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Abstract: Source apportionment of observed PM2.5 concentrations is of growing interest as com-
munities seek ways to improve their air quality. We evaluated publicly available PM2.5 data from
the USEPA in the Dallas–Fort Worth metropolitan area to determine the contributions from various
PM2.5 sources to the total PM2.5 observed. The approach combines interpolation and fixed effect
regression models to disentangle background from local PM2.5 contributions. These models found
that January had the lowest total PM2.5 mean concentrations, ranging from 5.0 µg/m3 to 6.4 µg/m3,
depending on monitoring location. July had the highest total PM2.5 mean concentrations, ranging
from 8.7 µg/m3 to 11.1 µg/m3, depending on the location. January also had the lowest mean local
PM2.5 concentrations, ranging from 2.6 µg/m3 to 3.6 µg/m3, depending on the location. Despite
having the lowest local PM2.5 concentrations, January had the highest local attributions [51–57%]. July
had the highest mean local PM2.5 concentrations, ranging from 2.9 µg/m3 to 4.1 µg/m3, depending
on the location. Despite having the highest local PM2.5 concentrations, July had the lowest local
attributions [33–37%]. These results suggest that local contributions have a limited effect on total
PM2.5 concentrations and that the observed seasonal changes are likely the result of background
influence, as opposed to modest changes in local contributions. Overall, the results demonstrate
that in the Dallas–Fort Worth metropolitan area, approximately half of the observed total PM2.5 is
from background PM2.5 sources and half is from local PM2.5 sources. Among the local PM2.5 source
contributions in the Dallas–Fort Worth metropolitan area, our analysis shows that the vast majority is
from non-point sources, such as from the transportation sector. While local point sources may have
some incremental site-specific local contribution, such contributions are not clearly distinguishable in
the data evaluated. We present this approach as a roadmap for disentangling PM2.5 concentrations at
different spatial levels (i.e., the local, regional, or state level) and from various sectors (i.e., residential,
industrial, transport, etc.). This roadmap can help decision-makers to optimize mitigatory, regulatory,
and/or community efforts towards reducing total community PM2.5 exposure.
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1. Introduction

Exposure to particulate matter with a diameter equal to or less than 2.5 µm (PM2.5) is
ubiquitous; the entire population of the United States is exposed to PM2.5 to some degree
throughout their daily lives. Exposure can occur indoors and/or outdoors, from natural
and/or anthropogenic sources, and at varying levels. Natural sources can include, but
are not limited to, wildfire smoke, volcanic ash, sea salt, and natural soil resuspension [1].
Anthropogenic sources of PM2.5 include fossil fuel combustion (e.g., vehicle exhaust, power
generation, heating, cooking, and wood burning); certain industrial processes (e.g., mining,
building, manufacture of cement, ceramic, and bricks); and disturbance of settled particles
(e.g., construction activities, agricultural disturbance of soils, and salt applied to roads) [1,2].
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Deconvoluting the contributions from each of the various sources to the total observed
PM2.5 concentration is no simple task. Depending on the density and composition of
the PM, how the particles are released and at what altitude, the wind speed and wind
direction, and the daily weather patterns, temperature, and deposition velocity, PM2.5 can
be transported from the micro-scale (several to hundreds of meters) to the macro-scale
(hundreds to thousands of kilometers) and can persist in the lower atmosphere for up to
one week [3–5]. Thus, determining if PM2.5 at any given location is from a global, national,
regional, or local emission source requires complex, multifaceted analysis since a more
simplistic review of the data may be misleading (Figure 1). The same holds true when
attempting to apportion a PM2.5 mixture among potential point and non-point sources.
Point sources are single identifiable sources of pollution (e.g., a home or a factory), and
non-point sources include sources that are lines or large areas (e.g., highways or agricultural
land). Such methodological approaches and considerations are critical to the reliability
of the conclusions for communities who are assessing potential health impacts from local
PM2.5 point sources (e.g., neighborhood level sources).
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Figure 1. Total ambient PM2.5 source attribution. Background is defined for the purpose of this
paper as the baseline ambient PM2.5 not attributable to local sources (i.e., transported PM2.5 from
global (across country lines), national (across state lines), or metro-scale regional (across city/town
boundaries, e.g., Dallas, Arlington, or Fort Worth) sources combined). Total ambient PM2.5 can be
from natural or anthropogenic sources and includes primary and secondary PM2.5, which can occur
at various spatial scales (local, regional, national, and global).

The Dallas–Fort Worth, TX, area has received an abundance of news coverage and
scientific interest recently due to its reported decline in air quality and the potential negative
health impacts from air pollution [6–10]. The Dallas–Fort Worth area was ranked as the
16th most polluted city for ozone (previously ranked 17th) and 44th worst for short-term
particle pollution [6]. Both ozone and PM are attributable to point and non-point sources
such as power plants, industrial boilers, and vehicles [9,11]. In the Dallas–Fort Worth
area there has been particular interest in industrial sources [12] and the high volume of
traffic [13]; the Dallas area has approximately 11,500 miles of traffic lanes, with vehicles
logging nearly 77.5 million miles each day [9]. Additionally, the city of Dallas has recently
committed to implementing more air monitors to help with tracking neighborhood-level
air quality [7].

A review of literature published on PM2.5 in the Dallas–Fort Worth area revealed there
are studies that investigated the spatial variability in PM2.5 [14] and the temporal variability
in PM2.5 (specifically during the COVID-19 pandemic) [15]. Dallas–Fort Worth area research
has also focused on potential methods to estimate PM2.5 levels in areas without monitor
data and at finer temporal intervals using Dallas as a case study [16,17], the potential
contribution from biomass burning to ambient PM in Dallas and San Augustine, TX [18],
and the potential contribution from the transportation sector to PM2.5 in Dallas [13]. Source
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apportionment has been investigated in other Texas cities including Corpus Christi [19]
and Houston [4]. To our knowledge, only one study has attempted to apportion local vs.
regional PM2.5 emissions in the Dallas area, and further apportion the local and regional
PM2.5 contributions from point, mobile, and area sources [20]. However, this study relied
on monitoring data from 1999 to 2003, utilized a different modelling methodology (i.e.,
response-surface model representation of the Community Multiscale Air Quality model) to
predict future PM2.5 changes for nine urban areas in the United States, and is unpublished,
although available online.

Thus, no recently published studies focus on apportioning the local vs. background
PM2.5 sources in the Dallas–Fort Worth area, and none have utilized the combination of
methods presented herein. We present an approach that combines interpolation and fixed
effect regression models to disentangle background from local PM2.5 contributions to the
total ambient PM2.5 observed. We provide preliminary insights into the contribution from
local point and non-point sources (e.g., vehicle and railroad transport) to the Dallas–Fort
Worth area. This methodology demonstrates a new data-driven approach that is more
comprehensive than what has previously been demonstrated for the Dallas–Fort Worth
area. Finally, this approach can be useful in optimizing potential mitigatory, regulatory,
and/or community efforts to reduce ambient PM2.5 concentrations towards the appropriate
spatial scale (i.e., local, regional, or state) and sectoral emissions sources (i.e., residential,
industrial, transport, etc.).

The most common methods of PM2.5 source contribution apportionment (spatially
and by sector) utilized in other metropolitan areas include (1) air sample collection upwind
and downwind of suspected sources, (2) modeling air quality impacts based on emission
information from various sources, (3) a combination of data collection and modeling, or
(4) statistical or chemical analysis of air pollution measurements. Source apportionment
methods have various names for the different approaches that utilize monitoring and/or
modeling, including “potential impact” or the “Brute Force Method” [21,22], the “incre-
mental approach” [21,23], and “tagging” [21,24]. Additionally, monitoring (i.e., observed
concentrations) can include measuring overall PM2.5 air concentrations or evaluating the
particulate matter chemical composition, where the major chemical components of PM
are measured individually (e.g., ammonium, elemental carbon, organic carbon, sodium,
nitrate, potassium, and sulfate) [2]. Because of the spectrum of issues associated with site
complexity, data quality, and data representativeness, application of these methods and
approaches have varying degrees of success, and range in their strengths and weaknesses,
accessibility, and practicality [25]. The data-driven methodology that we use and explain in
this article provides an additional approach that is comprehensive, accurate, and reliable,
and can be easily applied to any unique location where observational data are abundant.

The “incremental approach”, referenced above, is one of the most popular approaches
to source apportionment. The incremental approach compares a background site to the site
of interest (commonly a city); many researchers have utilized the incremental approach
to estimate the influence of background and/or transported PM2.5 [26–28]. For example,
Pitiranggon et al. (2021) utilized data from the USEPA Chemical Speciation Network (CSN)
and the New York City Community Air Survey (NYCCAS) to compare a background site
with 60 sites within New York City (NYC); the comparison was used to examine temporal
changes in local and regional (i.e., background) contributions to PM2.5 levels within the
city [26]. The authors concluded that regional transport of PM2.5 accounted for 25–46% of
total PM2.5 measured in NYC in 2018, a decrease from 2002 when the estimate for regional
PM2.5 transport attribution was 46–57%.

Alternatively, observational data and modelling can be presented together as multiple
lines of evidence for spatial source apportionment. For example, in the Houston area,
Allen and Turner (2008) utilized observational data from Federal Reference Method (FRM)
sampling sites, HYSPLIT modeling, and particle composition to determine the influence
of regional transport on urban PM concentrations [4]. The authors presented the spatial
homogeneity of the PM concentrations as an indicator of the extent of local point source
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strength; localized point sources tend to introduce spatial gradients in observed PM concen-
trations. The data presented suggest that both regional and localized PM emission events
occur at roughly the same frequency in the Houston area. The HYSPLIT model indicated
that high levels of “background” or regional PM2.5 are transported from the eastern part
of the United States into the Texas Gulf Coast. Finally, particle composition allowed the
authors to conclude that there was seasonal and spatial homogeneity across the Houston
sites (i.e., bulk composition was generally similar between sites located in different settings
and at a distance from each other).

In addition to spatial apportionment, PM2.5 emissions can be apportioned by sector.
For example, Thunis et al. (2018) attempted to quantify the origins of air pollution from
a sectoral perspective (transport, residential, agricultural, natural, etc.), and spatial per-
spective (urban, regional, or country level), by using the “Screening for High Emission
Reduction Potentials for Air quality” tool (SHERPA) [5] (the SHERPA tool utilizes source-
receptor relationships (SRR), which are simplified chemistry transport models (CTMs)
that simulate the contribution to concentration levels due to precursor emissions from
one particular area using an emissions inventory). The authors report that a city core’s
PM2.5 contribution (i.e., local contribution) to the overall annual PM2.5 concentration is, on
average (across the 84 cities included), around 26%, with the highest contribution in Milan
at 57%. Additionally, the percentage contribution by sector was found to be city-specific,
even for cities located in the same European country. Paris, Madrid, Berlin, and London
showed a large impact from the transport sector, while cities in Poland, the Baltic area, and
Italy were dominated by residential impacts. Sector source apportionment has also been
conducted in the United States using USEPA CSN; vehicle traffic has been suggested to be
the largest source of PM2.5 in the United States [29].

Statistical methods may also be used to isolate background influence from local PM2.5
influence, but these methods tend to only evaluate specific areas or specific background
sources, and their results cannot necessarily be translated to other areas [30–32]. In these
studies, researchers use regression models to relate total concentrations at a given location
to background concentrations at other locations.

The methods discussed above have clear limitations and can introduce uncertainties
into the results that impact accuracy, interpretability, spatiotemporal resolution, and/or
generalizability. Monitoring can be highly dependent on the location, quality of the mon-
itors, and the frequency and composition of the data from the monitors; however, when
monitoring data are robust, as in our analysis, approaches that utilize observational data are
more reliable and accurate compared to modeling methodologies that may not represent
reality. Models are highly dependent on and limited by the true representativeness of their
inputs, and many have high computational costs. Independent of the method or combina-
tion of methods utilized, the literature clearly demonstrates that local, regional, national,
and even global PM2.5 sources each contribute to the observed PM2.5 levels; however, the
split among these factors varies greatly over time and/or location.

People spend about 70% of their time in their homes [33] and can be exposed to high
levels of PM2.5 while indoors (about 40% of the PM2.5 is from indoor sources and 60% of
the PM2.5 is external PM2.5 that has infiltrated the home) [34]. Despite the large portion of
an individual’s PM2.5 exposure being from indoor sources, the identification, monitoring,
and reduction of national, regional, and local sources of ambient, external PM2.5 has been
the primary focus of legislation in the United States since the late 1990s, as governed by the
Clean Air Act (CAA) [35,36]. Again, such efforts require the ability to identify the portion
of PM2.5 that is attributable to background or local sources and point or non-point sources
to direct targeted, efficient mitigatory and regulatory measures that can help reduce the
risk of adverse health outcomes potentially associated with elevated PM2.5 concentrations.

Despite a continual decrease in national ambient PM2.5 levels in the United States
since 2000 (a 42% decrease across 361 monitoring sites) [37], general average trends cannot
accurately represent local PM2.5 levels experienced throughout the country. Additionally,
while the United States is considered to have overall “good” air quality compared to
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other countries, there can be local, temporal, or spatial increases in PM2.5 concentrations,
potentially exceeding the current health-based National Ambient Air Quality Standards
(NAAQS) for PM2.5 (the current NAAQS are 12 µg/m3 for primary annual average ambient
levels, 15 µg/m3 for secondary annual average ambient levels, and 35 µg/m3 for 98th per-
centile 24-h primary and secondary ambient levels [16]; however, on 6 January 2023, the
USEPA announced its proposed decision to revise the primary (health-based) annual PM2.5
standard from its current level of 12 µg/m3 to within the range of 9.0 to 10.0 µg/m3 [38]).

We focused on the Dallas–Fort Worth metropolitan area as a case study because of the
increased attention on air quality, the U.S. Environmental Protection Agency’s (USEPA)
data availability, the mixture of multiple natural and anthropogenic PM2.5 sources, and the
relatively flat and consistent elevation in the area. Despite being currently in attainment
of the PM2.5 NAAQS, the Dallas core-based statistical area (CBSA) is the fourth most
populated CBSA in the United States [39] and includes a variety of PM2.5 sources. PM2.5 in
Dallas is characterized by peaks in the summer and lows in the late fall and winter [40].
Although many areas of the United States experience PM2.5 peaks in the winter, other
areas experience peaks in the summer because of meteorology and vehicle traffic [40].
Understanding the most significant contributing sources to observed PM2.5 exposure
levels in this region can help identify the key contributing sources that could result in the
most significant potential reductions in PM2.5 exposure. Thus, while this article evaluates
the Dallas–Fort Worth area, utilizing publicly available monitoring data and accessible
methodology, the intent is that this approach simplifies this type of evaluation so that it
may be replicated and utilized by researchers at other locations in the future.

2. Materials and Methods
2.1. Data Download and Data Processing

We downloaded all available 24-h PM2.5 data for the state of Texas from the USEPA’s
Outdoor Air Quality Data download page for 2013 to 2022 [41]. In some cases, a given
monitor location had multiple data points for a given day. These multiple data points
were resolved as follows. Within the USEPA Outdoor Air Quality Data, the Parameter
Occurrence Code (POC) identifies the number of devices measuring the same pollutant
at a monitoring location [42]. Therefore, in cases where the POC was greater than 1, data
points for a given day were averaged. The USEPA Outdoor Air Quality Data also flags
data from monitors of varying quality. Data with the Air Quality System (AQS) Parameter
“PM2.5—Local Conditions” are from Federal Reference Methods (FRM), Federal Equivalent
Methods (FEM), or other methods that are to be used in making NAAQS decisions. Data
with the AQS Parameter “Acceptable PM2.5 AQI & Speciation Mass” are valid data that
reasonably match the FRM but cannot be used in NAAQS decisions. For days in which
there were data with both the AQS Parameter “PM2.5—Local Conditions” and “Acceptable
PM2.5 AQI & Speciation Mass”, the data with AQS Parameter “PM2.5—Local Conditions”
were selected, as this code represents the highest quality data [43]. We subset the dataset to
focus on the monitoring locations within the Dallas CBSA (n = 11). We then log-transformed
the data because it appeared to follow a log-normal distribution.

We also mapped the location of each monitoring location and calculated the distance
between each monitoring location and the nearest roadway and rail line. Total PM2.5
measured at a monitoring location is a combination of local sources and background
influence. Background PM2.5 represents short- and long-range transported PM2.5 from
global-, national-, or metro-scale regional sources combined. Local PM2.5 is defined as PM2.5
not observed at other within-CBSA monitors and is inherently defined by the available
monitoring network included in the analysis. The minimum distance between Dallas CBSA
PM2.5 monitors is 5 km, and the median distance between a Dallas CBSA PM2.5 monitor
and its nearest neighboring monitor is 10 km. The definition of “local” for this analysis can,
therefore, be thought of as a radius of a few km to about 5 km surrounding a given monitor.
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2.2. Total PM2.5 Descriptive Statistics

For each monitoring location in the Dallas CBSA, we calculated total PM2.5 summary
statistics to characterize within- and between-monitor variability. For each monitoring
location, we also calculated an intra-cluster correlation (ICC) coefficient at the month–year
level to aid in regression modeling specification. The ICC is a measure of the similarity
between measurements within a month–year, with a value of zero representing no similarity,
and a value of 1 representing homogenous measurements within a month–year. If the ICC
was statistically greater than zero, the measurements within a month–year were said to be
clustered and were not independent. Subsequent regression models then needed to account
for that clustering to appropriately characterize model precision (i.e., to appropriately
calculate model output standard errors.

Because we evaluated data across a 10-year period, we identified the clusters as
“month–year” to clarify that each month in each year, rather than each month across all
years, is its own cluster (e.g., September 2013 and September 2014 are distinct clusters, and
there is no September cluster).

2.3. Fixed Effects Model Controlling for Temporal Variability

To further characterize between-monitor variability, we built a fixed effects model
using the log-transformed total PM2.5 data that controlled for annual and monthly vari-
ability. Due to differences in year-to-year and month-to-month data availability for each
monitoring location, it is uncertain if any potential differences in mean total PM2.5 concen-
trations observed in the descriptive statistics (Section 2.2) are due to actual concentration
differences by location or differences in data availability. The model also accounted for
clustering at the month–year level. Equation (1) describes the fixed effect model, which is
based in part on the model developed by Karppinen et al. (2004) [30]:

ln(PMijym) = βjlocationj + δy + δm + εijym, (1)

where PMijym is the total PM2.5 concentration for day i in year y and month m at location j,
locationj is an indicator variable for the monitoring location, βj represents the coefficients
for the location indicator variable, δy are the fixed effects for each year, δm are the fixed
effects for each month, and εijym is the model residual. The fixed effects model is most
appropriate because it assumes that there are unmeasured factors that influence total PM2.5
concentrations that are associated with each year and month. We used this model to
calculate 2022-adjusted average total PM2.5 concentrations for each location for each month.
Note that our calculation of the average PM2.5 concentrations differs from the calculation
of the NAAQS summary statistics [44] and is, therefore, not applicable for comparison with
NAAQS standards.

All fixed effects models were developed in the R software program using the “felm”
(i.e., fixed effects linear model) function in the “lfe” package. Fixed effects models, like
simple linear regression models, use ordinary least squares modeling to estimate both the
model coefficients and fixed effects.

2.4. Pairwise Correlation Matrices

To further characterize between-monitor total PM2.5 variability, we calculated Spear-
man correlation coefficients for each Dallas CBSA monitoring location with each of the other
Dallas CBSA monitoring locations. Each pairwise correlation coefficient was populated
into a correlation matrix. We also calculated the distance between each of the monitors and
plotted these distances with each pairwise correlation coefficient.

2.5. Inverse Distance Weighted Background Average Correlations

The correlations described in Section 2.4 can be used to describe the relationship
between total PM2.5 concentrations at one monitor and total PM2.5 concentrations at an-
other monitor. However, they do not account for the relationship between total PM2.5
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concentrations at one monitor and all other nearby monitors. Multivariate regression could
theoretically be used to evaluate the relationship between one monitor and all other nearby
monitors, adjusting for each individual monitor’s relationship, if data are available for
all monitors for many days. However, in our dataset, each monitoring location only had
data available approximately every three days, thus, not satisfying the requirements of
multivariate regression.

Therefore, for each day and for each Dallas CBSA monitoring location, we calculated
the background PM2.5 concentration as the inverse distance weighted (IDW) average of total
PM2.5 concentrations from all other Dallas CBSA monitoring locations with data for that day
(i.e., up to ten monitoring locations (N − 1)). In other words, for each day, each monitoring
location had its own corresponding background average. Inverse distance weighted
average background PM2.5 concentrations were calculated using the following equation:

PMBij =
∑ni

z=1
PMiz

djz

∑ni
z=1

1
djz

, (2)

where PMBij is the 24-h background total PM2.5 concentration for monitor j on date i, PMiz
is the 24-h total PM2.5 concentration for monitor z on date i, djz is the distance between
monitor j and monitor z, and ni is the number of monitors in the Dallas CBSA with valid
data on date i.

2.6. Inverse Distance Weighted Background Average Multivariate Regressions

In addition to background air quality, there are other factors that can influence total
PM2.5 concentrations at a given location on a given day. In Section 2.3, we hypothesized
that each year and month might have a unique effect. Weather may also affect total PM2.5
concentrations. Therefore, weather data from Red Bird Airport in Dallas were downloaded
from the Iowa Environmental Mesonet [45]. Additionally, we hypothesized that each
location might have a unique relationship between its total PM2.5 concentrations and
the background concentration. Therefore, we added to the model from Section 2.3 and
produced a fixed effect model that estimates total PM2.5 as a function of background PM2.5,
location, temporal variables, and weather variables. The model clustered standard errors at
the month–year level. The following equation describes the model:

ln(PMijymd) = βjlocationj + β1PMBij + β2,jlocationj × PMBij +β3Ti + β4Hi + β5Wi +
β6Pi + δy+ δm + δd + εijymd,

(3)

where PMijymd is the total PM2.5 concentration for day i in year y and month m at location j
on day of the week d; locationj is an indicator variable for monitoring location; βj represents
the coefficients for the location indicator variable; PMBij is the IDW estimate of background
24-h PM2.5 for day i and location j; β1 is the coefficient for PMBij; locationj × PMBij is
the interaction term between location and background PM2.5, allowing each location to
have a unique relationship with background PM2.5; β2,j are the coefficients for the location-
background PM2.5 interactions; Ti is the demeaned average temperature in Fahrenheit for
day I; β3 is the coefficient for the temperature variable; Hi is the demeaned average relative
humidity (%) for day i; β4 is the coefficient for the relative humidity variable; Wi is the
demeaned average wind speed in knots per hour for day i; β5 is the coefficient for the wind
speed variable; Pi is the demeaned average atmospheric pressure in millibars for day i; β6
is the coefficient for the atmospheric pressure variable; δy are the fixed effects for each year;
δm are the fixed effects for each month; δd are the fixed effects for each day of the week;
and εijymd is the model residual.

We ran 12 versions of this model, each with month-specific demeaned weather vari-
ables and the month of interest as a referent group and the referent location equal to zero
(i.e., no location) so that the coefficients for the location indicator variable can be inter-
preted as the natural logarithm of the mean total PM2.5 concentration at average weather
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conditions, zero background PM2.5, and at reference conditions (the month of interest in
2022 on a Tuesday) (additional preliminary analyses identified Tuesdays to have average
concentrations most like the overall averages).

Finally, location- and month-specific local attribution were derived by dividing the
local contribution by the 2022-adjusted mean total PM2.5 estimates.

In this fixed effect model, we considered the possibility that the background effect
coefficients (i.e., β1 and β2,j) and the local contribution effect coefficients (i.e., βj) could be
biased due to omitted variable bias (i.e., confounding variables). Namely, unmeasured
variables that are associated with both background PM2.5 concentrations and total PM2.5
concentrations that could bias these coefficients. We hypothesized that time-dependent
PM2.5 -generating activity that does not transport emissions regionally would be positively
correlated with both total concentrations and background concentrations. Essentially, in
our regression, some amount of total PM2.5 contributions (i.e., βj) could be incorrectly
captured in the background effects (i.e., β1 and β2,j), rather than in the local effects (i.e., βj).
This activity could, therefore, bias the background effects upwards and the local effects
downwards. To assess the potential for such omitted variable bias, we conducted the
following sensitivity analysis.

2.7. Sensitivity Analysis: Texas Correlations

We developed the same correlation matrices as in Section 2.4 but for all EPA PM2.5
monitors in Texas, and plotted the results. This sensitivity analysis allows us to observe
if the within-Dallas total PM2.5 correlations are due to common PM2.5-generating activity
patterns or common background PM2.5 sources. In other words, any PM2.5 correlations
could be due to PM2.5-producing activities that vary by day and are common to all urban
areas and not common PM2.5 sources.

We compared Dallas total PM2.5 concentrations with total PM2.5 concentrations in El
Paso. We selected El Paso as a comparison region because it is the urban area in Texas with
available PM2.5 data that is farthest from Dallas. Of all urban areas in Texas, El Paso likely
shares the least background PM2.5 with Dallas; however, as an urban area, El Paso likely
shares some common human activity (i.e., PM2.5-generating activity) patterns with Dallas.

3. Results
3.1. Data Download and Data Processing

From 2013 to 2022, there were 71 unique monitoring locations in Texas, and 11 of those
were located in the Dallas CBSA. Table 1 shows the distance between each Dallas CBSA
monitoring location and the nearest major roadway and rail line.

Table 1. Distance (meters) between monitoring locations and nearest roadways and rail lines.

Monitoring Location Distance to Nearest
Major Road (m) Nearest Road Distance to Nearest

Rail Line (m)
Nearest Rail

Line Type

Arlington Municipal Airport 2346 I-20 7134 Business Lead
Convention Center 132 I-30 290 Main Line
Dallas Bexar Street 222 US Hwy 175 73 Main Line

Dallas Hinton 824 US Hwy 77 74 Spur Line
Denton Airport South 1293 US Hwy 380 1314 Spur Line
Fort Worth California

Parkway North 50 I-20 1032 Main Line

Fort Worth Northwest 472 US Hwy 287 Bus 789 Main Line
Haws Athletic Center 78 State Hwy 199 514 Side Track

Italy 763 State Hwy 34 16,675 Main Line
Kaufman 265 S State Hwy 34 17,714 Spur Line

Midlothian OFW 500 US Hwy 287 1526 Main Line
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Figure 2 presents the locations of the 11 monitors analyzed within the Dallas CBSA; the
maximum distance between the monitors contained within the Dallas CBSA was 120 km,
while the closest monitors were about 5 km apart.
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Figure 2. Location of Dallas–Fort Worth CBSA USEPA monitors (n = 11) shown at dots. Major
roadways and railways are shown as lines with railways shown as hatched lined.

3.2. Total PM2.5 Descriptive Statistics

Table 2 shows the raw summary statistics for each Dallas CBSA monitoring location.
Additionally, we have included the temporal extent of each monitoring location’s data. In
terms of between-monitor variability, the raw mean 24-h total PM2.5 ranged from 7.5 µg/m3

(Kaufman) to 9.6 µg/m3 (Convention Center; Dallas Bexar Street). Note that while there are
small differences in the calculated means and medians, the overall ranges of observed 25th
to 75th percentiles from each of these locations are nearly indistinguishable; the interquartile
ranges (IQRs) ranged from 4.3 µg/m3 (Midlothian OFW) to 5.4 µg/m3 (Dallas Hinton).
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Table 2. Raw Dallas CBSA 24-h total PM2.5 summary statistics (µg/m3).

Monitoring Location 25th
Percentile Median Mean 75th

Percentile Maximum IQR Date Range

Arlington Municipal
Airport 5.6 7.5 8.4 10.2 33.3 4.6 1/1/2013–12/3/2018

Convention Center 6.5 8.7 9.6 11.7 39.4 5.2 1/1/2013–9/30/2022
Dallas Bexar Street 5.9 8.3 9.6 10.3 54.6 4.4 2/1/2022–12/4/2022

Dallas Hinton 5.8 8.2 9.0 11.2 49.2 5.4 1/1/2013–12/31/2022
Denton Airport South 5.1 7 7.8 9.5 52 4.4 1/1/2013–12/31/2022
Fort Worth California

Parkway North 5.9 7.9 8.6 10.5 49.3 4.6 3/22/2015–12/31/2022

Fort Worth Northwest 6.2 8.2 9.1 11.1 50 4.9 1/1/2013–12/31/2022
Haws Athletic Center 6.1 8 8.9 10.8 53.2 4.7 1/1/2013–12/28/2022

Italy 5.4 7.4 8.3 10.3 31.7 4.9 1/1/2013–12/5/2016
Kaufman 4.9 6.8 7.5 9.3 48.7 4.4 1/1/2013–12/31/2022

Midlothian OFW 5.7 7.6 8.4 10 45.3 4.3 1/1/2013–4/23/2022

Within each month–year, depending on the location, the ICC was 0.15 to 0.26 and
statistically greater than zero, suggesting that the observations within each month–year are
not independent, and that calculation of standard errors should involve clustering.

3.3. Fixed Effects Model Controlling for Temporal Variability

Demonstrating the clustering effect at the month–year level provided justification for
building the model parameterized in Equation (1). Exponentiating the coefficients from
that model allowed us to calculate 2022-adjusted mean total PM2.5 concentrations for each
monitoring location and each month, as seen in Figure 3 and Table S1. In January, the month
with the lowest mean concentrations, the mean 24-h total PM2.5 concentration ranged from
5.0 µg/m3 (Kaufman) to 6.4 µg/m3 (Convention Center; Dallas Bexar Street). The 95%
confidence limits span from about 1.0 µg/m3 (Denton Airport South; Italy; Kaufman) to
1.9 µg/m3 (Dallas Bexar Street). In July, the month with the highest mean concentrations,
the mean 24-h total PM2.5 concentration ranged from 8.7 µg/m3 (Kaufman) to 11.1 µg/m3

(Convention Center; Dallas Bexar Street). The 95% confidence limits spanned from about
2.1 µg/m3 (Denton Airport South; Kaufman) to 3.6 µg/m3 (Dallas Bexar Street). March
and April had the median mean concentrations (i.e., average concentrations most similar
to the annual average). During March, mean total concentrations ranged from 5.7 µg/m3

(Kaufman) to 7.2 µg/m3 (Convention Center; Dallas Bexar Street). During April, mean
total concentrations ranged from 6.0 µg/m3 (Kaufman) to 7.6 µg/m3 (Convention Center;
Dallas Bexar Street).

3.4. Pairwise Correlation Matrices

Within the Dallas CBSA, we developed pairwise 24-h total PM2.5 concentration corre-
lation matrices. Table S2 shows the Spearman correlations. Spearman correlations ranged
from 0.73 to 0.92. Figure 4 shows how the Spearman correlations vary by distance.

3.5. Inverse Distance Weighted Background Average Correlations

For each monitoring location and each day that the monitoring location had data, we
calculated the corresponding background (i.e., from surrounding monitors in the Dallas
CBSA from 5 to 120 km away) IDW average PM2.5 24-h concentration; summary statistics
for the background data are included as Table S3. These data are not adjusted for temporal
variables but are directly comparable with the total concentration data presented in Table 2.
We have also included the mean difference between the total and background weighted
average. A positive value indicates that the background weighted average is greater
than the total concentration, and a negative value indicates that the total concentration is
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greater than the background weighted average. The mean difference between the total and
corresponding background data ranged from −0.7 µg/m3 to 1.1 µg/m3.
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Each monitoring location’s measured total concentration dataset was highly correlated
with its calculated IDW average background concentration dataset, as seen in Table 3.
Spearman correlations ranged from 0.86 to 0.94.

Table 3. Correlation between each monitoring location’s measured total 24-h PM2.5 concentration
and its calculated IDW average background 24-h PM2.5 concentration.

Monitoring Location Spearman Correlation

Arlington Municipal Airport 0.92
Convention Center 0.93
Dallas Bexar Street 0.87

Dallas Hinton 0.88
Denton Airport South 0.91

Fort Worth California Parkway North 0.90
Fort Worth Northwest 0.92
Haws Athletic Center 0.86

Italy 0.86
Kaufman 0.94

Midlothian OFW 0.89

3.6. Inverse Distance Weighted Background Average Multivariate Regressions

Because total and background PM2.5 are highly correlated, we built fixed effect models
that regressed total concentration on the monitoring location, while adjusting for back-
ground concentrations and other potential confounders. These regressions allowed us to
estimate mean total concentrations at each location that are independent of background
concentrations (i.e., local contributions). We also allowed each monitoring location to have
a unique relationship with its background concentrations by including an interaction effect
in the model. Based on the outputs of these fixed effects models, we constructed Figure 5,
Table 4 and Table S4.
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Table 4. The adjusted 1 effect of background PM2.5 concentration on total PM2.5 concentration
by location.

Background Effect
(% Increase per 1 µg/m3 Background PM2.5 Increase)

Monitoring Location Mean 95% LCL 95% UCL

Arlington Municipal Airport 10% 9% 11%
Convention Center 9% 7% 10%
Dallas Bexar Street 9% 8% 11%

Dallas Hinton 10% 9% 11%
Denton Airport South 10% 10% 11%
Fort Worth California

Parkway North 10% 9% 11%

Fort Worth Northwest 9% 8% 10%
Haws Athletic Center 9% 9% 10%

Italy 10% 9% 11%
Kaufman 10% 9% 11%

Midlothian OFW 9% 8% 9%
1 Adjusted for year, month, day of the week, temperature, relative humidity, atmospheric pressure, and wind
speed. Standard errors clustered at the month–year level.

As seen in Figure 5 and corresponding Table S4, in January, the month with the lowest
mean local contributions, the local PM2.5 contributions ranged from 2.6 µg/m3 (Denton
Airport South; Kaufman) to 3.6 µg/m3 (Convention Center). The 95% confidence limits
spanned from about 0.4 µg/m3 (several locations) to 0.9 µg/m3 (Dallas Bexar Street). In
July, the month with the highest local PM2.5 contributions, the local PM2.5 contributions
ranged from 2.9 µg/m3 (Kaufman) to 4.1 µg/m3 (Convention Center). The 95% confi-
dence limits spanned from about 0.6 µg/m3 (several locations) to 1.1 µg/m3 (Dallas Bexar
Street; Convention Center). December and May had the median mean local contributions
(i.e., average concentrations most similar to the annual average). During December, mean
local concentrations ranged from 2.7 µg/m3 (Kaufman) to 3.8 µg/m3 (Convention Cen-
ter). During May, mean concentrations ranged from 2.8 µg/m3 (Kaufman) to 3.9 µg/m3

(Convention Center; Dallas Bexar Street).
The local attribution percent describes the portion of total PM2.5 that is attributed

to local PM2.5 sources. Figure 6 and corresponding Table S5 show the estimated local
attribution percent estimates for each monitoring location in each month. As seen in
Figure 6, the month with the lowest local attribution was July, in which local attribution
ranged from 33% (Denton Airport South; Arlington Municipal Airport; Dallas Hinton;
and Fort Worth California Parkway North) to 37% (Midlothian OFW; Convention Center).
The months with the highest local attribution were January and November, in which
local attribution ranged from 51% (Denton Airport South; Arlington Municipal Airport;
Dallas Hinton; and Fort Worth California Parkway North) to 57% (Midlothian OFW;
Convention Center).

As seen in Table 4, on average, for each 1 µg/m3 increase in background 24-h PM2.5,
the total PM2.5 increased by 9% to 10%.

3.7. Sensitivity Analysis: Texas Correlations

The sensitivity analysis revealed that as the distance between monitors increased, the
total PM2.5 concentrations became less correlated. The Dallas CBSA monitoring locations
were most correlated with each other, as seen in Figure S1. The Dallas CBSA monitoring
locations were not correlated with some monitors in another urban area, El Paso. For exam-
ple, the Spearman correlation coefficients between the 11 Dallas monitoring locations and
the Ascarate Park SE monitoring location in El Paso ranged from 0.0003 to 0.13. Similarly,
the Spearman correlation coefficients between the 11 Dallas monitoring locations and the
El Paso Chamizal monitoring location in El Paso ranged from 0.01 to 0.15. See Figure 7 for
a map of all the Texas monitoring locations.
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Figure 7. USEPA monitors (dots), major roadways (lines), and railroads (lines with hash marks);
distance to the closest roadway is demonstrated by the pink circle around each monitor, while
distance to the closest railroad is represented by the red circle around each monitor.

4. Discussion

In this study, we used fixed effects models and publicly available 24-hour PM2.5
data from the USEPA to calculate average total PM2.5 concentrations in the Dallas–Fort
Worth area and the average contribution of background versus local sources near Dallas-
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area PM2.5 monitors. During March and April, the months with the median mean total
concentration, mean total concentrations ranged from 5.7 µg/m3 (Kaufman in March) to
7.6 µg/m3 (Convention Center and Dallas Bexar Street in April) (Figure 3 and Table S1).
During the same months, mean local contributions ranged from about 2.7 µg/m3 (Kaufman
in March) to 3.9 µg/m3 (Convention Center in April) (Figure 5 and Table S4). Based on
comparisons of the mean total PM2.5 concentrations and mean local contributions (Table S5),
we conclude that background and local sources each contribute about half of the total PM2.5
at a given location within the Dallas–Fort Worth area.

As described below, the higher PM2.5 concentrations experienced in the summer
months appear to be mostly related to background influences and not local contributions
—although the specific nature of such seasonal differences has not been identified. Local
contributions seem to vary less than total concentrations. For example, at Arlington
Municipal Airport, the mean total PM2.5 concentration in July, the month with the highest
mean total concentrations, is 74% greater than the mean total PM2.5 concentration in
January, the month with the lowest mean total concentrations. Meanwhile, the mean local
contribution in July, the month with the highest mean local contributions, is 13% greater
than the mean in January, the month with the lowest mean local contributions.

Therefore, the percentage of total PM2.5 attributed to local vs. background sources
varies throughout the year. In January, the month with the lowest mean total PM2.5
concentrations, local attribution ranged from 51% to 57%. In July, the month with the
highest mean total PM2.5 concentrations, local attribution ranged from 33% to 37%. Thus,
the higher concentrations experienced in the summer appear to be mostly attributed to
background influences, not local contributions.

While source attribution varies by city and/or area, this finding that, on average,
roughly half of the PM2.5 concentration is attributable to local sources falls within the
attribution ranges previously reported [5,20,26–28]; specifically, a similar finding was
reported for Houston, a similarly large, metropolitan area in Texas [4].

Within each month, we found that local (i.e., all non-background sources) contributions
only ranged by about ±0.5 µg/m3 across the entire Dallas–Fort Worth area. There was also
considerable overlap among the 95% confidence intervals for these total non-background
source contribution estimates, suggesting that the range of influence by local point sources
is relatively modest. Given that government agencies design their air quality monitoring
networks to capture a range of exposures [46], it is possible that the requirements for
monitor placement may explain some of the variability both in mean total concentration
and mean local contribution.

Apportioning among background and local PM2.5 source contribution is important
because accurately identifying potential sources can assist in later evaluating the effective-
ness of various mitigation efforts and regulatory approaches. However, it is important
to recognize that the local contribution can be further apportioned to differentiate more
widely dispersed local non-point sources from geographically-limited local point sources.
Common local non-point sources can include exhaust, re-suspension of dust and salt, and
brake, tire, and equipment ware from local transport (gasoline and diesel-powered vehicles,
railroads, and ships). Local PM2.5 point sources can (depending on the scale) include
individual heating sources (residential and commercial), biomass burning, dust from con-
struction, and certain industrial activity and emissions (energy generation, biproducts,
disturbance of materials, etc.) [4,5,47].

To investigate the potential impact of non-point sources at our 11 monitoring locations,
we conducted a linear regression between the mean local contributions in May in Figure 5
and Table S4 and distances to roadway and rail line in Table 1, as seen in Appendix A.
We selected May as the analysis month because we found that median local contributions
occurred in May. We found that distance to roadway was inversely correlated with log-
concentration with marginal significance, and distance to rail line was inversely correlated
with log-concentration with statistical significance; see Figure 7 for location of closest
major roadway and rail line. These regressions rely on a small sample size (i.e., 11 mon-
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itoring locations), and a more thorough analysis would likely account for traffic or train
volume; however, these regressions do suggest that sources such as roadways and trains
could explain a significant portion of the variability in mean concentrations and/or mean
local contributions.

The results in Dallas are similar to those previously reported for the area, which
have identified and reported significant fractions of overall PM2.5 as attributable to local
non-point sources (i.e., vehicle traffic) [20]. Similarly, in cities of South Texas, anthropogenic
emissions from on-road and off-road traffic from nearby highways were identified as
major local contributors [48]. For example, in Houston, the primary non-point sources
contributing to overall PM2.5 mass on days not influenced by wood smoke (e.g., wildfires)
included diesel-powered vehicles (21%, 22%, and 20%) and gasoline vehicles (17%, 12%,
and 9%) [47]. Likewise, our results are similar to results in other cities in the southern part
of the United States that rely upon non-public modes of transportation (e.g., Atlanta, GA,
USA), where researchers have apportioned a large proportion of observed PM2.5 to traffic-
related emissions [4,49,50]. In large European cities (e.g., Paris, Madrid, London), road
transport represented up to 39% of overall PM2.5 levels [5]. Previously reported average
PM2.5 concentrations of local transport-related emissions range from 0.1 to 2.0 ± 0.2 µg/m3

for major roadways [51], 0.52 ± 0.43 µg/m3 to 1.36 ± 1.30 µg/m3 for oil combustion [28],
1.30 ± 1.26 µg/m3 for highway vehicles [28], and 0.35 ± 0.36 µg/m3 to 2.16 ± 1.32 µg/m3

for diesel [28], depending on the city and/or monitor location (e.g., distance to highway or
major roadway). The Dallas–Fort Worth metropolitan area heavily relies on vehicles for
transportation; the vast majority of people are reported to drive alone to work, with an
average commute time of 28.4 min [52]. Additionally, the average car ownership in Dallas,
TX, USA, was two cars per household [52]. Thus, it would make sense for a major portion
of the local PM2.5 to be attributable to the transportation sector.

The remaining PM2.5 concentration not explained by background or local non-point
source PM2.5 could be attributed to a spectrum of potential local point sources (e.g., in-
dividual residential, commercial, or industrial sources) or additional non-point sources
(e.g., increased traffic volume, as compared to distance to traffic). However, variability
in mean local contribution estimates is limited across the entire Dallas CBSA, despite the
variety of monitor locations (i.e., some monitors are located by airports, in residential areas,
and in commercially dense downtown areas). Some monitoring locations do have local
contribution estimates above the mean local contribution; in such cases, it appears that the
remaining local contribution is most likely attributable to concentration variations in the
portion of non-point source (e.g., vehicles) emissions that do not transport regionally, rather
than significant contributions from individual point sources. This is in agreement with
other studies that report small percentages attributable to point sources, as compared to
non-point source; for example, in the same Houston study cited above, wood combustion
(5%, 5%, and 4%), and meat cooking (8%, 3%, and 6%) were found to be significantly
smaller fractions as compared to traffic-related sources [47]. In other words, it appears that
the limited variability in, and majority of, local contribution estimates in the Dallas CBSA
is due to a ubiquitous source, such as transportation, rather than to a distributed array of
point sources that all by chance amount to approximately the same contribution.

To a small extent, we expect the correlations between PM2.5 concentrations at a loca-
tion and background PM2.5 to be attributable to residual confounding (i.e., bias). In other
words, pollution-generating activity (e.g., driving, heating, and industrial patterns) is likely
time-dependent. Past research has shown that PM2.5 can travel thousands of kilometers, de-
pendent on conditions [3–5]. But even if there were no direct connection between locations,
there may still be correlations between monitoring locations’ total PM2.5 concentrations
because of common temporal patterns in PM2.5-generating activity. Thus, the background
effects shown in Table 4 likely incorporate the influence of both common regional sources
and common patterns in PM2.5-generating activity. However, we believe the influence
of common PM2.5-generating activity patterns is limited because of our sensitivity anal-
ysis. The residual confounding from common PM2.5-generating activity patterns would
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bias the background effect estimates upward. However, measurement error in inverse
distance-weighted background concentration estimates would bias these background ef-
fect estimates low. Some amount of measurement error in the background concentration
estimates is expected because the true value of the relevant background concentration is
unknown. Additionally, our estimates rely only on available monitoring data and do not
account for all contributing background area sources. That error could either be unbiased
because the Texas Commission on Environmental Quality (TCEQ) monitors a range of con-
ditions, or the background concentration estimates could be biased high because the TCEQ
may oversample areas with relatively high concentrations. Regardless, the background
concentration estimate error would bias the background effect estimates downward. The
combined effect of residual confounding and background concentration measurement error
is unknown but is expected to cancel out to some extent.

In our sensitivity analysis relating to the influence of common PM2.5-generating ac-
tivity, distance, not urbanicity, is the key predictor of correlation between two monitor
locations’ PM2.5 concentrations. If common patterns in PM2.5-generating activity (i.e., ur-
banicity) were the dominant influence in the background effect in Table 4, one would expect
faraway urban areas (e.g., Dallas and El Paso) to still be highly correlated. However, we
demonstrated that faraway urban areas were correlated in only a limited capacity. There-
fore, we believe the background effects in Table 4 could be biased high, if at all—but if so,
by an amount unlikely to change the overall conclusions of this study. Similarly, the local
contribution estimates may be biased low, but again by an amount unlikely to change the
overall conclusions of this study. Furthermore, we expect any biases to be relatively similar
for each location. There is no reason to believe that the omitted variable bias would vary by
location, especially given the limited variability in local contributions to PM2.5 concentra-
tions, the limited variability in background effects, and the consistently strong correlations
between each location’s total concentrations and corresponding background concentrations.

One strength of our analysis is the calculation of temporally-adjusted mean total
PM2.5 concentrations using fixed effects models. The available USEPA data ranged in
completeness, from newer or incomplete data sets (e.g., the Dallas Bexar Street monitor,
which has the shortest operating duration from 2/1/2022–12/4/2022), to more established
datasets (e.g., the Dallas monitors that have operated from 1/1/2013–12/31/2022). When
comparing PM2.5 datasets with the same temporal extent, a temporal adjustment is likely
less important, unless there are large data gaps or a reason to believe there is systematic
sampling bias. PM2.5 datasets with different temporal extent should be compared only for
screening purposes (e.g., in Table 2), but generally should not be the basis for decision-
making. Additionally, by log-transforming our data and clustering standard errors, we can
appropriately estimate total PM2.5 central tendencies and our precision in those estimates.

Our analysis also used up to 10 monitors to create a measure of background air
pollution for each monitoring location. IDW allowed us to distill data from multiple
surrounding monitors into one measurement and circumvent gaps in data overlap. Other
methods, such as multiple imputation or machine learning, may have also sufficed to
address gaps in data overlap.

While our analysis has good temporal resolution and extent (all available 24-h USEPA
data for 10 years), our primary analysis only covers 11 point locations in the Dallas CBSA.
These 11 Dallas monitoring locations do not represent the full spatial variability of PM2.5
in Dallas; however, the TCEQ selected these locations to represent a range of conditions,
including areas of relatively poor air quality. It is possible that monitoring locations may
even oversample such areas [46,53]. Note that our 2022-adjusted mean total PM2.5 concen-
tration estimates are comparable to the EPA’s Office of Air Quality Planning and Standards’
(OAQPS) annual average PM2.5 estimates within the Dallas–Fort Worth metropolitan area
(counties considered within the Dallas–Fort Worth Metropolitan Area include Collin, Dallas,
Denton, Ellis, Hood, Hunt, Johnson, Kaufman, Parker, Rockwall, Somervell, Tarrant, and
Wise) that ranged from 8.57 µg/m3 to 10.0 µg/m3; the OAQPS’ estimates are derived using
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a fusion of the monitoring data from 2018 and Community Multiscale Air Quality (CMAQ)
air quality modeling [51,52].

Another limitation of our study is that we have poor data availability in some cases
(e.g., the Dallas Bexar Street monitoring location did not operate until February 2022, and
the Arlington Municipal Airport and Italy monitoring locations did not operate through
2022). Therefore, 2022-adjusted values should be interpreted as modeled values, not
based solely on measurements, that rely on trends across all Dallas CBSA monitors to
provide a best estimate. Nevertheless, this paper provides a methodology for estimating
concentrations when data may be limited.

Note that while our analysis utilizes 24-h PM2.5 concentrations, within 24-h periods,
PM2.5 concentrations will be both greater and less than the mean 24-h concentrations
estimated herein; however, utilizing 24-h PM2.5 concentrations corresponds with the USEPA
NAAQS, which are developed specifically with public health in mind [36].

While these findings are specific to the Dallas–Fort Worth area and are appropriate to
reference, the specific source apportionment determined here should not be extrapolated to
locations outside the area of interest without verification; past studies have indicated high
variability in source attribution depending on area and/or city [4,25].

5. Conclusions

The Dallas–Fort Worth area has received increased attention surrounding concerns of
poor air quality, specifically for particulate matter and ozone. We have demonstrated that
in order to determine the major sources of local PM sources, the background contribution
must first be accounted for and understood. Our findings suggest that in order to most
efficiently decrease observed PM2.5 across the entire Dallas–Fort Worth geographic area,
the primary focus should be on regional (i.e., metro-scale) sources and policies that regulate
non-point sources (i.e., transportation).

When evaluating local non-point source or point source contributions to total PM2.5
concentrations, a thorough and reliable analysis is needed. While our results indicate that
background PM2.5 sources contribute about half of the observed PM2.5 at an individual
location within the Dallas CBSA, we recommend that this technical approach be utilized for
any unique location within the Dallas–Fort Worth area as this background influence may
vary slightly by the monitor’s surroundings. By utilizing publicly available monitoring
data and accessible methodology, we present this approach as a roadmap for evaluating
PM2.5 concentrations to optimize any potential mitigatory, regulatory, and/or community
efforts to reduce PM2.5 concentrations towards the appropriate spatial scale (i.e., local,
regional, or state) and sectoral emissions sources (i.e., residential, industrial, transport, etc.).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/air1040019/s1, Table S1: 2022-adjusted mean daily total PM2.5 concentration
by location and month; Table S2: Spearman correlation matrix of 24-h total PM2.5 concentrations in the
Dallas CBSA; Table S3: Raw IDW Average Background Dallas CBSA 24-h PM2.5 summary statistics;
Table S4: 2022-adjusted mean 24-h local PM2.5 contributions by location and month; Table S5: Mean
local PM2.5 attribution proportions by location and month; Figure S1: Pairwise Spearman correlations
between Dallas monitoring locations and other Texas monitoring locations.
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Appendix A. Multivariate Regression Relating Mean Local Effect to Distance to
Roadway and Rail Line

We hypothesized that one explanation for the variability in mean local contributions
(Figure 5 and Table S4) may be the monitoring locations’ distances from roadways and rail
lines. Therefore, we built a multivariate linear regression that related these variables. The
form of the regression was as follows:

βj = β7 + β8 ∗ Roadj + β9 ∗ Railj, (A1)

where βj is the local contribution effect for location j estimated in equation 3 with refer-
ence month May, Roadj is the distance between location j and the nearest road, β8 is the
coefficient for the road distance variable, Railj is the distance between location j and the
nearest rail line, and β9 is the coefficient for the rail distance variable. We selected May as
the analysis month because we found that median local contributions occurred in May.
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