter region of glnA2,
which encodes a gamma-glutamylpolyamine synthetase required for polyamine utilization
in S. coelicolor [97].

Another transcriptional regulator, GlnRII has been identified as a GlnR homologue
in S. coelicolor. It was shown, that GlnRII, similar to GlnR, also recognizes the promoter
regions glnA and amtB and binds to the promoter region of glnII [89]. Both GlnR and GlnRII
belong to the OmpR-like transcription factors, which are characterized by a C-terminal
winged-helix-turned-helix motif [89,98]. They show sequence similarities at the protein
level but are not functionally homologous since deletion of glnRII did not result in the
glutamine auxotrophs phenotype [92].

2.1.3. Regulation of Secondary Metabolism in Streptomyces

In addition to GlnR, complex nitrogen metabolism in Streptomycetes involves control
by diverse transcriptional regulators, such as Crp, ArgR, PhoP, AfsR, DasR, and AfsQ1
as well as the response regulator MtrA (master transcriptional regulator A) [70] (Table 2).
Crp regulates the interplay between primary and secondary metabolism, activating the
genes glnA, glnII, and amtB-glnK-glnD. AfsR controls the expression of glnR in response to
nutrient-stress stimuli. PhoP represses the transcription of the amtB-glnK-glnD operon as
well as the genes glnA, glnII, and glnR under conditions of phosphate limitation. AfsQ1 is
required for the regulation of carbon, nitrogen, and phosphate metabolism in the presence
of glutamate [86]. The overexpression of the global regulator Crp in S. coelicolor leads to
the overproduction of actinorhodin, undecylprodigiosin, and calcium-dependent antibi-
otics [99]. This is in contrast to the direct activating effect of Crp on antibiotic production in
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S. coelicolor [99]. Crp overexpression has been shown to enhance the titers of the secondary
metabolite tacrolimus (FK-506) in S. tsukubaensis [100] (Table 2).

Table 2. List of regulatory proteins involved in primary and secondary metabolism regulation in
Stretpomyces [70].

Regulator Name Function Reference

GlnR Central regulator of nitrogen metabolism regulating glnA, glnII, gdhA, nirB, ureA, and
amtB-glnK-glnD [87]

GlnRII A GlnR homologue that recognizes glnA, amtB, and glnII [82]

Crp Regulates the interplay of primary and secondary metabolism, activating glnA, glnII,
and amtB-glnK-glnD [99]

ArgR Controls the expression of glnR in response to nutrient-stress stimuli [101]

PhoP Represses the amtB-glnK-glnD operon and glnA, glnII, and glnR under conditions of
phosphate limitation [102]

AfsR Controls expression of glnR in response to unknown nutrient stress stimulus [103]

DasR Links nutrient stress to antibiotic production [104]

AfsQ1 Required for regulation of carbon, nitrogen, and phosphate metabolism in the presence
of glutamate [105]

MtrA Activates antibiotic biosynthetic gene clusters [70]

2.2. Influence of Nitrogen-Containing Compounds on Antibiotic Production—Interplay between
Primary and Secondary Metabolism

Antibiotic production in bacteria is largely affected by available nutrient sources. To
produce secondary metabolites, precursors come mainly from primary metabolism [70].
Ammonium, nitrate, amino acids (e.g., glutamate, glutamine, lysine, serine) and polyamines
(putrescine, spermidine, spermine, cadaverine) have an impact on secondary metabolism
and are required for it (Figure 3).

Examples are lysine for the biosynthesis of FK-506 [100] and asparagine and malonyl
CoA for the biosynthesis of lysolipin [106]. Certain nutrients can increase, decrease, or
even stop the production of secondary metabolites. Secondary metabolite production also
depends on the regulation network and the type of the product. For instance, the regulation
of the synthesis of classic antibiotics differs from the regulation of lantibiotics production.
Classic antibiotics require sophisticated cellular machinery with specialized enzymes, such
as non-ribosomal peptide synthetases (NRPS) for the synthesis of non-ribosomal peptide
antibiotics (NRP), or polyketide synthases (PKS) for polyketides (PK) [107,108]. Synthesis of
these antibiotics depends on the activity of PKS and NRPS enzymes. However, lantibiotics
synthesis depends on the activity and specificity of ribosomes and modifying enzymes.
Thus, NRPs occur in the stationary phase of the growth synthesized from precursors such
as amino acids, fatty acids, and α–hydroxy acids [109]. On the one hand, some enzymes
involved in antibiotic synthesis, e.g., phosphatases, usually only become active when the
strain’s growth is slowed down under nutrient deficiency, e.g., phosphate depletion [110].
On the other hand, lantibiotic production typically coexists with the growth of a producer
strain, e.g., in the case of epidermin, gallidermin, and nisin [111,112], but not in the case
of mersacidin, which is produced only after active growth [113]. A typical lantibiotic
biosynthesis reflects NAI-107 production—its amount in the late growth phase is several
times greater than at the beginning of cultivation [114,115].
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2.2.1. Influence of Ammonium on Antibiotic Production in Streptomyces

Nitrogen is a basic nutrient for biosynthesis of antibiotics and lantibiotics, and the
regulation of nitrogen metabolism has been shown to influence antibiotic production, both
positively and negatively. It has been shown that the biosynthesis of many antibiotics can be
suppressed by ammonium excess [116–118]. Nitrogen repression of secondary metabolism
has been observed in connection with the inhibition, reduction, or delay in the production
of diverse compounds in the presence of nitrogen-containing molecules [81]. Repression
of secondary metabolism has been demonstrated for high concentrations of ammonium
(10–120 mM) present in the medium. The addition of yeast extract and soy peptone for an
improvement in nisin production has been demonstrated to be effective only with slow
feeding during fermentation [119]. Negative effects of nitrogen have also been reported
for nisin production [120]. For some Streptomyces, amino acid degradation pathways were
demonstrated to be inhibited by ammonium [121].

In contrast to amino acids, the use of inorganic nitrogen sources can also lead to an
increase in some secondary metabolite production. For instance, the positive influence of
high ammonium concentration (60–200 mM ammonium) was observed for the production
of lantibiotics epidermin, Pep5, and gallidermin in a complex medium [111] as well as
neomycin [122] and streptonigrin [123]. In contrast, a greater excess of ammonium (up
to 300 mM ammonium) in a defined amino acid-containing medium did not change
gallidermin production. The highest production of epidermin was found in the medium
with 40 mM ammonium or 80 mM nitrate [111]. The production of another lantibiotic,
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NAI-107, under ammonium excess and ammonium limitation distinguishes this group of
antibiotics from classic antibiotics [114,115] (Table 3).

2.2.2. Influence of Nitrate on Antibiotic Production in Streptomyces

Nitrogen-containing compounds have been shown to positively influence antibiotic
production, e.g., nitrate [124–126]. A nitrate-stimulating effect has been described at the
transcriptional level for both the preparation of antibiotics at a preliminary stage and for
the genes encoding enzymes involved in production [126]. Efficient nitrate concentrations
were reported to range from 12.5 mmol/L to 40 mmol/L, positively influencing the pro-
duction of antibiotics such as azalomycin, erythromycin, lividomycin, lincomycin, and
rifamycin [124–126] (Table 3). It has been demonstrated that the transcription of the GS-
encoding gene glnA is activated with the addition of nitrate. The transcription of glnA
is determined by the global transcription regulator GlnR, which plays a central role in
nitrogen metabolism in Streptomyces [124–126] (Table 3).

The global regulator of nitrogen metabolism GlnR has been demonstrated to play an
important role in influencing the production of antibiotics. For example, in A. mediterranean
GlnR is necessary for nitrate-stimulating effect on rifamycin production. In comparison,
GlnR inhibits rifamycin biosynthesis in the absence of nitrate [127]. In S. erythraea, GlnR
has been shown to inhibit erythromycin production in a complex TSB medium as well
as in glutamine-containing Evans medium, while the transcription of genes encoding
erythromycin polyketide synthases in the wild-type compared with ∆glnR were down-
regulated [128]. In S. carnosus, nitrate is completely reduced to nitrite in the first step and
then reduced to ammonium in the second step. In S. carnosus, nitrite reduction can be
inhibited by nitrate [129].

2.2.3. Influence of Amino Acids on Antibiotic Production in Streptomyces

Amino acids serve as building blocks of peptides, proteins, and lipids (as components
of phospholipids in cellular membranes), and they form precursors for diverse metabolites.
It has been shown that when absorbed into the cell, amino acids are metabolized as
precursors rather than directly incorporated into antibiotics and do not necessarily increase
production [130]. On the other hand, it has been demonstrated that the effect of amino acid
addition on secondary metabolite production is mainly based on its supply as a carbon
source [131]. The amino acids leucine, isoleucine, lysine, and valine serve as precursors for
commercially important polyketides.

While microorganisms and plants can synthesize all amino acids themselves, mam-
mals have evolved the ability to synthesize about half of the 20 proteinogenic amino acids.
Proteinogenic amino acids are built from common precursors that originate from the citrate
cycle or catabolic carbohydrate metabolism. They are assigned into five families: gluta-
mate, aspartate, pyruvate, serine, and the aromatic family. De novo, glutamate becomes
glutamine, proline, and arginine; aspartate forms asparagine, lysine, methionine, and
threonine; pyruvate forms alanine, valine, isoleucine, and leucine; and serine forms glycine
and cysteine. Phosphoenolpyruvate is a precursor for synthesis of the aromatic amino
acids phenylalanine, tryptophan, and tyrosine. Amino acids can be degraded through
deamination, transamination reactions, or by oxidative, hydrolytic, or eliminating deamina-
tion reactions. Of the 20 proteinogenic amino acids, seven different degradation products
(alpha-ketoglutarate, succinyl-CoA, fumarate, oxaloacetate, pyruvate, acetyl-CoA, and ace-
toacetate) are produced, providing intermediates or precursors (acetyl-CoA and pyruvate)
for the citrate cycle, amino acid degradation pathways, or secondary metabolism [131].

Most amino acid biosynthetic and utilization genes are only expressed at a low consti-
tutive level. In Streptomycetes, the amino acid biosynthetic pathways are often regulated
through inhibition, presumably due to the natural soil habitat of the Streptomycetes lack-
ing nitrogen and most amino acids [78]. For example, amino acid biosynthetic pathways
involving feedback inhibition are the synthesis of arginine and aromatic amino acids [132].
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The amino acid lysine is a non-proteinogenic amino acid, a common building block
of secondary metabolites, and a frequently used precursor and media additive in biotech-
nology. A gene that codes for a lysine cyclodeaminase is therefore localized in the associ-
ated biosynthetic gene clusters, such as in the cluster of the streptogramin pristinamycin
(PipA) [133] or the lipopeptide antibiotic friulimicin (Pip). It had already been shown
for all producers that the overexpression of the respective lysine cyclodeaminase genes
resulted in an increase in the desired secondary metabolites. A positive correlation between
increased lysine availability and increased secondary metabolite production was shown in
cephamycin biosynthesis in S. clavuligerus [134] and tacrolimus (SK-506) biosynthesis in
S. tsukubaensis [56] (Table 3).

The aspartate kinase enzyme catalyzing the first reaction of lysine biosynthesis was
shown to be subject to strict regulation via inhibition by the end products lysine and
threonine. The combined overexpression of the feedback-deregulated aspartate kinase
AskCg* and the dihydropicolinate synthase DapASt, showed a strong enhancement in the
intracellular lysine pool in S. tsukubaensis and consequently increased the yield of FK-506
by approximately 73% compared with the wild type. Furthermore, FK506 production was
enhanced by heterologous overexpression of the mutated version of lysine cyclodeaminase
PipAf [56] (Table 3).

2.2.4. Influence of Polyamines on Antibiotic Production in Streptomyces

Polyamines are aliphatic polycations with multiple amino groups and polycarbon
chains. Common widely distributed natural polyamines are putrescine, cadaverine, sper-
midine, and spermine [135,136]. Polyamines can be observed in diverse bacterial habi-
tats, e.g., in soil, the concentration of polyamine putrescine ranges between 0.28 and
0.56 nmol/g, spermidine between 0.23 and 0.62 nmol/g, and spermine between 0.16 and
0.43 nmol/g [137]. In S. coelicolor putrescine, spermidine and diaminopropan biosynthesis
has been detected in the late-stationary phase, while cadaverine synthesis occurred only
under iron limitation [138]. In the strain S. coelicolor JCM4357 grown in a complex medium,
the intracellular concentration of polyamines was reported to be as follows: putrescine
0.127, cadaverine 0.103, spermidine 0.040, and spermine 0.024 µmol/g. The biosynthesis
of polyamines occurs from amino acid precursors arginine, ornithine, and methionine as
well as lysine [139] (Figure 4). Increased polyamine concentrations lead to bacterial cell
death. For example, 200 mM of exogenous putrescine was reported to be toxic for S. coeli-
color [140]. Under such high conditions of polyamines, the detoxification and utilization of
elevated levels of intracellular polyamines are needed to escape cell death. In Streptomyces,
a gamma-glutamylation pathway for polyamine utilization has been characterized [97].
Involving gamma-glutamylpolyamine synthetases GlnA2 and GlnA3 as well as multiple
catalytic steps downstream, polyamines can be efficiently converted into glutarate and
succinate supplying the TCA cycle [97] (Figure 4).

Polyamines have been demonstrated to play important roles in bacterial, plant, and
mammal cells including cellular growth, developmental processes, and environmen-
tal stress responses. Furthermore, polyamines are essential nutrients for intracellular
pathogens, and polyamine metabolism is considered to be a new target for pharmaceutical
drug development [141]. Interestingly, in plants, they have been considered a new kind
of plant biostimulant. In plants, polyamines serve as precursor molecules for secondary
metabolite synthesis, namely, for several groups of alkaloids (pyrrolizidine, tropane, and
quinolizidine alkaloids) and phenolamides [142]. Also, in fungi and bacteria, polyamines
can modulate the biosynthesis of secondary metabolites. For instance, spermidine has been
demonstrated to stimulate the biosynthesis of benzylpenicillin in Penicillum chrysogenum,
causing increases in transcript levels of penicillin biosynthetic genes [143]. Putrescine has
been shown to induce secondary metabolism in Nocardia lactamdurans [144].
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In S. coelicolor, polyamines putrescine, cadaverine, spermidine, and spermine caused
delayed aerial mycelium and spore formation in media with these polyamines as the sole
nitrogen source. Furthermore, polyamines induced prodigiosin (red antibiotic) production
while abolishing actinorhodin (blue antibiotic) production in S. coelicolor M145 [140]. The
deletion of the key gene for polyamine utilization—glnA3—resulted in a defect in the
formation of aerial mycelium and sporulation in a medium with glutamate as a nitrogen
source. Moreover, enhanced actinorhodin and prodigiosin production was observed in S.
coelicolor ∆glnA3 grown in media with nitrate, glutamine, and ammonium as sole nitrogen
sources [140]. This indicates an impact of polyamine utilization on secondary metabolite
production and morphological differentiation in S. coelicolor (Table 3).

In S. tsukubaensis, a direct effect of polyamine supplementation on tacrolimus (FK-506)
production was reported. The presence of the polyamine putrescine in the production
medium resulted in inhibited biomass accumulation and FK-506 production compared
with the parental strain but higher compared with media supplemented with spermidine
or spermine. Interestingly, very poor growth of S. tsukubaensis was observed in media
supplemented with high amounts of spermidine and spermine (25 mM), while S. coelicolor
was able to tolerate up to 50 mM spermine and 100 mM spermidine in complex and defined
media [97] (Table 3).

Table 3. List of selected Streptomyces-derived and actinobacterial secondary metabolites with reported
production change during fermentation. An increase or decrease in production was achieved through
the addition of specific concentrations of different nitrogen sources (ammonium, nitrate, amino acids,
polyamines), and yield change is indicated (if quantified in the study).

Compound Producer Nitrogen Source
Tested Effect on Production Reference

Tylosin Streptomyces fradiae NRRL 2702 Ammonium
(20 mM/L) Decrease (~2-fold) [117]



SynBio 2023, 1 218

Table 3. Cont.

Compound Producer Nitrogen Source
Tested Effect on Production Reference

Leucomycin Streptomyees kitasatoensis Ammonium
(2 mM/L)

Decrease
(50%) [145]

NAI-107 Microbispora ATCC PTA-5024 Ammonium
(25 mM/L) Increase (~0.2 fold) [114]

Neomycin B Streptomyces fradiae SF-2 Ammonium
(60 mM/L) Increase (0.54–3.3 fold) [122]

Streptonigrin Streptomyces flocculus (ATCC
13257)

Ammonium
(0.5–2 g/L) Increase (2-fold) [123]

AK-111-81 Streptomyces hygroscopicus Ammonium
(0.15%) Increase (6-fold) [146]

SBR-22 Streptomyces psammoticus BT-408 Ammonium
(2.5 g/L) Increase (1.2-fold) [147]

SA-53 Streptomyces anandii var. Taifiensis Ammonium
(280 mg/L)

Increase
(2-fold) [148]

Azalomycin Streptomyces hygroscopicus Nitrate Increase [149]

Erythromycin Saccharopolyspora erythraea Nitrate
(15 mM/L) Increase [150]

Lividomycin Lividomycin poducer M814 Nitrate Increase [151]

Lincomycin Streptomyces lincolnensis,
Streptomyces sp. MS-266 Dm4

Nitrate
(23.5 mM/L) Increase [152]

Rifamycin B and SV Amycolatopsis mediterranei,
Amycolatopsis mediterranei U32

Nitrate
(12.5–80 mM/L)

Increase
(4-fold) [126,153]

Meroparamycin Streptomyces MAR01 Nitrate
(19.8 mM/L) increase [124]

Cephamycin Streptomyces clavuligerus Amino acids
(lysine, 14.6 g L−1)

Increase
(6-fold) [144]

Tacrolimus (FK-506) Streptomyces tsukubaensis Amino acids
(lysine, 2.5 g/L)

Increase
(30%) [56,154]

Rapamycin Streptomyces hygroscopicus Amino acids
(lysine, 10 g/L)

Increase
(150%) [155]

Leucomycin Streptomyees kitasatoensis Amino acids
(1%)

Increase
(2–4 fold) [145]

Prodigiosin Streptomyces coelicolor Polyamines (25 mM/L) Increase [140]

Actinorhodin Streptomyces coelicolor Polyamines
(25 mM/L) Decrease [140]

Tacrolimus (FK-506) Streptomyces tsukubaensis Polyamines
(25 mM/L)

Decrease
(3-fold) [97]

3. Perspectives for Secondary Metabolite Discovery in Streptomyces

In the current review, different approaches for the discovery and production of sec-
ondary metabolites in Streptomyces were summarized. Recent advances in engineering
strategies and the possibility of obtaining fully sequenced genomes of strains of interest
using Next-Generation Sequencing (NGS) revealed the so far unavailable potential of Strep-
tomyces sp. as a reservoir for novel valuable compounds [156]. On the one hand, during the
last decades, genetic tools based on the CRISPR/Cas system have offered different new
strategies to optimize secondary metabolite production and activate silent BGCs, but fur-
ther optimization of the CRISPR/Cas system for the engineering of Streptomycetes is still
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ongoing [46]. On the other hand, recent advancements in the introduction of “super-host”
strains for the heterologous expression of BGCs (e.g., S. coelicolor, S. lividans, S. albus, S.
avermitilis, S. chattanoogensis) represent a further possibility to overcome existing limita-
tions [69]. However, super-host optimization has diverse challenges as well, for instance,
some metabolites were not produced significantly [69].

Possibilities for genetic manipulation of Streptomyces were combined with classical
fermentation optimization efforts in multiple recent studies as well. In particular, the
investigation of nitrogen supply from amino acids and amino acid-derivative compounds,
such as polyamines, provided new insights into secondary metabolite discovery [56,97,140].
However, different nitrogen sources under certain concentrations can decrease secondary
metabolite production and can even be toxic to cells when in excess (Table 3), which
requires strict control of nutrient supply during fermentation. The application of novel
bioinformatics tools, techniques for genetic engineering, and nutrient supply strategies led
to recently reported advancements in natural product discovery in Streptomyces sp. and an
increased number of new compounds of interest [3,157,158].

4. Conclusions

The complex biosynthesis of secondary metabolites in Streptomyces wild-type produc-
ers naturally results in rather low titers. Nevertheless, biosynthetic steps in primary and
secondary metabolism as well as their regulation can be suitable targets for engineering.
Furthermore, the dependence of secondary metabolism in Streptomyces sp. on a precursor
supply coming from primary metabolism is crucial and can be optimized for biotechnologi-
cal needs in addition to the application of available genetic manipulation techniques. One
example of this is the importance of cellular nitrogen metabolism for the supply of relevant
nitrogen-containing compounds as precursors into secondary metabolism or its induction
by these compounds. Ammonium, nitrate, amino acids, and, recently, polyamines have
been demonstrated to strongly influence the production of secondary metabolites in dif-
ferent Streptomyces strains. A combination of metabolic engineering strategies targeting
relevant genes for nitrogen supply with feeding strategies can be a very effective strategy
in Streptomyces strains for the optimization of the production of compounds of interest.
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