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Abstract: Real-time customer purchase prediction tries to predict which products a customer will
buy next. Depending on the approach used, this involves using data such as the customer’s past
purchases, his or her search queries, the time spent on a product page, the customer’s age and gender,
and other demographic information. These predictions are then used to generate personalized recom-
mendations and offers for the customer. A variety of approaches already exist for real-time customer
purchase prediction. However, these typically require expertise to create customer representations.
Recently, embedding-based approaches have shown that customer representations can be effectively
learned. In this regard, however, the current state-of-the-art does not consider activity time. In this
work, we propose an extended embedding approach to represent the customer behavior of a session
for both known and unknown customers by including the activity time. We train a long short-term
memory with our representation. We show with empirical experiments on three different real-world
datasets that encoding activity time into the embedding increases the performance of the prediction
and outperforms the current approaches used.

Keywords: e-commerce; purchase prediction; real-time purchase prediction; embeddings; time
embeddings; customer representation; machine learning

JEL Classification: C45; C53; C55; L81; L86

1. Introduction

The exponential rise in the usage of the Internet has led to e-commerce rapidly becom-
ing an integral part of modern society. The increasing use of portable devices enables more
frequent as well as faster access to the Internet, which makes online shopping and digital
marketplaces now a ubiquitous presence in the lives of consumers around the world [1].
This is also shown by the e-commerce retail sales, which reached USD 5.2 trillion globally
in 2021 and are expected to reach USD 8.1 trillion by 2026 [2]. In this highly competitive
and swiftly evolving industry, companies must be able to make precise predictions about
consumer behavior in order to stay ahead of the curve.

Unlike brick-and-mortar retail, e-commerce offers extensive opportunities to tailor
the shopping experience to customer needs [3]. Therefore, it is necessary to store customer
interaction data from the online store. Over time, this leads to an extensive amount of
interaction data, which is an essential element for customization in e-commerce. Another
necessary prerequisite for this customization is to analyze customer interactions with the
aim to obtain an appropriated behavioral representation model. Such information and
representations are fundamental for companies when planning resources, inventories,
or marketing strategies [4–9]. However, even with this information available, seemingly
simple tasks such as predicting the customer’s purchase intent presents a non-trivial chal-
lenge [10,11]. A key reason for this is that the total number of customers, and thus the
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number of interactions, who visit a website just to browse overshadows the comparatively
few customers who actually have the intention to purchase [12,13]. Nevertheless, the po-
tentials of real-time customer purchase prediction are manifold. In addition to marketing,
there are other use cases. For example, customers with purchase intent who abandon their
session represent a missed opportunity for a company that can potentially be prevented
through targeted personalized just-in-time engagement [14].

In our work, we address this problem and present an approach to predict the customer
purchase intention for an ongoing browsing session in real time, i.e., within 0.1 s [15,16].
Furthermore, we have the constraints that customers can be unknown because they are not
logged in. Alves Gomes et al. [17] proposed an approach to address the aforementioned
purchase prediction use case by combining a learned embedding representation of customer
behavior and a learning model to make a purchase prediction. Embeddings as behavior
representation have the advantages that (1) only minimal information is required, (2) it is
real-time capable, and (3) no extensive feature engineering process is required. However,
the embedding approach of Alves Gomes et al. only considered the customer interactions
but not the time of these customer interactions for representation, which is an important
feature as stated by Esmeli et al. [14]. Specifically, the activity corresponds to the point in
time at which a customer initiates an event that is typically expressed as a timestamp. This
temporal quantification is also applied in the context of our study use cases. This leads to
the underlying two research questions of our work:

1. Is it possible to include information about the time when creating an embedding-based
customer representation?

2. Does such an extension of the embedding representation better represent the customer,
resulting in a better prediction of the customer’s purchase intention?

We propose a two-step approach that consists of a pretrained embedding to represent
the customer behavior and a learning model to predict the customers’ purchase intention
based on the pretrained embedding representation. We extend the embedding customer
behavior representation by the point in time of customer interactions. In our experiments,
we consider three different approaches with which time can be encoded into the embedding.
We show, using three real-world use cases, that our extended embedding approach performs
better than the state-of-the-art approach in each of these cases.

In contrast to much of the prior research focused on predicting purchase intentions,
which typically followed traditional customer representation methods, our approach learns
customer representation from the given data and has the potential to uncover patterns
within the data related to customer behavior that are not easily discernible even through
expert-driven feature extraction, which is shown by more accurate prediction in our ex-
periments. Furthermore, it offers the advantage of efficiently processing the ever-growing
volume of data. Additionally, our approach is useable for known and unknown customers
alike and therefore does not require personalized data, which are restricted in some re-
gions [9]. Applied in a real-world scenario this benefits both customers by enhancing
their online shopping experiences and companies with their marketing decisions. Precise
behavior prediction allows marketers to tailor their campaigns to specific customers.

The remainder of this paper is structured as follows: In the next section, we present
related work on purchase prediction research. Thereby, we focus on the used feature
representation approaches, used learning models, and used datasets. Furthermore, we give
a short overview of embeddings and time embeddings. Section 3 presents our particular
use case in detail. Additionally, we briefly describe the datasets used. In Section 4, we
present the methodology of our proposed approaches in more detail. Then, we describe
all relevant steps of our experiments in Section 5. The results are presented, analyzed,
and discussed in Section 6. Finally, in Section 7, we summarize our research outcome and
give an overview of future research directions.
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2. Related Work

Regarding the purchase prediction problem, a variety of state-of-the-art machine-
learning models have been presented and used in previous work. Commonly, a customer
representation is extracted from the clickstream data through manual feature selection and
feature engineering [11,14,18–20]. Subsequently, a number of learning models, such as
Naive Bayes (NB), Linear Regression (LR), Decision Trees (DT), Random Forest (RF), Gradi-
ent Boosting (GB), Multi-Layer Perceptrons (MLP), or Long-Short Term Memory (LSTM),
are trained on these features. An overview of related research on purchase prediction is pro-
vided in Table 1, where we have summarized both the customer representation approaches
and learning models of each contribution. Furthermore, it shows which datasets were used
for the conducted experiments of which the yoochoose dataset is the most frequently used.
In addition, we indicate which approaches can be used for real-time purchase prediction
and unknown customers. We see that a large amount of the existing purchase prediction
approaches before 2019 make predictions after a session ends and for known customers.
Recently, we observe a trend towards real-time prediction for known and unknown cus-
tomers alike. These approaches require often less information, e.g., the approach of Alves
Gomes et al. [17] only requires the customer interaction, a timestamp, and an identifier to
distinguish between sessions.

Table 1. Overview of related work in purchase prediction. Entries are sorted by name and publi-
cation year and contain author information and paper reference, publication year, used customer
representation approach, used learning models, used datasets, and if the proposed approach is usable
in real-time and for known and unknown customers alike.

Author Year Customer Representation Prediction Model Dataset Real-Time Unknown

Alves Gomes et al. [17] 2022 Pretrained Embedding DT; RF; GB; MLP;
LSTM

yoochoose;
OpenCDP;
closed

! !

Esmeli et al. [21] 2022 Manual Feature Selection DT; RF; Bagging;
MLP

closed ! !

Chaudhuri et al. [22] 2021 Manual Feature Selection DT; RF; SVM; MLP closed % %

Esmeli et al. [14] 2021 Manual Feature Selection NB; DT; RF; Bag-
ging; KNN

yoochoose ! !

Esmeli et al. [23] 2020 Manual Feature Selection DT; RF; Bagging RetailRocket ! !

Martinzes et al. [11] 2020 Manual Feature Selection Lasso Regression;
GB; Extrem Learn-
ing Machine

closed % %

Lin et al. [10] 2019 Encoding LR; LSTM yoochoose;
closed

! !

Mokryn et al. [24] 2019 Manual Feature Selection LR; GB, Bagging;
NBTree

yoochoose;
Zalando

% !

Zeng et al. [25] 2019 Manual Feature Selection LR closed % %

Baumann et al. [26] 2018 Graph LR; RF; GB closed % %

Sheil et al. [27] 2018 Manual Feature Selection
and Embedding

GB; LSTM yoochoose;
RetailRocket

% %

Wu et al. [28] 2015 Manual Feature Selection GB; MLP; LSTM yoochoose % !

Li et al. [18] 2015 Manual Feature Selection GB with LR closed % %

Park et al. [29] 2015 Manual Feature Selection GB yoochoose % %

Romov et al. [19] 2015 Manual Feature Selection GB yoochoose % %

Different approaches exist for generating customer representations. For example,
Baumann et al. [26] constructed graphs from the clickstream data to create a customer
representation. The customer representation from Lin et al. [10] is based on the Five-Stage
Sequential Consumer Purchase Decision Model (PDM) [30]. Here, the authors assign
a coded value as a customer representation depending on the stage of the individual
purchase process. Nevertheless, all of the aforementioned approaches share the same issue:
they require domain knowledge of the process. Recently, embedding-based features have
been shown to learn the important information in the data and no domain knowledge is
required [17]. Thereby, embeddings were frequently used for recommender systems [31–34]
or click-through rate prediction [35–39]. For purchase prediction use cases, Sheil et al. [27]
selected features manually and inserted them into an embedding layer. Esmeli et al. [23]
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pretrained a product embedding and used the similarity of the products within a session as
an additional feature. Alves Gomes et al. [17] pretrained an interaction embedding on the
customers’ interactions and used it as a feature for different learning models. However,
Alves Gomes et al. missed the opportunity to include time information in the embeddings,
whereas Esmeli et al. already showed that time is an important feature [14]. Encoding time
into the embeddings is no new idea. Several authors have proposed it for time series [40–43].
Kazemi et al. [41] presented “Time2Vec”, which provides a vector representation for time.
Inspired by the positional encoding of Transformers from Vaswani et al. [44], Time2Vec
utilizes a periodic activation function like the sine or the cosine function to capture periodic
behavior, like increased sales on weekends and such. Our contribution in this work is to
close the gap and provide a way to infuse temporal activity information into the customer
embedding representation.

3. Use Case and Data Description

In this work, we tackle the problem of real-time purchase prediction for an online
store. To successfully fulfill this task, the approach needs to meet four requirements.
(1) The purchase prediction is at least as good as other state-of-the-art prediction models.
(2) The model should be able to make a purchase prediction in real-time. (3) The approach
works for both known and unknown customers alike. (4) The approach is applicable to
other purchase use cases, which means that the approach should not only be tailored to
our specific use case but also be applicable to a wide range of use cases. In this regard,
our research employs three distinct datasets, each comprising customer event records,
to represent three distinct purchase prediction use cases. The first one was provided by an
online store and contains customer event data from over five months from January 2020
to May 2020. The data consist of 53 million customer events. Each event can be of type
“page visit”, “product view”, “add to cart”, “remove from cart”, or “purchase”. The events
were made in 6.2 million sessions of which 1.6% led to a purchase. When browsing an
online shop, customers do not necessarily have to be logged in, so they are unknown
to the operator. In this use case, 60% of the recorded events were made by unknown
customers. This underlines the necessity that utilized approaches work for known and
unknown customers, and furthermore, do not rely on historical customer information.
In the following, we refer to this dataset as a “closed” dataset.

As shown in Table 1, the yoochoose dataset (Download dataset at https://www.kaggle.
com/datasets/chadgostopp/recsys-challenge-2015, accessed on 3 March 2023) was already
used to benchmark purchase prediction performance in multiple cases. In 2015, YooChoose
(https://www.yoochoose.com/, accessed on 3 March 2023) published anonymized cus-
tomer sessions for the RecSys 2015-Challenge (https://recsys.acm.org/recsys15/challenge/,
accessed on 3 March 2023), dating from the beginning of April 2014 until the end of Septem-
ber 2014. The dataset consists of two files; one for all purchase events, with each entry
consisting of the session id, a timestamp, an item id, the price of the item, and the quantity;
and the other file contains all other click events, where each event is associated with a
session id, a timestamp, an item id, and the category that the item belongs to. The yoo-
choose dataset contains 9 million sessions, with a total of 26.6 million interactions with
52,739 unique items, and represents our second dataset.

The third dataset we utilize to benchmark our approach is the openCDP (Down-
load dataset at https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-
from-multi-category-store, accessed on 3 March 2023) dataset. It was used for the 2020
RecSys tutorial (https://recsys.acm.org/recsys20/tutorials/, accessed on 3 March 2023)
and is provided by the REES46 Marketing Platform (https://rees46.com, accessed on 3
March 2023). The dataset contains customer behavior data from October 2019 to April 2020
from a large multi-category online store. Each data point is a customer event on the online
platform and contains nine different values. These values are a session id, a customer
id, the event time, the event type, the product id the customer interacted with, a product
category id, the product brand, the product price, and a product category brand. Event

https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
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types are either “product view”, “add to cart”, or “purchase”. The dataset consists of
over 411 million customer events from 89 million sessions of which 6.1% of sessions have
purchase events.

4. Methodology

Our goal is to predict the probability that a given customer sequence si ends with
a purchase or more formally P(purchasei|si). In order to solve this purchase prediction
problem, we adopted a two-step approach consisting of a customer representation and an
LSTM learning model for binary classification. Our customer representation is an extension
of the pretrained embedding approach of Alves Gomes et al. [17], which uses the skipgram
embedding from Mikolov et al. [45] to embed customer interactions, e.g., products or URLs.
Thereby, we extend the embedding in such a way that we include the time information of
the interactions. We present three different approaches to do so. Table 2 summarizes the
notations used and their description.

Table 2. Notation and description.

Notation Description
X, xj Set of all possible customer interactions X with interaction xj ∈ X, j ∈ N.
T, tj Set of all interaction times T with interaction time tj ∈ T, j ∈ N.
(xj, tj) A interaction tuple of a customer interaction xj and its time tj.
S, si Set of all customer interaction sequences S with sequence si =

{(x0i , t0i ), (x1i , t1i ), . . . (xni , tni )} ∈ S of length ni ∈ N, i ∈ N.
M, m Context windows M = 2×m of customer interactions.
k j Context k j = {(xj+m, tj+m), (xj+m−1, tj+m−1), . . . (xj−m, tj−m)} \ (xj, tj) of interac-

tion and time (xj, tj)

ej, D D-dimensional embedding representation ej = [e>xj
, e>tj

] ∈ RD with exj ∈ RDx is

the Dx-dimensional embedding representation of the interaction xj and etj ∈ RDt

is the Dt-dimensional embedding representation of the interaction time with
D = Dx + Dt.

E(xj) Embedding function E that uses the trained embedding and maps (xj, tj) →
ej, j ∈ N.

4.1. Time Extended Embeddings

Our first approach, time extended embedding (TEE), is based on the skipgram ap-
proach by Mikolov et al. [45]. Further, we take inspiration from Meta-Prod2Vec by
Vasile et al. [31]. In TEE, we do not encode content information, as in Meta-Prod2Vec,
but rather the time of interaction. Figure 1 visualizes the concept of TEE. TEE is a one-layer
neural network that receives an interaction xj and time tj as a one-hot encoded input.
Hence, discretization of time is necessitated. This is accomplished by converting the times-
tamp into distinctive temporal features, e.g., seconds of the year or minutes of the day.
The hidden layer is a concatenation of embedding layers for each input of dimension D
and is fully connected to the output layer. More specifically, given a customer interaction
and time (xj, tj), the goal of the embedding is to maximize the likelihood L of the context k j
by training the weights w of the hidden layer with

L(w) =
n

∏
j=0

m

∏
α=−m;α 6=0

P((xj+α, tj+α)|(xj, tj); w). (1)

Hereby, we pursue the goal that the embedding learns the context of each interaction and
its time.
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Figure 1. Proposed TEE approach based on Meta-Prod2Vec [31]. TEE consists of three neural network
layers; an input layer, an embedding layer, and a fully connected output layer.

The second approach is a modification of our TEE approach, which we named TEE-
CBOW. Besides using the skipgram approach, we use the continuous-bag-of-word (CBOW)
approach also proposed by Mikolov et al. [45]. For TEE-CBOW, the context k j is given and
the objective is to predict (xj, tj):

L(w) =
n

∏
j=0

m

∏
α=−m;α 6=0

P((xj, tj)|(xj+α, tj+α); w). (2)

4.2. Time2Vec With Interaction Embedding

The third approach to encode time is the combination of Time2Vec from Kazemi et al. [41]
with interaction embedding from Alves Gomes et al. [17]. Time2Vec utilizes a periodic
activation function like the sine or the cosine function to capture periodic behavior, like
increased sales on weekends. Specifically, for a given scalar unit of time τ, the elements of
the vector representation t2v(τ) of size k + 1 are defined as:

t2vi(τ) =

{
ωiτ + ϕi, if i = 0
F (ωiτ + ϕi), if 1 ≤ i ≤ k

(3)

t2vi(τ) is the i-th element of the final vector, while ωi and ϕi are the trainable parameters
of the model. F can be any periodic activation function. As aforementioned, Time2Vec
is inspired by the Transformer’s positional encoding, which is added to the word vectors
and therefore, we combine both embeddings by adding the embedded interaction exj and
interaction time t2v(tj). We refer to this approach as T2V.

5. Experiments

Our Experiments consist of three steps: (1) data preprocessing, (2) approach training,
and (3) approach evaluation. We implemented the experiments in Python 3.9.13 [46].
Further, we utilized multiple packages. For the data preprocessing we used NumPy
(v1.23.3) [47] as well as pandas (v1.5.0) [48] and scikit-learn (v1.1.2) [49,50] for the evaluation.
All models were implemented with the PyTorch framework (v1.12.1+cu116) [51]. The best
hyperparameters for both the embedding and the prediction model were determined with
Optuna (v3.0.2) [52]. All experiments for the YooChoose and the closed dataset have been
computed on an AMD Ryzen 9 5900X CPU, 64 GB RAM, and a single Nvidia GeForce RTX
3070 Ti (8 GB) which can handle around 105 unique user interactions and the concatenated
activity time as one-hot encoding. With regard to the 582,082 unique interactions and
the concatenated activity that are required to be embedded for the openCDP dataset, a
larger machine is required. Therefore, all experiments for the openCDP dataset have been
conducted on an Ubuntu machine with 96xIntel Xeon Platinum 8186 CPU @ 2.7 GHz,
756 GB RAM, and eight Nvidia Tesla V100 GPUs.
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5.1. Data Preprocessing

As the yoochoose dataset consists of multiple files, we merged them and tagged
sessions accordingly if they contained a purchase. The other two datasets recorded types of
events, like “view product” or “purchase product”. Because retaining information about
the “purchase” event makes prediction trivial, we cleansed all information about these
purchases but tagged all sessions that contained a purchase event with the appropriate
label. In the next step, we linked the event information with the interactions. Therefore,
we concatenated the event type either with the product identifier for openCDP or with
the URL for the closed dataset by “eventType:interaction”. For example, a “view product”
event of the product with ID “12345” results in the interaction “view:12345” for openCDP
or “view:my-shop.com/item/123452” for our closed dataset. For the yoochoose dataset,
we just used the product id “12345”.

In the final step, we aggregated the individual events into sessions based on the unique
session identifier. All sessions with less than three events were discarded. This filtering
is due to the fact that for both the closed dataset and openCDP, a purchase first requires
a view event as well as an “add to cart” event. For yoochoose, on the other hand, 97% of
the sessions with less than three interactions are sessions without a purchase. The most
important table key figures for all three datasets are collected in Table 3.

Table 3. Properties of the used datasets after the preprocessing.

Yoochoose OpenCDP Closed
number of events 24,628,059 348,906,538 19,740,317
number of sessions 4,431,931 40,103,535 2,528,265
number of purchase sessions 377,376 5,297,561 99,787
number of no-purchase sessions 4,054,555 34,805,974 2,428,478
avg. session length 5.557 8.700 7.808
avg. purchase session length 8.117 9.109 17.859
avg. no-purchase session length 5.318 8.638 7.395
number of unique interactions 48,012 582,082 72,759

For each dataset, we created two different training and testing sets. The first, referred
to as 20_percent, is widely used in the literature [11,14]. Therefore, we randomly selected
20% of all data as test data, and the rest were used for training. For the second, referred to
as last_month, we took the last month for testing and all other months for training. This
is to prevent feature leakage as well as to keep the split closer to a real-world scenario.
This split took slightly over 15.3% of the data for yoochoose, 7.15% for the closed dataset,
and 16.7% for openCDP. Both splits were only used to evaluate the prediction model.

As can be seen in Table 3, in e-commerce, there is a big difference between the number
of sessions in which a purchase was made and the sessions in which not one was made. In
order to address the existing class imbalance, a hybrid sampling approach was employed.
The process begins with an initial undersampling phase, in which an equal number of
purchase and no-purchase sessions were randomly drawn from the entire training set.
However, instead of performing it only once, we perform the reselection of the samples of
the majority class for each training epoch. The assumption is that we lose less information
than only utilizing mere undersampling. This will let the model see the 377,376 purchase
sessions and 377,376 no-purchase sessions for yoochoose, 5,297,561 purchase sessions and
5,297,561 no-purchase sessions for openCDP, and 99,787 purchase sessions and 99,787 no-
purchase sessions for the closed dataset in each epoch where the set of no-purchase sessions
remains distinct.

5.2. Creation of Embedding Training Datasets

To train the embedding approach, an embedding training set is required. Therefore,
we created trigrams (context M = 2) for all sessions in the training sets. For each in-
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teraction xj in a session with its corresponding timestamp tj a trigram was defined as
((xj, tj), (xj+1, tj+1), (xj−1, tj−1)). To solve the issue with j = 0 ∨ j = n, we introduce the
“START” and “END” token, which has already been used in the literature [17,33,53].

For T2V the Time2Vec part did not need any form of n-grams. As aforementioned,
Time2Vec takes any measure of time as input. For our approach, we utilized the average
time delta in seconds for a session since the earliest recorded timestamp T0 in the dataset.
To calculate such a time delta for a session, we used (t0 − T0 + tn − T0)/2 and fitted the
Time2Vec part of the approach by predicting if the session results in a purchase.

5.3. Embedding Training for Customer Representation

We implemented the three approaches as described in Section 4 and trained an embed-
ding model accordingly for each of the two splits for all three datasets. Regarding TEE and
TEE-CBOW, we split the interaction time tj into four time features: day of the year (dy) to
capture patterns on days like Christmas or Black Friday, day of the week (dw) to capture
occurring patterns of certain days of the week, hour of the day (hd) to capture occurring
patterns on the hour of the day, and minute of the hour (mh) to capture patterns regarding
the time within a session. Each of the four time features gets its own embedding etjtime_ f eature

that is concatenated as aforementioned, which results in etj = (etjdy
, etjdw

, etjhd
, etjmh

). Ad-

ditionally, to the advantage of identifying and learning recurring time-related patterns,
the four time embeddings also mitigate the issue of a potentially extensive one-hot encoding
that would arise when using the mere timestamp values.

In the real world, new products and, therefore, interactions are introduced frequently.
For our experiments, this is represented by interactions that are in the test set but not in
the training set. Embeddings need a predefined number of inputs and inputs that are not
among these predefined inputs cannot be handled by the embedding. We need a way to
counter the so-called out-of-vocabulary problem. In natural language processing, many
approaches were already proposed to solve this problem. We decided to introduce the
“Unknown” token, which is one way to deal with the out-of-vocabulary problem [17,54].
Therefore, we increased the input layer by one and each unknown interaction of the
evaluation will be replaced by this “Unknown” token.

5.4. Baseline Customer Representation

We selected the state-of-the-art approach from Alves Gomes et al. [17] as a baseline.
In their work, customers are represented by an embedding that solely utilizes the interaction
context. They utilized a skipgram embedding and have shown in their work that their
feature representation combined with an LSTM approach is at least as good as other state-of-
the-art approaches and, at the same time, real-time capable. Other approaches, like the one
from Esmeli et al. [14], were also initially tested for our use case but were around 0.1 worse
in F1 score and much slower. Hence, we do not consider those approaches further.

5.5. Experiment Evaluation

For evaluation, we use three different approaches. To evaluate the performance of
the approach, we use the AUC and the F1 score. To find out if an approach is real-time
capable, we measure the time the approach takes to create a customer representation from
a session and the time for the LSTM to make a prediction. It is not unusual that a webshop
receives thousands of requests per second. In order to evaluate if the approach is real-time
capable we implemented two different tests in which a growing amount of sessions needed
to be processed and the time it takes was measured. Therefore, we fed n randomly chosen
yoochoose sessions to the different approaches and the LSTM and measured the time it
took for each n from 1 to 106, to the power of ten steps. This process was repeated 100 times.
The customer representation and the prediction have been evaluated separately because
even though we only made the prediction with an LSTM, the prediction architecture might
change. The time it took for the LSTM to process the input was only measured once with
data embedded with the TEE, as it had the longest vector representation.
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6. Results and Discussion
6.1. Prediction Evaluation

Table 4 shows the results of our experiments. It can be seen that our proposed TEE
approach is the best-performing one on all datasets and splits. The TEE-CBOW is nearly as
good as TEE and slightly better for the yoochoose last_month split. Especially regarding
the yoochoose splits, our proposed TEE approach significantly improved the performance
compared to the baselines and T2V. In comparison to the baseline, it resulted in a 0.137
improvement in F1 score and a 0.122 improvement in AUC score for the 20% random
split. The last_month split shows a very similar performance improvement. Regarding
the openCDP splits, we see an F1 increase of around 0.03 and an AUC score increase of
around 0.02 for both splits. For our own use case, the TEE improved the F1 accuracy and
AUC score by around 0.01. The results also show that our proposed T2V approach was
the worst-performing approach. For the yoochoose dataset with a 20_percent split, the T2V
approach decreased the performance with regard to the AUC score from 0.829 down to
0.816 (−0.013), but increased the F1 score from 0.744 to 0.749 (+0.005). On the last_month
split, the AUC went down to 0.757 (−0.021). The F1 score, on the other hand, rose to
0.708 (+0.028). For the closed dataset, this became even worse. With the 20_percent split,
the F1 score changed from 0.890 to 0.878 (−0.012) and the AUC score from 0.94 to 0.925
(−0.015). The performance of the T2V with the last_month split again decreased the AUC
score from 0.868 to 0.864 (−0.004), and the F1 score from 0.922 to 0.913 (−0.009). Lastly,
for the openCDP, this behavior stays the same. With a 20_percent split, the F1 score dropped
from 0.892 to 0.888 (−0.004), while the AUC score decreased from 0.940 to 0.939 (−0.001).
For the last_month split, the F1 score stayed the same and the AUC score went from 0.948
down to 0.946 (−0.002).

Table 4. F1 and AUC score of each tested approach for each dataset and split. The best-performing
scores are highlighted in bold.

Baseline TEE TEE-CBOW T2V
Dataset Split F1 AUC F1 AUC F1 AUC F1 AUC

yoochoose 20_percent 0.744 0.829 0.881 0.951 0.862 0.944 0.749 0.816
yoochoose last_month 0.680 0.778 0.843 0.922 0.851 0.927 0.708 0.757
openCDP 20_percent 0.892 0.940 0.920 0.967 0.919 0.965 0.888 0.939
openCDP last_month 0.908 0.948 0.930 0.965 0.925 0.963 0.908 0.946

closed 20_percent 0.890 0.940 0.901 0.952 0.898 0.950 0.878 0.925
closed last_month 0.868 0.922 0.875 0.931 0.869 0.930 0.864 0.913

After the evaluation, we can positively answer both of our formulated research ques-
tions. With the TEE approach, we were able to include time information in an embedding-
based customer representation. Furthermore, the results show that the TEE representation
leads to a better customer behavior representation by scoring higher than mere activity
embeddings on all three datasets. The same applies to TEE-CBOW. In the conducted
experiment, it was only slightly worse than TEE and, therefore, it is also a viable option.
For both TEE approaches, we have reasons to assume that the LSTM is able to capture in-
teraction and time patterns from the customer representation. The proposed T2V approach,
which combines Time2Vec and an interaction embedding, unfortunately did not lead to
any improvement. In most cases, the results were even slightly worse than the baseline
embedding approach. This suggests the assumption that the time information from the
activities is not represented well by the T2V embedding. The reasons could be that the
time and interaction embedding are trained independently of each other and, therefore,
the information that is captured in each embedding gets mixed up after the combination
of both.

The results not only give an idea about which proposed approach performs best but
show several general discoveries. We notice that the baseline approach performs better
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for the closed and openCDP datasets than for yoochoose. Both openCDP and the closed
dataset contain more information regarding customer interactions by adding event type
information, which makes it easier for the learning model to predict purchases. For example,
sessions without “add to cart” events will not end in a purchase. We investigated this
by inserting each customer interaction of a session one-by-one into the used LSTM for
our use case. The probability is about 30% after the first interaction and decreases with
each additional page visit. However, after the first “add to cart” interaction, the purchase
probability of the model increased to about 60%. By adding time to the sessions of these
two datasets, which already has indicators in the embedding, we see that it has less impact
than adding time information to the sessions of the yoochoose sessions, which do not
have additional event information. Therefore, it indicates that adding time information
has a larger impact on the performance of interaction embeddings with less additional
information as shown in the yoochoose experiments.

Another observation is that due to the two different test splits, it became apparent that
each approach performed worse when tested with last month’s data compared to randomly
selected test data. Since the model was trained only on data that preceded the test data, it
can be argued that the results for the split by last month are more meaningful and closer to
a real-life scenario than randomly selecting a percentage of the given data. Not only does
this split keep the data in a timely ordered manner. It also lets us assume that users interact
in other ways, depending on the time of the year.

6.2. Real-Time Evaluation

Besides the performance evaluation, we also evaluated the time the proposed ap-
proaches and the baseline needed to create the customer representation from an ongoing
session. Note that the time that TEE takes to embed customer activities is similar to the time
TEE-CBOW takes, and therefore, in the following, we only display the measured time for
TEE. The results for the real-time evaluation are shown in Table 5. Each entry of the table is
the time it took to create n user representations in seconds, for 1 ≤ n ≤ 106. The entry for
the TEE (mod) represents the time it took the TEE to create a customer representation if the
timestamp is already separated into the different time features. For all other approaches,
it is the time it took to first process the timestamps, followed by the creation of the repre-
sentation. TEE only (mh) only uses a single time feature, in this case “minute of the hour”.
The table also displays the inference time of the LSTM.

Table 5. Results for the real-time evaluation in seconds over the number of customer representations
the approach needed to create, and the duration an LSTM needs to process these sessions.

Approach 100 101 102 103 104 105 106

Baseline 0.000105 0.000224 0.001247 0.01096 0.104631 1.021248 10.138481
TEE 0.000221 0.000793 0.006358 0.061467 0.610966 6.140321 60.725083
TEE (mod) 0.000165 0.000614 0.004784 0.04617 0.452097 4.499582 40.025441
TEE (only mh) 0.000225 0.000377 0.002568 0.024000 0.235588 2.355886 20.172445
T2V 0.000169 0.000973 0.008587 0.082118 0.807454 7.858372 80.076782
LSTM 0.000578 0.000962 0.002571 0.013913 0.139333 1.506161 13.329544

As aforementioned, we defined real time as something that happens within 0.1 s. Our
proposed TEE approach can embed around 1770 customer sessions within 0.1 s, which
is around five times slower than the baseline that is able to embed almost 8000 customer
sessions at the same time. Around 25% of the time TEE takes to embed a customer session
is used to compute the time features. Furthermore, the results show that the performance
is growing linear to the number of features that should be embedded. This can be derived
by comparing the time taken by TEE (mh only) with the baseline and TEE. The baseline
only has the interaction features to embed and is around twice as fast as TEE (only mh),
which embeds interaction and only one time feature. For a live scenario, the number of
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embedded time features could be a dynamic parameter based on the number of requests
made simultaneously. If the load is high, fewer time features are embedded at the cost of
some accuracy. This is a trade-off that needs to be considered and further investigated.
The T2V approach takes around 7.7 times as long as the baseline approach. The results also
show that the embeddings have a linear time complexity.

It should be noted that all these results are executed without any form of parallelization.
Depending on the degree of parallelization, all approaches can operate in real time and
process multiple sessions simultaneously. Moreover, interaction embeddings are computed
incrementally in a live scenario, rather than all at once in one complete session as in our
experimental setup.

6.3. Ablation Studies

In order to evaluate the different used time features on the TEE, we conducted an
ablation study, in which we systematically removed time features for the yoochoose dataset.
Table 6 shows the prediction results of the TEE and TEE modifications in which certain
time features have been removed. The modifier ‘full’ repeats the best-found performance
of the TEE approach without any removed components. For easier comparison, ‘w/o
X’ represents that time feature X has been removed, and ‘only X’ means that all time
features except X have been removed. The Table 6 shows that the time feature mh has
the biggest influence on the model’s performance. This is particularly evident in the
fact that the performance of the purchase prediction barely degrades when all other time
features except mh are removed. This is strengthened by the fact that using only mh as
the time feature for TEE reduces the F1 score from 0.881 to 0.86, and removing only the
mh information reduces the F1 score from 0.881 to 0.825. Note, we only removed the
corresponding embedding part ettime_ f eature but used the same hyperparameters as for the
full embedding. A new hyperparameter search might lead to the model performing as
good or even better than previously.

The results of the ablation study lead to the assumption that the three time features,
namely dy, dw, and hd, do not add significant informative content to the embedding.
For the dy time feature, the reason could be that the datasets used in our study only have
events recorded from several months. Additionally, training paradigms like skipgram
or CBOW requires the prediction of the context, but for the dy time features, the context
rarely changes. Even though it is possible that this value does change as a session starts
before and ends after midnight, this is not the case for most sessions. Naturally, this also
holds true for the dw time feature. Similarly, the hd time feature changes only if a session
happens between an hour change. This could be used to justify the usefulness of the mh
feature for the model’s performance and for the TEE approach as representation. Activities
happen within minutes, and this is reflected by the context of the customer activity. In any
case, the choice of appropriate time features needs to be examined more in future studies.

Table 6. The resulting model performance on the yoochoose dataset of the conducted ablation study
on our proposed TEE approach for the removed time features.

TEE Full w/o dy w/o dw w/o hd w/o mh Only mh
F1 0.881 0.867 0.869 0.870 0.825 0.860
AUC 0.951 0.944 0.944 0.947 0.911 0.944

7. Summary and Outlook

For online retailers, it is of great importance to know their customers’ intentions.
Especially if the customers want to purchase in an ongoing session, which allows the
webshop providers to make personalized offers to the customers in real time. We propose a
novel time extended embedding approach that encodes customer interactions and the time
to represent customer behavior in a session. The representation can be created in real time
and is useable for known and unknown customers alike. The embedded interactions are
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used as input for an LSTM classifier to predict the outcome of the session. Most of the related
work requires extensive feature engineering by domain experts to represent customers,
which needs to be adjusted for new use cases. In contrast, our approach learns the customer
representation from the context of the event data with the power of embeddings and
is, therefore, transferable to different use cases without further ado. Furthermore, our
proposed representation allows the LSTM to make more accurate predictions than previous
approaches. Especially when additional information like event types is not given, our
approach can boost the F1 accuracy from 68% to 84%. Despite being more accurate than
other state-of-the-art approaches, our approach is around five times slower than mere
interaction embeddings. However, our approach is still real-time capable.

Many new open questions remain that we want to address in the future. In a next step,
we want to evaluate the TEE approach on other e-commerce tasks, like recommendations
and see if it can also improve the recommendation performance. Further, we want to
investigate the information amount of the added time features. The results indicate that
depending on the initial information content of the interaction, time plays an important
or less important role. To this end, we want to examine which information does play an
important role in customer representation. The first ablation studies conducted show that
the “minute of the hour” feature is the most important feature, with the largest influence on
the performance. Also, the fact that other information like the event type has an influence
on the performance will be investigated further.

Another future task is to extend the input information for the prediction model.
By now, we only utilize the information that could be gathered in a session, but for
customers that are known, we can also use historical information. Therefore, we can use
the same embedding approach to represent the historical customer sessions. The added
time information would enable the model to learn time-relevant patterns, which are useful
when using an attention mechanism. For example, a customer is actually a shared family
account, and each Friday family member A uses the account and each Tuesday the account
is used by family member B. Both of them have different behavior, interests, and therefore,
intentions. An attention-based model could learn that on a Friday, family member A’s
behavior is relevant and decisive.
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