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Abstract: A typical retailer carries 10,000 stock-keeping units (SKUs). However, these numbers
may exceed hundreds of millions for giants such as Walmart and Amazon. Besides the volume,
SKU data can also be high-dimensional, which means that SKUs can be segmented on the basis of
various attributes. Given the data volumes and the multitude of potentially important dimensions to
consider, it becomes computationally impossible to individually manage each SKU. Even though
the application of clustering for SKU segmentation is common, previous studies do not address
the problem of parametrization and model finetuning, which may be extremely tedious and time-
consuming in real-world applications. Our work closes the research gap by proposing a solution that
leverages automated machine learning for the automated cluster analysis of SKUs. The proposed
framework for automated SKU segmentation incorporates minibatch K-means clustering, principal
component analysis, and grid search for parameter tuning. It operates on top of the Apache Parquet
file format, an efficient, structured, compressed, column-oriented, and big-data-friendly format.
The proposed solution was tested on the basis of a real-world dataset that contained data at the
pallet level.
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1. Introduction

Supply chains encompass manufacturing procurement, material handling, transporta-
tion, and distribution [1]. Demand propagates upstream as the information flow and supply
responses in the form of commodity flow. However, supply cannot immediately match
the demand due to various physical limitations involved in this process. For example,
factories can produce only a certain number of items, trucks cannot exceed speed limits,
and the capacity and number of container ships are constrained. The lead times might
also be several weeks or even months in global supply chains. In this regard, inventory
management is essential, since the inventory plays the role of a buffer against uncertainty
and ensures business continuity across supply chains [2].

The importance of managing inventory is also illustrated by the US Department of
Commerce, which regularly keeps track of inventory value held in different parts of the
supply chain. In April 2022, USD 2.27 trillion were held in inventory across all types of
business [3]. The retail industry alone accounted for USD 662 billion, approximately 17%
of which was held by e-commerce [4]. As Figure 1 shows, these values recovered from the
pandemic shocks and are on the rise.

Humanity has engaged in inventory management, at least in some primitive form,
since it started gathering and stockpiling the planet’s resources. However, the rigorous
approach of prioritizing items for management attention can be dated back to Joseph Moses
Juran [5]. Since a typical inventory system could contain an immense number of items
with unique characteristics such as price, demand, and physical properties, analyzing them
individually would outstrip anyone’s managerial effort and attention. That is why retailers
frequently use stock-keeping-unit (SKU) segmentation to guide themselves in planning,
buying, and allocating products [6]. The common purposes for SKU segmentation include:
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• Selecting an appropriate inventory control policy [7,8].
• Understanding the demand patterns [9].
• Optimal allocation under the limited storage capacity [10].
• Selecting an appropriate supply-chain strategy [9].
• Evaluating the environmental impacts of inventory throughout its life cycle [11].

Figure 1. Value of inventories held for sale at the retail level. The figure was produced on the basis of
data reported by the U.S. Census Bureau [3].

Every customer sees SKUs on a daily basis as barcodes in the grocery stores or items
on the e-commerce platforms. A typical retailer carries 10,000 SKUs [6]. For giants such as
Walmart, the number exceeds 75 million [12]. However, the e-commerce industry typically
operates with an even more extensive catalog of items. A genuinely gargantuan case
is the Amazon marketplace, acting as the home for more than 350 million SKUs [13].
Considering the extension of the supply chain directly into inhand devices through the
adoption of digital technologies, and consumers’ impatience, the future scale of the e-
commerce industry can be expected to skyrocket.

Besides the volume, SKU data can also be distinguished by the high dimensionality,
which means that SKUs can be segmented on the basis of various attributes. The most
traditional way is the ABC classification method, which segments the SKUs on the basis
of sales volume. The underlying theory of this segmentation method is the 20–80 Pareto
principle. The principle suggests that 20% of SKUs generate approximately 80% of total
revenue. Therefore this 20% should constitute the category that deserves the most attention
from management. ABC segmentation utilizes only one dimension to segment the SKUs
that, on the first hand, facilitates implementation [14]. However, on the other hand, SKUs
within the segment can have substantially different characteristics. For example, two SKUs
may have similar contributions to the revenue, but one may have a high unit price but low
demand, and the other may have a low unit value but high demand. Indeed, it would be
wrong to manage these SKUs under the same strategy. The physical properties of the SKU
are another example. ABC segmentation does not consider perishability, which is essential
for grocery retail. The weight and height of the loaded pallet can be crucial if the business
operates under the constrained storage space, which is the case for retail chains in dense
urban areas [10].

Given the data volumes and the multitude of potentially important dimensions to
consider, it becomes computationally impossible to individually manage each SKU. In
this regard, the prominent question arises: “How to aggregate SKUs so that the result-
ing management policies are close enough to the case where each SKU is considered
individually?” Our paper aims to answer this long-standing question by taking advan-
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tage of state-of-the-art big-data technologies and automated machine-learning (AutoML)
approaches [15].

The remainder of this paper is organized as follows. Section 2 presents the related
work and highlights the research gap. Section 3 introduces the methodology at a high
level and provides the rationale behind the choice of the individual components. Section 4
demonstrates how the proposed framework functions on the basis of a real-world dataset.
Section 5 highlights the potential advantages of the proposed framework, and discusses
several use cases along with managerial implications. Lastly, Section 6 summarizes the
paper and suggests promising directions for future research.

2. Related Work and Novelty

Considering the size and dimensionality of SKU data, and the market pressure on
businesses to make critical decisions quickly, it is frequently not computationally feasible
to treat every item individually. An alternative would be to define groups while taking
into account all product features that notably influence the operational, tactical, or strategic
problem of interest. These features can vary depending on the problem of interest, and go
beyond the revenue and demand attributes used in classical ABC analysis. Clustering in
particular and unsupervised machine learning in general are the most natural approaches
to creating groups of SKUs that share similar characteristics [16].

Early attempts to group SKUs using cluster analysis go back to Ernst and Cohen, who
proposed the operations related groups method to consider a full range of operationally
significant item attributes. The method is similar to factor analysis and allows for consid-
ering a full range of operationally significant item attributes. The method was initially
designed to assist an automobile manufacturer with developing inventory control poli-
cies [7]. Shortly after that, Srinivasan and Moon introduced a hierarchical-clustering-based
methodology to facilitate inventory control policies in supply chains [17]. Hierarchical
clustering still remains a popular technique. For instance, in a recent study, the authors
proposed a hierarchical segmentation for spare-part inventory management [18]. Even
though such an approach is simple to implement and interpret, hierarchical clustering
has several fundamental shortcomings. First, the method does not scale well because of
the computational complexity compared to more efficient algorithms, such as K-means.
Second, hierarchical clustering is biased towards large clusters and tends to break them.
Third, in hierarchical clustering, the order of the data impacts the final results. Lastly, the
method is sensitive to noise and outliers [19].

Currently, K-means is the most popular clustering technique [20]. The algorithm is
appealing in many aspects, including computational and memory efficiency, and inter-
pretability in low-dimensional cases. The notable applications to SKU segmentation include
Canneta et al., who combined K-means with self-organizing maps to cluster products across
multiple dimensions [21]. Wu et al. applied K-means along with correlation analysis to
identify primary indicators to predict demand patterns [22]. Egas and Masel used K-means
clustering to reduce the time required to derive the inventory-control parameters in a large-
scale inventory system. The proposed method outperformed a demand-based assignment
strategy [23]. Ozturk et al. used K-means to obtain SKU clusters. Then, an artificial neural
network was applied to forecast demand for each individual cluster [24].

It is also essential to highlight the applications of fuzzy C-means to SKU segmentation.
Fuzzy C-means is a form of clustering in which a cluster is represented by a fuzzy set.
Therefore, each data point can belong to more than one cluster. Notable applications
include multicriteria ABC analysis using fuzzy C-means clustering [25]. A recent study
by Kucukdeniz and Sonmez proposed the integrated order-picking strategy based on
SKU segmentation through fuzzy C-means. In this study, fuzzy clustering was applied to
consider the order frequency of SKUs and their weights while designing the warehouse
layout [26]. Fuzzy C-means is an interesting alternative to K-means. However, the fact that
each SKU can belong to more than one cluster is a disadvantage in the business context.
Since businesses must quickly and confidently make critical yes/no decisions, the fuzziness
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of SKU segments does not provide any helpful flexibility for decision making at scale, and
introduces unnecessary layers of complexity. Additionally, the fuzzy C-means method has
the same drawbacks as those of classical K-means. The drawbacks include the a priori
specification of the number of clusters, poor performance on datasets that contain clusters
with unequal sizes or densities, and sensitivity to noise and outliers [27].

In order to overcome the aforementioned shortcomings, preprocessing and dimen-
sionality reduction techniques like PCA are applied to SKU data prior to clustering. For
example, the authors conducted a study on the application of a constrained clustering
method reinforced with principal component analysis. According to the research, the pro-
posed method can provide significant compactness among item clusters [28]. Another study
took advantage of PCA and K-means to segment SKUs for recommendation purposes [29].
In recent work, Bandyopadhyay et al. used PCA prior to K-means to achieve the effec-
tive segmentation of both customers and SKUs in the context of the fashion e-commerce
industry [29].

Table 1 lists the aforementioned clustering-based approaches to SKU segmentation
and groups them in accordance with the utilized method. Even though the combination of
K-means and PCA helps in overcoming some critical problems such as sensitivity to noise
and multicollinearity, it does not address the parametrization problem, namely, the a priori
specification of the number of clusters. Moreover, parametrization becomes even more
sophisticated because the potential user must choose the number of principal components
for PCA. The problem of parametrization and model finetuning can be extremely tedious
and time-consuming in real-world applications. That is why our work attempts to close the
research gap by proposing a framework that leverages AutoML for the automated cluster
analysis of SKUs.

Table 1. Approaches to SKU segmentation.

Segmentation Method Publication

Operations related groups [7]
Hierarchical clustering [17,18]

K-means [21–24]
Fuzzy C-means [25–27]

K-means with PCA [28,29]

3. Materials and Methods

Summarizing the related work, we represent the data pipeline in the following flexi-
ble form: data storage and retrieval, preprocessing and standardization, dimensionality
reduction (PCA), and clustering (K-means). Figure 2 shows an example of such a pipeline
visualized using Orange, a Pythonic data mining toolbox [30]. The pipeline is flexible and
capable of segmenting SKUs in the unsupervised learning setting, which is crucial since
the class values corresponding to an a priori partition of the SKUs are not known [31].

Figure 2. Typical data pipeline for SKU segmentation.
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The popularity of K-means can be justified by the fact that more sophisticated cluster-
ing techniques such as mean shift [32] and density-based spatial clustering of applications
with noise (DBSCAN) [33] do not allow for one to explicitly set the number of clusters
(k in K-means). The finetuning of these algorithms is nontrivially performed by select-
ing “window size” for mean shift and “density reachability” for DBSCAN. Additionally,
the algorithms do not perform well if SKU data contain convex clusters with significant
differences in densities.

The incorporation of PCA, on the other hand, allows for one to improve the clustering
results for two main reasons. First, SKU features can share mutual information and correlate
with each other. Second, it is natural for SKU data to contain some portion of noise due
to the measurement or recording error. On that basis, PCA could be helpful as a tool in
decorrelation and noise reduction [8].

3.1. Data Storage

The underlying data layout, including file format and schema, is an essential as-
pect in obtaining high computational performance and storage efficiency. The proposed
framework for automated cluster analysis works on top of the Apache Parquet file for-
mat. Apache Parquet is an efficient, structured, compressed, binary file format that stores
data in a column-oriented way instead of by row [34]. As a result, the values in each col-
umn are physically stored in contiguous memory locations, which provides the following
crucial benefits:

• Data are stored by column instead of by row. Columnwise compression is space-
efficient because the specific compression techniques to a data type can be applied at
the column level.

• Query processing is more efficient as the columns are stored together. This is because
the query engine can fetch only specific column values, skipping the columns that are
not needed for a particular query.

• Different encoding techniques can be applied to different columns, drastically reducing
storage requirements without sacrificing query performance [35].

As a result, Parquet provides convenient and space-efficient data compression and
encoding scheme with enhanced performance to operate with complex multidimensional
and multitype data.

3.2. Feature Scaling

Feature scaling, also known as data normalization, is an essential step in data prepro-
cessing. Machine-learning techniques such as K-means use distances between data points
to determine their similarity that render them especially sensitive to feature scaling. The
primary role of feature scaling in ML pipelines is to standardize the independent variables,
so they are in a fixed range. If feature scaling is not performed, K-means weigh variables
with greater absolute values higher, severely undermining the clustering outcome [36].

The proposed framework for automated cluster analysis uses min–max scaling, the
most straightforward method that scales features, so they are in the range of [0, 1]. The
min–max scaling is performed according to the following formula:

x′ =
x−min (x)

max (x)−min (x)
, (1)

where x is an original value and x′ is the normalized one.

3.3. Clustering

K-means is the most straightforward clustering method and, as the related work
section revealed, is widely adopted for SKU segmentation purposes. K-means splits n
observations (SKUs in the context of this study) into k clusters. Formally, given a set of
SKUs x = (x1, x2, ..., xn), where each SKU is a feature vector, K-means segments x into k
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sets S = {S1, S2, ..., Sk}minimizing the within-cluster sum of squares, also known as inertia
arg min

S
∑k

i=1 ∑x∈Si
||x− µi||2.

The proposed framework for automated cluster analysis incorporates minibatch K-
means, a variant of K-means clustering that operates with so-called minibatches to decrease
computational time while still attempting to minimize inertia. Minibatches refer to the
randomly and iteratively sampled subsets of the input data. This approach significantly
reduces the computational budget required to converge to a nearly optimal solution [37].
Algorithm 1 demonstrates the key principle behind minibatch K-means. The algorithm
iterates between two crucial steps. In the first step, size observations are sampled ran-
domly to form a minibatch. Then, the minibatch is assigned to the nearest centroid that
updates in the second step. In contrast to the standard K-means algorithm, the centroid
updates are conducted per sample. These two steps are performed until convergence, or a
predetermined stoppage criterion is met.

Algorithm 1 Minibatch K-means [37].

1: Given: k, minibatch size, iterations t, data set X
2: Initialize each c ∈ C with an x picked randomly from X
3: v← 0
4: for i = 1 to t do
5: M← size examples picked randomly from x
6: for x ∈ M do
7: d[x]← f (C, x) . Store the center nearest to x
8: end for
9: for x ∈ M do

10: x ← d[x] . Get cached center for this x
11: v[c]← v[c] + 1 . Update per-center counts
12: η ← 1

v[c] . Get per-center learning rate
13: c← (1− η)c + ηx . Take gradient step
14: end for
15: end for

3.4. Dimensionality Reduction

Observations originated from natural phenomena or industrial processes frequently
contain a large number of variables. A multitude of SKU features that can potentially
impact operational and strategic decisions is a notable example. Therefore, the data
analysis pipelines can benefit from dimensionality reduction in one form or another. In
general, dimensionality reduction can be defined as the transformation of data into a
low-dimensional representation, so that the obtained representation retains meaningful
properties and patterns of the original data [38]. Principal component analysis (PCA) is the
most widely adopted and theoretically grounded approach to dimensionality reduction.
The proposed framework for automated cluster analysis incorporates PCA in order to
decompose a multidimensional dataset of SKUs into a set of orthogonal components, such
that the set of the obtained orthogonal components has a lower dimension, but is still
capable of explaining a maximal amount of variance [39].

Computation for PCA starts with considering the dataset of n SKUs with m features.
The SKU dataset can be represented as the following matrix:

Xn =


x1
x2
...

xn

, (2)

where xi is a ith row vector of length m. Thus, Xn is a n × m matrix whose columns
represent features of a given SKU.
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The sample means x̄n and standard deviations σn can be defined with respect to the

columns x̄n(j) = n−1 ∑n
i=1 Xn(ij) and σn(j) =

√
(n− 1)−1 ∑n

i=1[Xn(ij) − x̄n(j)]
2. After that,

the matrix can be standardized as follows:

Zn =


x1 − x̄n
x2 − x̄n

...
xn − x̄n

diag(σn)
−1, (3)

where diag(σn) stands for a m×m matrix.
Covariance matrix Qn can be defined as Qn = (n− 1)−1ZT

n Zn. So, we can finally
perform a standard diagonalization as follows:

Qn = C−1
n

λ1
. . .

λm

Cn, (4)

where eigenvalues λi are arranged in descending order: λi > λi+1. Transformation matrix
Cn is the orthogonal eigenvector matrix. The rows are the principal components of Qn, and
the value of λi represents the variance associated with the ith principal component [39].

3.5. Validation

Since the ground truth is not known, clustering results must be validated on the basis
of an internal evaluation metric. Generally, inertia gives some notion of how internally
coherent clusters are. However, the metric suffers from several disadvantages. For example,
it assumes that clusters are convex and isotropic, which is not always the case with SKUs.
Additionally, inertia is not a normalized metric, and Euclidean distances tend to inflate in
high-dimensional spaces. Fortunately, the latest can be partially alleviated by PCA [40].

Unsupervised learning in general and clustering in particular approach the problem,
which is biobjective by nature. On the one hand, data instances must be partitioned, such
that points in the same cluster are similar to each other (this property is also known as
cohesion). On the other hand, clusters themselves must be different from each other (a
property known as separation). The silhouette coefficient is explicitly designed to evaluate
the clustering results taking into account both cohesion and separation. The Silhouette
coefficient is calculated for each sample and is composed of two components (a and b).

s =
b− a

max(a, b)
, (5)

where a is the mean distance between a sample and all other points within the same cluster
(measure of cohesion). b is the mean distance between a sample and all other points in the
next nearest cluster (measure of separation) [41].

3.6. Parameter Optimization

Parameter optimization is a common problem in SKU segmentation, and a distinct
issue from the process of dimensionality reduction and solving the clustering problem
itself. Parameter optimization in the context of the unsupervised learning-based SKU
segmentation is the process of determining the optimal number of clusters in a data set (k in
K-means) and the optimal number of principal components (p in PCA) [42]. If appropriate
values of k and p are not apparent from prior knowledge of the SKU properties, they must
be defined somehow. That is where the elements of AutoML come into play. Grid search or
a parameter sweep is the traditional way of performing parameter optimization [43]. The
method performs an exhaustive search through a specified set of parameter space guided
by the Silhouette score.
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The proposed framework for automated cluster analysis is built on top of the pipeline
that has two hyperparameters to be finetuned. Namely, the number of clusters
K = {2, 3, 4, . . .} and the number of principal components P = {1, 2, 3, . . .}. Two sets
of hyperparameters K and P can be represented as a set of ordered pairs (k, p), also known
as Cartesian product P×K = {(k, p) | k ∈ K and p ∈ P}. Grid search then trains the pipeline
with each pair (k, p) and outputs the settings that achieved the highest Silhouette score.

Grid search suffers from the curse of dimensionality, but since the parameter settings
that it evaluates are independent of each other, the parallelization process is straightforward,
allowing for one to leverage the specialized hardware and cloud solutions [44].

Implementation

The proposed framework for automated cluster analysis was implemented entirely
in Python. The reading of the data from the Apache Parquet file format and all the
manipulations with the data structures were performed using Pandas [45], which was
optimized for performance, with critical code paths written in such low-level programming
languages as Cython and C [46].

The unsupervised learning components, including K-means and PCA, were imple-
mented using scikit-learn, an open-source ML library for Python [47]. The scikit-learn
implementation of K-means uses multiple processor cores benefiting from multiplatform
shared-memory multiprocessing execution in Cython. Additionally, data are processed in
chunks of 256 samples in parallel, which results in a low memory footprint [48]. The scikit-
learn implementation of PCA was based on [49]. The data visualization was performed
using Seaborn, a Python data visualization library [50].

4. Results

The proposed framework was tested on the basis of a real-world dataset that contains
SKU data of perishable grocery products at the pallet level. The dataset was provided by a
third-party logistics provider from the Baltic region and contained data at the pallet level.
The study was conducted in a reproducible manner. The data availability section at the
end of this manuscript contains the link to the GitHub repository with the source code and
original dataset.

4.1. Dataset Description

The dataset included 1218 rows that corresponded to the individual SKUs and 4 columns
corresponding to SKU attributes or features. The features included unit price (EUR), num-
ber of units per pallet, gross weight of the loaded pallet (kg), and Pallet height (m).

Table 2 provides descriptive statistics, including measures of central tendency, dis-
persion, and quartiles. Figure 3 sheds light on the shape of the feature’s distribution by
presenting the box plots and kernel density estimation plots. The kernel density estimation
plots are produced by applying kernel smoothing to estimate the probability density func-
tion of the empirical data. Such an illustration immediately provides critical insights into
the data structure. Such features as “unit price”, “number of units”, and “gross weight” are
heavy-tailed and multimodal (trimodal to be more specific).

It is also essential to check the presence of multicollinearity in the dataset. The Pearson
correlation coefficient is the most straightforward approach to measuring the linear rela-
tionship between two features. The coefficient varies between −1 and +1, with correlations
of−1 or +1 implying an exact linear relationship and 0 implying no correlation [51]. Table 3
contains Pearson’s correlation coefficient and the corresponding p-values. The p-values
indicate the probability of a pair of uncorrelated features having a correlation coefficient to
be at least as extreme as the one calculated on the basis of data [51].
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Table 2. Measures of central tendency, dispersion, and quartiles.

Unit Price Number of Units Gross Weight Height

mean 4.8 349.6 244.1 1.1
std 5.1 553.9 118.5 0.25
min 0.01 12.0 10.2 0.36
25% 1.1 72.0 165.8 0.9
50% 2.7 108.0 226.8 1.02
75% 5.6 384.0 293.8 1.05
max 19.8 2400.0 777.6 1.80

Figure 3. Box plots and kernel density estimation plots of the SKU features.

Even though K-means clustering is not severely affected by the presence of multi-
collinearity, correlation coefficients may provide a hint of whether PCA has the potential of
improving clustering results. Besides that, the computation of correlation coefficients and
plotting the features pairwise could reveal the data structure and provide valuable manage-
rial insights. Figure A1 provides the bivariate view illustrating the relationship between
two of the most correlated features, “gross weight” and “unit price”, and describing the
strength of their relationship. Figure A2 illustrates the pairwise relationships in a dataset.
The diagonal plots correspond to a univariate distribution plot demonstrating the marginal
distribution of each feature.

Table 3. Pearson correlation coefficient with corresponding p-values.

Unit Price Number of Units Gross Weight Height

Unit price 1.0 −0.44 (0.0) 0.61 (0.0) 0.02 (0.45)
Number of units −0.44 (0.0) 1.0 −0.31 (0.0) 0.30 (0.0)

Gross weight 0.61 (0.0) −0.31 (0.0) 1.0 0.23 (0.0)

4.2. Numerical Experiment

In order to test the proposed framework, the grid search was performed across the
search space produced by the Cartesian product of K = {2, 3, 4, . . . , 9} and P = {0, 2, 3},
where p = 0 corresponded to the case where PCA was not applied. Figure 4 shows
Silhouette scores of the pipeline with each pair of parameters.

The pipeline with three principal components and five clusters demonstrated the
highest performance (Silhouette score of 0.699). Additionally, five clusters appeared to
be optimal even when PCA had not been applied. However, such a pipeline performed
notably worse (Silhouette score of 0.662). The pipeline with two principal components
and three clusters could be considered as an alternative with the second best performance
(Silhouette score of 0.690). Table A1 contains the Silhouette score values for every pair of
pipeline parameters obtained through the grid-search procedure.
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Figure 4. Silhouette scores calculated across the Cartesian product.

In a real-world setting, decision making could be driven not only by the performance
metric, but also by a plethora of other factors and considerations. For example, even
though the SKU segmentation with three principal components and five clusters yielded
the highest Silhouette score, the priority may be given to the second best solution (two
principal components and three clusters) because fewer clusters are easier to manage.
This relatively simple case reveals an additional advantage of the proposed framework.
Namely, it provides and ranks multiple solutions, but it is up to a manager to make a
final decision considering other factors (potentially non-numerical) initially not taken into
account by the algorithm. Figure A3 shows the pairwise view of the clustering results. The
diagonal plots demonstrate the marginal distribution of each feature within each cluster.
On the basis of visualizations, the potential end user could conclude that the produced
SKU clusters are homogeneous to be treated under common inventory management or
material handling policy.

5. Discussion

This chapter discusses our research contributions and the technological advantages of
the proposed implementation. It also discusses several use cases and provides managerial
implications.

5.1. Research Contributions

The idea of prioritizing items for management attention dates back to the 1950s [5],
and the first attempt to cluster SKUs dates back to the 1990s [7]. As time progresses,
new clustering techniques are applied to this longstanding problem. Nowadays, the most
common techniques include hierarchical clustering, K-means, fuzzy C-means, and K-means
combined with PCA.

Even though hierarchical clustering is simple to implement and interpret at the man-
agerial level, it does not scale well because of the computational complexity. The algorithm
is also biased towards large clusters and tends to break them even if it leads to suboptimal
segmentation. The method is also sensitive to noise and outliers [19].

K-means is appealing in many aspects, including computational and memory effi-
ciency, and interpretability in low-dimensional cases [20]. However, the method requires
the number of clusters to be specified in advance. In business applications, the a priori
specification of the number of clusters is a severe drawback because it requires an additional
effort to parametrize and finetune the model. Additionally, K-means performs poorly on
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datasets that contain clusters with unequal sizes or densities, and is also sensitive to both
noise and outliers [20].

Fuzzy C-means is an alternative to K-means that treats a cluster as a fuzzy set, allowing
for SKUs to belong to more than one cluster. This approach may have theoretical importance.
However, the fact that each SKU can belong to more than one cluster is a clear disadvantage
in the business context. Since supply chains operate under pressure from both supply and
demand, businesses have to make critical decisions quickly and confidently. Therefore, the
fuzziness of SKU segments does not provide any helpful flexibility for decision making at
scale, and introduces unnecessary layers of complexity to decision making [27].

In order to overcome the mentioned shortcomings, preprocessing and dimensional-
ity reduction techniques such as PCA are applied to SKU data prior to clustering. The
incorporation of PCA allows for one to improve the clustering results through decorre-
lation and noise reduction [38]. However, even though the combination of K-means and
PCA helps to overcome some critical problems, it further worsens the parametrization
and finetuning problem because the potential user must choose the number of principal
components and the number of clusters. Our work closes this research gap by proposing
to automate parametrization and finetuning. We propose an AutoML-based framework
for SKU segmentation that leverages grid search along with the computationally efficient
and parallelism-friendly implementations of clustering and dimensionality reduction al-
gorithms. The following subsections shed light on the technological advantages of the
proposed solution and managerial implications.

5.2. Technological Contributions

The proposed framework for automated cluster analysis can work with SKU features
beyond that utilized by a classical ABC approach. The framework operates in an unsu-
pervised learning setting, which is crucial since class values corresponding to an a priori
partition of the SKUs are not known. The optimal number of clusters in a dataset and the
optimal number of principal components are determined through the grid search in a fully
automated fashion using the Silhouette score as a performance estimation metric.

In a real-world setting, decision making could be less straightforward and incorporate
unquantifiable metrics. In this regard, the critical advantage of the framework is that the
grid search examines every possible solution within the search space and ranks them in
accordance with the Silhouette score. Therefore, the end user can select a solution that is
aligned with some potentially unquantifiable managerial insights, but is not necessarily
best according to the performance estimation criteria. Additionally, the framework is
equipped with data-visualization capabilities, which give end users the ability to diagnose
the segmentation validity, choose among alternative solutions, and effectively communicate
results to the critical stakeholders.

The proposed framework is strongly associated with the so-called “no free lunch”
theorem. According to the theorem, there cannot exist a superior algorithm to any com-
petitive one across the domain of all possible problems [52]. In this regard, the question
of whether the proposed framework is inferior or superior to the potential alternative is
meaningless, since its performance would depend on the data generation mechanism and
distribution of feature values. Nevertheless, the following properties should be highlighted
as the indisputable practical advantages of the proposed approach:

• Automatism. Such labor-intensive and time-consuming steps as parameter optimiza-
tion and finetuning are fully automated and do not require the participation of data
scientists or other human experts.

• Parallelism. The proposed framework for automated cluster analysis incorporates
minibatch K-means, a computationally cheap variant of K-means clustering. The
implementation of minibatch K-means uses multiple processor cores benefiting from
multiplatform shared-memory multiprocessing execution in Cython. Additionally,
data are processed in chunks of 256 samples in parallel. The parallelization process
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for the grid search is straightforward as well, which allows for one to leverage the
specialized hardware and cloud solutions.

• Big-data-friendliness. The proposed framework operates on top of the Apache Par-
quet file format, an efficient, structured, compressed, partition-friendly, and column-
oriented data format. The reading of the data from the Apache Parquet file format and
all the manipulations with the data structures were performed using Pandas, which
was optimized for performance.

• Interpretability. Data-visualization capabilities allow for a potential user to diag-
nose the segmentation validity, spot outliers, gain critical insights regarding the data
structure, and effectively communicate results to the critical stakeholders.

• Universality. The optimal number of clusters in a dataset and the optimal number
of principal components are usually not apparent from prior knowledge of the SKU
properties. Since the proposed framework performs an exhaustive search through a
specified set of parameters, it may be applied to any SKU dataset with numeric features
or even extended to similar domains, for example, customer or supplier segmentation.
The latter could be postulated as a promising direction for future research.

5.3. Managerial Implications

Treating thousands of units individually is overwhelming for businesses of all sizes,
and beyond anyone’s managerial effort and attention. Additionally, it may be simply
computationally unfeasible to invoke a sophisticated forecasting technique or inventory
policy at the granular SKU level. Segmentation implies focus, and allows for one to define
a manageable number of SKU groups to facilitate strategy, and enhance various operational
planning and material handling activities.

A classical example involves segmenting SKUs by margin and volume, which allows
for a manager to focus on high-volume and high-margin products [6]. So, a very-high-cost,
high-margin product line with volatile demand would benefit from a flexible and responsive
supply chain. For this line, a company can afford to spend more on transportation to meet
demand and keep the high fill rate. On the other hand, low-cost everyday items with stable
demand can take advantage of a slow and economical supply chain to minimize costs and
increase margins. Additionally, segmenting raw materials may help in applying a better
sourcing strategy, and segmentation based on demand patterns and predictability may
help in estimating the supply-chain resilience and manage risks accordingly. The numerical
experiment demonstrated in our manuscript is an example of SKU segmentation based on
the physical property of goods at the pallet level. Such segmentation is aimed at deriving
SKU clusters that can be treated under common material handling policy.

Other common use cases include a selection of an appropriate inventory control
policy [7], categorizing SKUs by the demand patterns [9], optimal allocation under the lim-
ited storage capacity [10], selecting an appropriate supply-chain strategy [9], and evaluating
the environmental impacts of inventory throughout its life cycle [11].

Real-world supply chains and operations are very dynamic and subject to change.
The company’s product portfolio may change, and it may not know what the margins
and demand patterns will be, or some SKUs are more challenging to handle due to their
physical properties and require longer lead times. In these cases, cluster analysis must be
conducted once again with the updated data that potentially contains new features. That is
where the true power of our solution comes into play. Since the optimal number of clusters
in a dataset and the optimal number of principal components are usually not apparent from
the SKU properties, they must be finetuned. However, parametrization and finetuning are
labor-intensive and time-consuming steps that involve the participation of highly qualified
experts like data scientists or machine-learning engineers. The proposed framework for
automated cluster analysis fully automates finetuning. Therefore, the precious time of the
qualified labor force can be reallocated to other corporate tasks. Additionally, the computa-
tional cheapness and parallelism-friendliness of the proposed framework entail scalability,
which is crucial as a business grows. Besides that, our solution is supplemented with
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data-visualization capabilities that allow for a potential user to diagnose the segmentation
validity, spot outliers, gain critical insights regarding the data structure, and effectively
communicate results to critical stakeholders.

6. Conclusions

A retailer may carry thousands or even millions of SKUs. Besides the volume, SKU
data can be high-dimensional. Given the data volumes and the multitude of potentially
important dimensions to consider, it could be computationally challenging to manage
each SKU individually. In order to address this problem, a framework for automated
cluster analysis was proposed. The framework incorporates minibatch K-means clustering,
principal component analysis, and grid search for parameter tuning. It operates on top of
the Apache Parquet file format, an efficient, structured, compressed, column-oriented data
format; therefore, it is expected to be efficient for real-world SKU segmentation problems
of high dimensionality.

The proposed framework was tested on the basis of a real-world dataset that contained
SKU data at the pallet level. Since the framework is equipped with data-visualization
tools, the potential user can diagnose the segmentation validity. For example, using the
pairwise view of the features after clustering, the user can conclude that the produced SKU
clusters are homogeneous enough to be treated under common inventory management or
material handling policy. The data visualization tools allow for one to spot outliers, gain
critical insights regarding the data structure, and effectively communicate results to critical
stakeholders.

It is also essential to highlight a few limitations of our solution. First, K-means clus-
tering, which constitutes a core of the proposed framework, segments data exclusively on
the basis of Euclidean distance and is thereby not applicable to categorical data. Therefore,
the incorporation of variations in K-means capable of working with non-numerical data
can be postulated as a useful extension of our solution and a promising direction for future
research. K-modes [53] and K-prototypes [54] are preliminary candidates for this extension.
Second, PCA is restricted to only a linear map, which may lead to a substantial loss of
variance (and information) when the dimensionality is reduced drastically. Autoassociative
neural networks, also known as autoencoders, have the potential to overcome this issue
through their ability to stack numerous nonlinear transformations to reduce input into a
low-dimensional latent space [55]. Therefore, exploring autoencoders may also be consid-
ered the second promising direction for future research. Since the proposed framework
performs an exhaustive search through a specified set of parameters, it may be applied
to similar domains, for example, customer or supplier segmentation, which is the third
promising extension and direction for future research.
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Appendix A

Figure A1. Two of the most correlated features, “gross weight” and “unit price”, with bivariate and
univariate graphs.

Appendix B

Figure A2. Pairwise relationships in a dataset. Diagonal plots correspond to a univariate distribution
plot demonstrating the marginal distribution of each feature.
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Appendix C

Figure A3. Pairwise view of features after clustering. Diagonal plots demonstrate the marginal
distribution of each feature within each cluster (numbered from 0 to 4).

Appendix D

Table A1. Silhouette scores values for every pair of pipeline parameters obtained through the
grid-search procedure.

PCs Ks Score

No 2 0.5245
3 0.6196
4 0.6408
5 0.6616
6 0.4670
7 0.4573
8 0.5109
9 0.5212

2 2 0.5650
3 0.6900
4 0.6683
5 0.5637
6 0.5664
7 0.5772
8 0.5846
9 0.5987

3 2 0.5547
3 0.6618
4 0.6913
5 0.6994
6 0.5385
7 0.5435
8 0.5637
9 0.5589
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