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Abstract: The growth of e-commerce has led to the widespread use of DeepCTR technology. Among
the various types, the deep interest network (DIN), deep interest evolution network (DIEN), and
deep session interest network (DSIN) developed by Alibaba have achieved good results in practice.
However, the above models’ use of filtering for the user’s own historical behavior sequences and
the insufficient use of context features lead to reduced recommendation effectiveness. To address
these issues, this paper proposes a novel article model: the deep filter context network (DFCN). This
improves the efficiency of the attention mechanism by adding a filter to filter out data in the user’s
historical behavior sequence that differs greatly from the target advertisement. The DFCN pays
attention to the context features through two local activation units. This model greatly improves
the expressiveness of the model, offering strong environment-related attributes and the adaptive
capability of the model, with a significant improvement of up to 0.0652 in the AUC metric when
compared with our previously proposed DICN under different datasets.

Keywords: DeepCTR; context features; filter; local activation unit; users’ historical behavior features;
deep filter context network (DFCN)

1. Introduction

With the increasing popularity of the Internet and the continuous development of
computer science and technology, Internet finance has become an important part of the
country’s economic and financial life. Among the various effects, the rapid development of
the e-commerce industry has provided new opportunities for the e-commerce operation
of Internet finance [1]. In the information age, although people have more options for
shopping or browsing information, the sheer volume of information makes it impossible
for people to select products that meet their needs or preferences, and they can only shop by
searching precisely. This greatly reduces the efficiency of shopping and the user’s shopping
experience. As an information filtering system, recommender systems have been intro-
duced to the e-commerce industry, learning from users’ personal preferences and historical
behavior to predict users’ preferences and make effective filtering recommendations. This
not only saves advertising costs for e-commerce platforms but also improves the shopping
experience for users [2,3]. Initially, recommender systems were divided into three cate-
gories, based on recommendation mechanisms: content-based recommender systems [4],
collaborative filtering-based recommender systems [5], and hybrid recommender systems
that combine both these systems [6]. With the advent and development of deep learning,
recommender systems were upgraded to incorporate deep learning into the recommender
system. Deep learning can further mine and analyze data to find hidden relationships and
patterns between the data, helping recommender systems to make recommendations more
accurately and efficiently [7].

Click-through rate (CTR) prediction models are a crucial group of recommendation
systems. Click-through rate prediction analyzes the probability of clicking on a recom-
mended advertisement or target by analyzing the users’ historical clicking behavior and
known context features, enabling more accurate targeting of advertisements and, thus,
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saving costs [8,9]. Common CTR models include the factorization machine (FM) [10] and
logistic regression (LR) [8] as base models. Such a model is mainly a manual or automatic
cross-construction of feature vectors and weighted summation employed to obtain click-
through rate predictions. However, the problem is that the basic CTR prediction model
can only predict the relationships on the surface of features, i.e., it can only complete the
intersection of lower-order features and cannot make effective judgments regarding the
deep hidden relationships and regular characteristics among higher-order features. With a
combination of deep learning and recommender systems, the CTR prediction model has
been upgraded to DeepCTR, which mainly adds a deep learning component to help address
the shortcomings of traditional CTR prediction models that cannot complete higher-order
feature intersections and extract hidden vectors. Initially, DeepCTR models were basi-
cally improvements on traditional CTR models with a deep learning component, such as
DeepFM [11], NFM [12], xDeepFM [13], and PNN [14]. These methods incorporate deep
learning components; however, they mostly follow the approach of first compressing and
embedding high-dimensional user features into a fixed-length representation vector, and
then feeding them into a multilayer perceptron (MLP). Due to the high dimensionality of
user feature behavior, such as the wide variety of interests exhibited by each individual,
compressing the embedding stage of the model can result in a loss of information and it
may not fully utilize the user feature behavior [15]. As neuroscience research continues
to advance, the idea of attentional mechanisms has been proposed [16] and applied to
recommender systems. Influenced by the combination of the attention mechanism and
DeepCTR, the Alibaba Group introduced the deep interest network (DIN) [15]. Subse-
quently, the deep interest evolution network (DIEN) [17] and deep session interest network
(DSIN) [18] were successfully presented, which are improvements on DIN. Although these
models have performed well in reality and have advanced the DeepCTR model, they
still have problems. Specifically, they ignore the influence of context feature vectors on
the historical behavioral characteristics of users and users’ click-through rates. Moreover,
the models only treat the target items with strong context-related attributes as ordinary
vectors for compressed embedding, meaning that they are not fully utilized and, thus,
limit the expressive ability of the model. To address this problem, we propose the deep
interest context network (DICN) [19], thereby adequately solving the problem of ignoring
contextual vectors. However, since DICN is based on the improved DIN model, filtering of
the users’ historical behavior features is still at the primary stage, and is still based on DIN.
That is, the historical behavior features are directly embedded and compressed and are
then fed into the attention mechanism without much processing, resulting in a great deal
of redundant information. Although the attention mechanism network can be assigned
weights, this still limits the expressive ability of the model.

In response to this issue, this paper makes the following contributions:

• This paper presents a new and simple filtering machine for users’ historical behavior
features. This filtering machine makes full use of the characteristics of the targeted
advertisements to filter the users’ historical behavior, helping the attention mechanism
process the input feature vector more efficiently and expressively.

• In this paper, a new algorithmic model is proposed: the deep filter context network
(DFCN). The DFCN introduces a filter to the original DICN model. The filter enhances
the model’s ability to capture those of the users’ historical behavior features that
align with target advertisements while preserving user interest diversity. The model’s
self-adaptability and expressiveness are also improved by processing the user history
feature vector in a prior step.

• In this paper, experiments are conducted on the open Taobao user dataset and the
Amazon user dataset. The experimental results demonstrate the effectiveness and
superiority of the DFCN model.

• This paper designs two sets of comparative experiments so as to verify that the filtering
layer can effectively enhance the ability of the attention mechanism in capturing and
helping the model to improve its predictive ability. In addition, the importance of the
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newly added local activation unit for context features is demonstrated. At the same
time, this paper highlights the fact that the newly developed filtering layer is more
suitable for the pre-processing of users’ historical behavior feature data, which means
it cannot replace attention mechanism empowerment.

The rest of the paper is organized as follows: Section 2 discusses related works in
the literature. Section 3 describes the filters, attention mechanisms, and structure of the
components of the overall DFCN model. Section 4 describes the setup and analysis of
the results of related experiments. Section 5 demonstrates some details of the models and
makes comparisons with some inadequate models that were used during the experiment.
Finally, Section 6 concludes the paper and presents ideas for future work.

2. Related Works
2.1. Attention Mechanism and DICN

The attention mechanism presents a model that simulates the attention paid by the
human brain. The core principle is to use the probability distribution of attention to capture
the effect of a key input on the output [20]. With the emergence and continuous develop-
ment of deep learning, people have added the attention mechanism to deep learning and
have proposed many deep learning algorithms about the attention-based mechanism [21].
This is a good thing for the recommendation system when used as a commercial data min-
ing algorithm; it can push the recommendation system to continue to progress, improve
the model’s expressiveness and self-adaptive ability, and improve data mining. In our
previous paper, we proposed a new model called the deep interest context network (DICN)
which makes full use of attention mechanisms and deep learning. The model takes the DIN
proposed by the Alibaba Group as the base model, optimizes the attention mechanism of
the DIN, and uses those context features that are not valued by the DIN model to operate
the attention mechanism to empower the users’ historical behavior features. The DICN
operates on the attention mechanism by adding a new local activation unit that takes the
timestamped feature vector from the users’ historical behavior features and the context
features of the target advertisement, resulting in an attention weight matrix called the
contextual attention weight matrix. At the same time, the original local activation unit
operates the attention mechanism, using the feature of the users’ historical behavior and
the target advertisement to obtain the users’ attention weight matrix. After multiplying
these two weight matrices to obtain the total attention weight matrix, it is multiplied with
the original users’ historical behavior features matrix to achieve weighting of the users’
historical behavior features matrix, helping the model to focus on those features with high
relevance to the target advertising attributes and context, and improving the expressive
and predictive power of the model.

2.2. Bandpass Filter

In the beginning, the term bandpass filter was used in radio communication systems.
In such systems, the superimposition of other frequencies of noise in the channel with
the modulated signal produces distortion, which can convey incorrect information and
affect the quality of communication [22]. As can be seen, signal filtering is a very important
part of the process, ensuring the reliability and accuracy of the signal [23]. As one of the
most common types of filters, bandpass filters are used to select signals within a certain
frequency range and suppress signals at other frequencies [24]. With the rise and continuous
development of digital image-processing techniques, filters are used in the field of digital
image processing. An image can be represented as a discrete function of pixel values versus
the plane coordinates and can be viewed as two-dimensional signal data [25]. When filters
are used for image processing, they allow the image to be enhanced or restored to avoid
the distortion caused by interference from other noisy signals [26]. The effect is shown
in Figure 1.
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Figure 1. A demonstration of the usefulness of filters in digital image processing: (a) is the blurred
resultant image, with Gaussian noise superimposed on the image; (b) is the image with Gaussian
noise, processed with a low-pass filter to produce a clear image.

In the DeepCTR model, the users’ historical behavior data can be seen as multi-
dimensional vector signals. In a large database of users’ historical behavior, there must
be fluctuations and deviations in users’ interests at different times or variations in users’
interests in the different types of items, which can be treated as noise signals that have a
negative effect on the prediction model. In the DIN and DICN models, users’ historical
behavior data is manipulated directly, without much processing, by the attention mecha-
nism. Although the attention mechanism itself can be understood as a filtering operation,
the complexity and size of the input data lead to a decrease in the effectiveness of the
attention mechanism filtering process, which makes it necessary to pre-process the users’
historical behavior data. In this paper, we introduce the bandpass filter principle used in
electronic communication systems into the DeepCTR model and formulate the passband
and blocking band of the bandpass filter algorithm according to the target advertising
vector, so as to achieve the initial screening process of the users’ historical behavior data
and help the attention mechanism to further complete the weight allocation.

3. Model Structure

The structural flow of the deep filtered contextual network model is as follows: the
input layer pre-processes the data in the dataset according to its characteristics. The embed-
ding layer then transforms the user features, users’ historical behavior features, payment
activity, and context features in the dataset into sparse vectors, variable length sparse vec-
tors, and dense vectors, classified according to the characteristics of data length. Specifically,
user features and context features are converted to sparse vectors since they are fixed-length
sparse features. Sparse features with variable lengths of users’ historical behavior are then
converted to variable-length sparse vectors. Payment activity is converted to a dense
vector. After conversion into a vector, the users’ historical behavior features are entered
into the filtering layer. In the filtering layer, the target advertisement vector is expanded
into a tensor of the same shape as the tensor of the users’ historical behavior features, after
which the historical behavior tensor is subtracted from the target advertisement tensor to
obtain a bandstop filter with the target advertisement as the blocking band. After this, the
target advertisement tensor is again subtracted from the bandstop filter tensor to obtain a
bandpass filter, with the target advertisement tensor as the passband. The bandpass filter is
multiplied by the Hadamard product of the original users’ historical behavior sequence
tensor to obtain the filtered bandpass historical behavior sequence tensor. In the attention
layer, the bandpass historical behavior sequence tensor and the context feature tensor will
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be fed into the two local activation units, resulting in the users’ historical weight matrix
and the context weight matrix, respectively. They will first be multiplied to obtain the total
weight matrix and then multiplied with the bandpass users’ historical behavior tensor to
perform the additive pooling operation together. Ultimately, the result of the sum pooling
operation and the user feature sparse vector, the target advertisement sparse vector, and
the context feature sparse vector are passed through the MLP layer to obtain the final result.
The overall block diagram is shown in Figure 2.
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Figure 2. The structure of the DFCN model.

3.1. Input Layer

In this layer, the raw data that are fed into the model are pre-processed. As the
input data are sparse, high-latitude data and not directly usable by the model, this layer
pre-processes the input data to encode them in preparation for the input embedding layer.

For sparse features of low dimensionality and fixed length, such as user features,
target advertisements, and contextual features, we preprocessed the data using one-hot
encoding [27]:

ei ∈ DKi (1)

ei[j] ∈ {0, 1} (2)

∑Ki
j=1 ei[j] = 1 (3)

where ei is the i-th feature group in the dataset D, and Ki denotes the dimensionality of this
feature group, i. The equation indicates that only one element in a feature group is coded
as 1, while the rest of the elements are all coded as 0.

However, there is an obvious problem with the unique thermal encoding, which is
very detrimental to the model’s embedding compression operation if the feature length
is not fixed and the unique thermal encoding is of varying lengths. Therefore, for users’
historical behavior features with data of variable lengths, we use label encoding to encode
the discrete text and numbers. In these equations, Ni denotes that there are Ni different
categories in feature group i. The equation indicates that the element ei[j] is encoded using
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consecutive integers in the interval, effectively solving the problem of using unique heat to
encode too great a dimensionality:

ei ∈ DKi (4)

α ∈ [0, Ni − 1] (5)

ei[j] = α (6)

3.2. Embedding Layer

After the input layer has pre-processed the data, the embedding layer takes the pre-
processed data and compresses them for embedding. Since the high dimensionality of
the vectors after pre-processing is not conducive to model learning, the sparse vectors are
mapped from the high-latitude to the low-latitude vector space in the embedding layer
and are then converted into fixed-length embedding vectors to facilitate the learning of
non-linear relationships between features in the fully connected layer. The embedding
layer formula is as follows:

Gi = [gi
1, gi

2, . . . , gi
j, . . . , gi

Ki ] ∈ RKi×Ka (7)

The embedding matrix Gi of the i-th feature group stitches together the embedding
vector gi

j from dimension 1 to Ki, while the embedding vector gi
j takes the values in the set

of real numbers in dimension Ki:
gi

j ∈ RKa (8)

If the feature group is encoded using one-hot encoding, the embedding vector of the
feature group is represented as a single embedding vector:

ti = gi
j (9)

If the feature group is encoded using label encoding, the embedding vector of feature
group i is represented as a tensor, i.e., a list of embedding vectors:{

ti1 , ti2 , . . . , tij

}
=
{

gi
i1 , gi

i2 , . . . , gi
ij

}
(10)

3.3. Filtering Layer

After the data have been compressed by the embedding layer, they move to the filtering
layer, where the users’ historical behavior features are processed again. The core idea of
this layer is based on the bandpass filter found in radio communication systems; here, we
construct a bandpass filter with the target advertisement as the passband to re-filter the
users’ historical behavior features data, helping the attention layer to better implement the
attention mechanism and assign higher weights to those features of the users’ historical
behavior that are similar to the target advertisement.

Since the users’ historical behavior feature is a tensor and the target advertisement is a
vector, the target advertisement vector first needs to be expanded into a tensor, so that the
target advertisement tensor is shaped into the form of the users’ historical behavior tensor:

Ta = {G1, G2, . . . , Gn} (11)

Here, n represents the length of the second dimension of the users’ historical behavior
profile tensor.

The users’ historical behavior features tensor, Th, is subtracted from the target adver-
tising tensor, Ta, to obtain a bandstop filter, Hs, with the target advertising tensor as the
stop band. The target advertising tensor, Ta, is then subtracted from the bandstop filter, Hs,
to obtain a bandpass filter, Hp, with the target advertising tensor as the gain.

Hs = Th − Ta (12)

Hp = Ta − Hs (13)
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Multiplying the bandpass filter Hp with the original users’ historical behavior feature
Th yields the final users’ historical behavior feature tensor Tp, which passes through the
bandpass filter:

Tp = Hp × Th (14)

After the band-pass filter, the values of those elements in the original users’ historical
behavior profile tensor with low relevance to the target advertisement will be reduced,
while the values of elements with high relevance to the target advertisement will be retained.
This layer effectively filters the users’ historical behavior features, helping the attention
layer to give greater weight to users’ historical behavior features that are highly relevant
to the target advertisement and to reduce the weight of other non-relevant features. The
structure of the bandpass filter is shown in Figure 3.
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3.4. Attention Layer

This layer mainly provides the attention mechanism empowerment operations. This
layer is centered on the attention unit, which contains two local activation units, to learn
the attention weight matrix for the band-pass filtered users’ historical behavior and context
features, respectively. The formula is as follows:

Tp =
{

Gg, Gp, Gc, Gs, Gw
}

Gad =
{

tg, tp, tc
}

Genv = {ts, tw}
(15)

Gg, Gp, Gc represent the item, behavior, and item-type embedding matrices in the
users’ historical behavior features, while Gs and Gw represent the month and date embed-
ding matrices in the users’ historical behavior features, respectively, while tg, tp and tc
correspond to the target advertisement item, behavior, and type of embedding vectors,
respectively. ts and tw denote the current context feature embedding the vectors.

Taking the bandpass users’ historical behavior feature for the attention weight matrix
as an example, first, the target advertisement matrix is expanded into a tensor with the
same shape as the bandpass users’ historical behavior feature tensor. Then, the bandpass
historical behavior feature tensor and the target advertisement tensor are used to perform
the Hadamard product operation and subtraction operation.

Ta =
{

Gad1 , Gad2 , . . . , Gadn

}
(16)
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Tp ∗ Ta =

h11a11 · · · h1ja1j
...

. . .
...

hi1ai1 · · · hijaij

 (17)

Tp − Ta =

h11 − a11 · · · h1j − a1j
...

. . .
...

hi1 − ai1 · · · hij − aij

 (18)

The result is then spliced with the bandpass historical behavior feature matrix and the
target advertisement matrix to feed into the Dice activation function [15] and the linearized
part of the DNN model, which is used to obtain the weight matrix ωh of the bandpass
historical behavior features.

ωh = DNN(Tp, Th, Tp ∗ Th, Tp − Th) (19)

The structure of the attention unit is shown in Figure 4.

1 
 

 

Figure 4. Structure of the attention unit.

The attention weight matrix of the context features is identified using the same steps
as above, resulting in an attention weight matrix of context features, ωe.

Ultimately, the Hadamard product of ωh and ωe gives the total attention weight
matrix Ω; then, the outer product with the bandpass users’ historical behavior tensor gives
the bandpass weight of the users’ historical behavior tensor, Tatt.

Ω = ωh ∗ωe (20)

Tatt = Tp ×Ω (21)

After the local activation unit yields the users’ historical behavior tensor with bandpass
weights, the addition pooling operation is performed. This effectively solves the problem
that the fixed length of user interests makes the model’s learning efficiency decrease.

3.5. MLP Layer

This layer is the deep learning part of the model, which learns the non-linear rela-
tionships between features by using a fully connected neural network DNN model. The
multi-layer perceptron layer first concatenates and then flattens the user feature embed-
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ding matrix, the target advertisement embedding matrix, the context feature embedding
matrix, and the additive pooled users’ historical behavior feature matrix with pass weights,
using them to one-dimensionalize the multi-dimensional input, avoiding high-dimensional
vectors and facilitating fully connected neural network learning. After flattening, first, the
results are fed into the DNN model, then ReLU [28] is selected as the activation function of
the DNN. Finally, the normalization operation is completed using the SoftMax function [29]
to output the click-through rate prediction results.

4. Experiments and Analysis

In order to validate the performance and learning ability of the new model that is
proposed in this paper and prove the superiority of the new model, this experiment uses
TensorFlow-2.1.0 as the learning framework and Python 3.7 as the running environment,
using them to compare the various classical DeepCTR models.

4.1. Datasets

To prevent the occurrence of coincidences, two datasets were chosen for this paper: the
Alibaba Taobao user history behavior dataset and the Amazon clothing, shoes, and jewelry
dataset. At the same time, the items in both datasets have a high degree of contextual
relevance to the environment, i.e., clothing, shoes, etc., have a strong seasonal relevance,
with different clothing choices for different seasons. The Alibaba Taobao user history
behavior dataset contains information on the users, items, item types, users’ historical
behavior (click, favorite, add to cart, or purchase), and behavior timestamps [30–32]. The
Amazon clothing, shoes, and jewelry dataset contains users, items, users’ ratings, and
behavior timestamps [33–35]. Details of the datasets are given in Table 1.

Table 1. Basic statistics for the datasets.

Datasets Features Numbers Total Samples

Taobao

Users 376

11,198
Items 9066

Categories 1248
Behavior Types 4

Timestamps 11,198

Amazon

Users 88,462

91,206
Items 8510
Scores 5

Timestamps 91,206

4.2. Evaluation Indicators

In order to accurately and effectively evaluate the learning and prediction performance
of the DFCN model, the experiment in this paper divides the datasets into a training group
and a test group, according to a certain ratio. Meanwhile, the AUC (area under the curve),
the log loss function, and RelaImpr-DIN [15,19] are used as the evaluation indicators
in this paper, where the loss function formula refers to the loss function formula of the
DIN model:

L = − 1
N ∑

(i,b)∈T
(b log p(i) + (1− b) log(q− p(i))) (22)

RelaImpr-DIN is based on an improved version of the RelaImpr formula. Originally,
the RelaImpr formula was designed to be able to reflect the gap between the DIN model
and BaseModel [15] more intuitively. In this paper, the AUC parameters of the embedding
and MLP paradigms were replaced with the AUC parameters of the DIN model in order
to further reflect the performance gap between the DFCN model and the DIN and DICN
models. It is expressed as:
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RelaImpr− DIN = (
AUC(measured model)− 0.5

AUC(DIN model)− 0.5
− 1)× 100% (23)

4.3. Comparison Models

To verify that the DFCN model in this paper performs well in all the above metrics, we
use the following, widely used, CTR prediction model for comparison to make the results
more intuitive.

• FNN [36]: FNN is a combination of FM and DNN. The FNN model is one of the more
classical embedding and MLP paradigms, which uses the hidden vectors obtained from
FM training as initial values to feed into the DNN, i.e., a combination of embedding
and the multilayer perceptron.

• AFM [37]: This model employs the attention mechanism, which is an evolutionary
update of the NFM [12] model, by introducing the attention mechanism into the FM
model and assigning weights to the vectors after the embedding and interaction layers,
through the attention pooling layer.

• DeepFM [11]: This model is an evolutionary upgrade of the Wide and Deep model.
DeepFM uses the FM model algorithm in the wide part and deep learning in the deep
part to extract the non-linear relationships between the features.

• DIN [15]: A CTR prediction model with significant advances was proposed by
Zhou et al. DIN introduces local activation units into the embedding and MLP
paradigm and uses an attention mechanism to assign weights to users’ historical
behavior features as a way to explore the similarity between historical features and
target advertisements.

• DICN [19]: An evolutionary update of DIN that adds an additional local activation
unit to the DIN model to explore the similarity of environmental and contextual
features in the historical features.

• DFCN: The new model that is proposed in this paper and that is described in
Section 3 introduces a filtering layer to process the users’ historical behavior fea-
tures of the compressed embeddings, reducing the parameters of those elements with
little similarity to the target advertisement and helping the local activation unit to
perform the assignment operation more accurately and efficiently.

4.4. Parameter Settings

This paper compares experiments that use different models with the same parameters
as a way to verify the superiority of the new model DFCN. When using the Taobao user
history behavior dataset, the number of iterations for each epoch is set to 10, while the model
batch size is set to 256. The number of training sets is 8958 data units, of which 7166 data
units are for training, 1792 data units are for validation after training, and the number of
test sets is 2240. The final ratio of the data training set:validation set:test set was 14:6:5. The
number of DNN hidden layers in the MLP was 256, 128, and 64, and the number of DNN
hidden layers in the local activation unit was 80, 40. When using the Amazon clothing,
shoes, and jewelry dataset, the number of iterations of the epoch was increased to 15, and
the remaining parameters were kept constant to verify that overfitting would not occur in
the case of larger datasets. However, since the total amounts of data in the two datasets
are not the same, the number of training and test sets is also different. In the Amazon
clothing, shoes, and jewelry dataset, the total amount of data in the training set comprised
72,965 units, of which 58,372 data units were used to train the model, representing 56% of
the total dataset, while 14,197 data units were used to validate the model, representing 24%
of the total dataset. The final 18,241 data units were used to test the model in the test set,
representing 20% of the total dataset.

4.5. Analysis of Results

This section will show the experimental results visually, including tables and images,
to verify the superiority of the model.
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4.5.1. AUC and the RelaImpr-DIN

This subsection uses tables and bar charts to present the indicator data for the above
comparison model and the DFCN model, as shown in Table 2.

Table 2. AUC and RelaImpr-DIN, as predicted using CTR.

Model
Taobao Amazon

AUC RelaImpr-DIN AUC RelaImpr-DIN

FNN 0.5165 −89.73% 0.5180 −98.66%
AFM 0.5270 −83.20% 0.5248 −81.53%

DeepFM 0.5222 −86.19% 0.5188 −86.00%
DIN 0.6607 0.00% 0.6343 0.00%

DICN 0.7661 65.59% 0.6350 0.52%
DFCN 0.8313 106.16% 0.6355 0.89%

From Table 2, it can be seen that the DFCN model proposed in this paper outperforms
DIN and DICN and far outperforms the rest of the mainstream CTR models, both in the test
with the Taobao users’ historical behavior dataset and in the test with the Amazon clothes,
shoes, and jewelry dataset. When we carefully analyze the indicators and the related data,
we can see that DFCN has improved by 0.1706 in the AUC indicator and 106.16% in the
RelaImpr-DIN indicator compared to the DIN model for the Taobao user history behavior
dataset test. The AUC metric improved by 0.0012 and the RelaImpr-DIN metric improved
by 0.89% compared to the DIN model in the Amazon dataset test, which is quite significant.
In contrast, when comparing DICN, the results for the AUC indicator derived under the
two datasets improved by 0.0652 and 0.0005, respectively, and the results for the RelaImpr-
DIN indicator improved by 40.57% and 0.37%, respectively. This is a good example of the
superiority of the new DFCN model presented in this paper. A visual comparison of the
other DFCN models and the comparison model for the above two evaluation metrics is
shown in Figure 5.
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4.5.2. Test and Log Loss

In this subsection, we plot the log loss of the different CTR prediction models under
the two datasets, tested as the vertical axis, with the number of experimental iterations



J. Theor. Appl. Electron. Commer. Res. 2023, 18 1457

shown as the horizontal axis in a line graph. This is intended to explore the loss rate of
each model that is tested. See Figure 6 for a folded-line diagram.
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From the line graph, we can clearly see that the test log loss of DFCN is mostly at its
lowest for different numbers of iterations. The test log loss of the Taobao dataset decreases
as the number of epoch iterations increases, while the test log loss of the Amazon dataset
fluctuates somewhat, but not significantly, and basically tends to be stable and remains at
its lowest value. The test log-loss comparison of these two datasets visually illustrates that
the DFCN model can effectively avoid over-fitting or under-fitting, ensuring the accuracy
of the model’s recommendations.

5. Comparisons and Contributions

The method proposed in this paper is a refinement and development of both the
classical model and the model previously proposed by our team.

5.1. Comparison to the Classical Models and DICN Models
5.1.1. Comparison to the Classical Models

Compared with the classical model, firstly, the DFCN model proposed in this paper
retains the local activation unit introduced by the Alibaba team in the DIN model, as
well as the variable length sparse vector, which means that the user’s historical behavior
features are no longer embedded as a fixed-length vector, but instead interact with the target
advertisement in the local activation unit; finally, the weight matrix is obtained according to
relevance. Secondly, an obvious shortcoming in the DIN model is that although Zhou et al.
introduced a context feature variable, they did not make good use of it. For this reason, we
continue to adopt the strengths of our previous model, namely, the introduction of another
new local activation unit, to investigate the relevance of the contextual features in the user’s
historical behavioral patterns to the contextual features of the target advertisement. This
improvement is extremely suitable for those cases where the target advertisement itself is
closely related to the context of the environment and greatly improves the accuracy of the
recommendation system.

5.1.2. Comparison to the DICN Model

Compared to the DICN model, the DFCN model proposed in this paper incorporates
an additional filtering layer. The core role of this layer is to filter the sequence of users’
historical behavior features, according to the target advertisement. The filtering layer
converges with the attention mechanism in terms of its main purpose, which is to ignore
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data that are less relevant to the target advertisement and value data that are more relevant
to the target advertisement. However, the filtering layer is simpler than the local activation
unit structure and does not require a separate deep learning network to learn the non-linear
relationships between vectors, which means that those features of the users’ historical
behavior that are highly relevant to the target advertisement can be filtered out in less time
and at a lower cost. However, the filtering layer also has certain drawbacks. Due to the
simplicity of its structure, the non-linear relationship between the user’s historical behavior
features vector and the target advertising vector cannot be mined; therefore, the filtering
layer cannot replace the local activation unit to obtain the weight matrix. The filtering layer
can pre-process those data with simple linear relationships to help the local activation unit
to exclude some variables with very low correlation and help the attention mechanism of
the local activation unit to learn non-linear relations, thus improving the reliability of the
weight matrix output by the local activation unit. This experiment also designed a DFCN
model without the need for any local activation unit, and verified by the use of comparison
experiments that the filtering layer cannot replace the local activation unit. However, the
expressiveness of the model, with the filtering layer and the local activation unit together, is
higher than that of the model with only the local activation unit. The DFCN model without
any local activation units was compared with a DIN model with only local activation units
and no filtering layer, then the complete DFCN model was input into the Amazon dataset
to derive the AUC values for each of the three models. The conclusions were verified
by comparing the AUC values of the three models. A visual comparison is presented
in Figure 7.
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It is clear from Figure 7 that the expressive ability of the model would be greatly
reduced if only the filtering layer were added without the local activation unit implementing
the attention mechanism. The filtering layer is, therefore, the proverbial icing on the cake
for the overall model but cannot directly replace it for expressing the non-linear relationship
between the target advertisement and the user’s historical behavior.

5.1.3. Importance of the Context Feature Attention Unit

In the course of our experiments, we also designed a DFCN model without the
introduction of local activation units for context features, i.e., we directly used the original
DIN model to add the new filtering layer proposed in this paper, to investigate whether
the addition of more local activation units would have an overfitting side effect on the
model and, thus, reduce the predictive power of the model. The results demonstrate that
the complete DFCN model has better expressive abilities compared to the DFCN model,
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which lack context features and local activation units, with better values of AUC for both
the Taobao user history behavior dataset and the Amazon dataset, as well as a smaller test
log-loss value. A visual comparison is presented in Figure 8.
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From Figure 8, we can clearly see that the AUC results are also significantly better than
the original model DIN, as well as the previously proposed DICN model when the filtering
layer proposed in this paper was added. However, the lack of a local activation unit made it
impossible to generate a weight matrix based on the correlation between contextual features
and the user’s historical behavior features, which reduces the expressive and predictive
power of the model, to some extent.

5.2. Contributions

The main contribution of this paper is to propose a method for processing the user’s
historical behavior sequence feature data, i.e., a filtering layer. By means of a linear op-
eration between the target advertising data and the user history behavior sequence data,
the user history behavior sequence is primed and filtered for the next step regarding data
entry into the local activation unit and, thus, the relevance weights are obtained. The
filtering layer improves the representation of the user’s historical behavioural features,
first, by eliminating the complex and time-consuming deep learning module by means of
linear operations in the middle, and second, by filtering the vector of the user’s historical
behavioral features with high relevance to the target advertisement by means of simple
operations. At the same time, this paper also demonstrates that the filtering layer cannot
completely replace the local activation unit because of its simplicity, which prevents the fil-
tering layer from learning the non-linear relationships between vectors. This also illustrates
the importance of local activation units from another perspective.

6. Conclusions

In an era of diversified market economies, the Internet economy accounts for an
increasing share of the overall economy [38], and the rise and continuous development
of e-commerce promote the progress of recommendation systems. As a data mining
model, recommendation systems can analyze data in detail to help e-commerce companies
to improve their decision-making, increase operational efficiency, and provide a better
service to their customers [39]. In this paper, the DFCN model proposed in the context
of e-commerce display advertising filters the huge volume of users’ historical behavioral
feature data, effectively suppressing the interference of non-relevant user history features
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with the relevant features and helping the attention mechanism to assign weights to each
element more precisely and effectively. At the same time, this paper continues the design
advantages of DICN, focusing on the contextual variables in the users’ historical behavior
features and making full use of the context features. After conducting several comparison
tests, it is proved that the DFCN model proposed in this paper has significantly improved
recommendation accuracy and the loss rate, and can achieve greater learning ability and
more accurate and efficient recommendations.

The limitations of this study mainly stem from the newly proposed filtering layer
and the local activation unit. For the filtering layer, this study simply performs a linear
addition and subtraction operation between the users’ historical behavior features and
the target advertising sequence. The resulting filter is used directly to filter the data
regarding the users’ historical behavior features that have a high correlation with the target
advertisement. This saves time and money but, to some extent, it ignores the non-linear
relationship between the user’s historical behavior features and the targeted advertisements,
which causes the local activation unit to experience some limitations. In future work, we
intend to continue to follow up on the filter layer, balancing the cost of time against the filter
layer’s ability to filter the data. For the attention local activation unit, more meaningful
local activation units can be added, thereby mining other vectors for correlation in the
user’s historical behavioral features and further improving the model.
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