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Abstract: In the context of the Fashion Apparel Industry 4.0, a transformative evolution is directed
towards the Online Apparel Mass Customization (OAMC) strategy, which provides efficient and
personalized apparel product solutions to consumers. A critical challenge within this customization
process is the determination of sizes. While existing research addresses comfort evaluation in relation
to wearer and garment fit, little attention has been given to how garment fit influences the wearer’s
body image, which is also an important purchase consideration. This study investigates the impact
of garment fit on the wearer’s body scale perception using quantitative research design. A digital
dataset of avatars, clothed in varying sizes of T-shirts, were created for the body scale perception
experiment, and an Artificial Neural Network (ANN) model was developed to predict the effect
of T-shirt fit on body image. With only a small number of garments and body measurements as
inputs, the ANN model can accurately predict the body scales of the clothed persons. It was found
that the effect of apparel fit on body image varies depending on the wearer’s gender, body size, and
shape. This model can be applied to enhance the online garment shopping experience with respect to
personalized body image enhancement.

Keywords: online apparel mass customization; body image perception; computer-aided design;
artificial neural network; garment fit

1. Introduction

The global expansion of fashion e-commerce, propelled by widespread Internet and
smartphone usage, is anticipated to reach a value of 906 billion U.S. dollars by 2024, surging
to over 1.36 trillion U.S. dollars by 2028 [1]. However, this expansion also poses challenges,
notably, a high return rate of online apparel orders. In the U.S. market, the return rate
of online apparel products has reached 24.4% in 2023, primarily attributed to size and
fit issues [2,3]. Consumers today are facing the challenges of navigating through mass-
customization products while still finding their demands for fit and style unmet. Many of
them are turning to customization products for more tailored options and better shopping
experiences [4–7]. This demand leads to the rise of Online Apparel Mass Customization
(OAMC). OAMC generally refers to a kind of service that allows consumers’ involvement,
through a system or website, to customize apparel features including fabric, patterns,
fit, and other design details [8,9]. This strategy could satisfy individuals’ demands for
personalized products at an acceptable price by being manufactured on a mass-production
platform [10].

Industry 4.0 has great potential to bring transformative evolution to OAMC by engag-
ing digital technologies, automation, and data exchange [10]. By leveraging data analytics
and machine learning algorithms, OAMC platforms could provide data-driven personal-
ization services and enhance consumer experiences. In the past few years, many efforts
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have been made to automatically generate garment patterns based on human body mea-
surements, three-dimensional models, and parametric formulas [11–13]. However, these
efforts mainly focus on how garments physically fit the human body, not on how garments
enhance the body image.

When consumers shop for apparel products, they seek not only physical fit, but also
psychological comfort, particularly body image enhancement and confidence building.
With the boom in social media, concerns about body image dissatisfaction have grown
worse due to increased social exposure and comparison [14,15]. Consumers nowadays
have more urgent needs for body image enhancement than ever.

Although previous research identified some body ratios [e.g., body mass index (BMI),
waist–hip ratio (WHR), and volume–height index (VHI)] and garment measurements
which are potentially related to body image perception [16–22], no systematic quantitative
relationship has been established to provide effective guidelines for customized apparel
pattern making for body image enhancement.

In order to better quantify the impact of garment fit on the body image, this established
a large dataset of perceived body image, rated according to Thompson and Gray’s Contour
Rating Scale [23], of male and female digital avatars wearing T-shirts in different garment
fit levels and developed an AutoGluon’s deep Learning Neural Network model to map
the inter-relationship between body image perception, garment fit levels, and the wearer’s
body metrics. The model can be applied for consumers to choose or designers to tailor the
right fitting for body image enhancement.

2. Theoretical Framework and Hypotheses

In contemporary society, the ideal female physique is often depicted as a curvaceous,
yet slender hourglass shape [24,25]. Conversely, there has been a consistent preference for
males to have a muscular physique to have masculinity, which urges males to seek a lower
body fat with a higher muscular rate [25]. People who are not satisfied with their body
image tend to make efforts to approximate their ideal body scales, whether through exercise,
dieting, or seeking external assistance such as clothing. The inter-relationship between body
metrics, clothing design elements, and perceived body image are conceptually illustrated
in Figure 1. This research is focused on how clothing interacts with the wearer’s body in
changing their perception of body image.
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2.1. Body Metrics Affecting Body Image Perception

Body image was originally defined as a person’s subjective picture of their own
body [26]. Although the perception of the ideal body image keeps changing throughout
human history, the pursuit of the ideal body image has never stopped.

A lot of previous research has been carried out to identify the physical cues to body
image perception and attractiveness. The waist–hip ratio (WHR) and body mass index
(BMI) were found to be the most important factors for human body attractiveness, especially
for females [20–22], as they are strong indicators of physical health and fertility [27]. Later
on, Fan et al. [18] proposed to replace BMI with VHI as the most important and direct
visual determinant of physical bodily attractiveness, as BMI can be misleading for people
with lower body fat and higher muscular rate, like athletes [27,28].

2.2. Impact of Apparel on Body Image Perception

Considered as the “second skin” or the “second nature” of a human body, apparel
could alter the wearer’s body image and social image. In 1998, DeLong [29] proposed
the model of apparel–body-construct, and stated that the perception of the clothed body
appearance is the interaction of apparel, the human body, and the environment. People
use apparel to camouflage their bodies to create a more ideal body image by concealing
unsatisfying body features and highlighting the desirable body features [30,31].

Fit, as one of the most important apparel elements to consumers, encompasses complex
properties related to human body measurements and ease [27,32]. In fashion product
development, ease refers to the amount of extra room that allows for mobility, comfort, and
appearance enhancement [33,34]. The amount of ease is usually measured by comparing
the difference between the garments’ circumference and the wearer’s body [35].

In 2003, Fan et al. [17] conducted an experiment on the body image perception of three
Chinese male models wearing different sizes of white T-shirts and showed that the effect of
garment ease on body image perception is different for people with different body builds.
Subsequently, a backpropagation neural net model was established to map the nonlinear
relationship between BMI, bust girth, ease of T-shirts, and perceived body sizes [19]. It was
found that for thin males, the effect of garment ease on body size perception is relatively
small, for tall males with a large chest girth, wearing larger size T-shirts would make them
look bigger, and for males with a high BMI (obese), wearing a too tight or too loose T-shirt
would both cause overestimation of body size. Although this research was the first of its
kind, the human models (only three males), garment type (only one type), and number of
viewers for rating the body size perception involved in the investigation were very limited.

2.3. Hypotheses

Past research indicated that factors such as human body metrics and garment fit have
an impact on body image perception. Moreover, the effect of garment fit appears to vary
depending on individual body metrics for males. The effect of garment fit on female body
image perception has not been investigated at all. More comprehensive research is needed
to map the relationship between body features, garment ease, and perceived body image
for both genders with a larger dataset and more participants.

Drawing from the existing literature, it can be anticipated that the effect of garment
fit varies on individual body metrics like obesity levels and height. Moreover, gender
differences may contribute to distinct effects on body perception due to the body natures
and societal expectations. Based on the theoretical backgrounds, the following hypotheses
are proposed:

Hypothesis 1. The perceived body scale can be predicted based on garment ease allowance and a
few basic body metrics of the wearer.

Hypothesis 2. The impact of garment fit may differ depending on the gender of the wearer.
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Hypothesis 3. The impact of garment fit may differ depending on the body scale of the undressed body.

3. Materials and Methods

This study employed a quantitative research design to investigate the impact of
garment fit on perceived body scales. The independent variables consisted of the wearer’s
fundamental body measurements and the garment ease allowance value, while perceived
body scales served as the dependent variables. White T-shirts were selected as experimental
garments due to their widespread usage and simplistic design, effectively minimizing
their impact on perceived body scales aside from fit levels. To ensure control over the
independent variables, a digital dataset of avatars dressed in white T-shirts of varying sizes
was created using commercial computer-aided design (CAD) software. Subsequently, the
avatars were rated for perceived body sizes using a 3D reference scale, developed from
Thompson and Gray’s Contour Rating. The collected data was then employed for artificial
neural network training.

3.1. 3D Human Body Dataset and Size Classifications

The 3D avatar dataset in this research was based on the data of 25 male and 33 female
bodies originally scanned with a TC2 whole-body scanner. All scan files were modified,
repaired, and converted into 3D avatars following a procedure shown in Figure 2, using
three commercial computer-aided design software (viz. MeshLab version 2021.05, Maya
version 2019, and CLO3D version 6.2). Thereafter, the avatars were imported into a
computer-aided design software called TG3D Studio version 2021 to automatically extract
the key body measurements, including height, shoulder width, bust girth, waist girth, hip
girth, and shoulder width. Furthermore, the volumes of the avatars were measured in 3Ds
MAX software version 2023 and were used to calculate the volume–height index (VHI) as
defined by Fan et al. [18], viz.

VHI = V/H2 (1)

where V is the volume of the whole body including the head and H is the total height of
the body including the head.

The means and standard deviations of body dimensions of female and male avatars
are listed in Table 1 below.

Table 1. Details of female and male avatars’ body dimensions.

Gender Body Measurements Mean SD

Female

Height (cm) 167.32 6.84
Shoulder Width (cm) 43.84 3.41

Bust Girth (cm) 101.58 13.52
Waist Girth (cm) 84.26 14.65
Hip Girth (cm) 109.78 14.59

VHI (L/m2) 27.55 7.17
WCR (Waist-to-Chest Ratio) 0.83 0.05
WHR (Waist-to-Hip Ratio) 0.76 0.05

Male

Height (cm) 177.47 7.21
Shoulder Width (cm) 48.56 3.32

Bust Girth (cm) 106.76 9.91
Waist Girth (cm) 98.72 13.62
Hip Girth (cm) 105.43 8.52

VHI (L/m2) 27.99 4.43
WCR (Waist-to-Chest Ratio) 0.92 0.05
WHR (Waist-to-Hip Ratio) 0.93 0.07

For rating the body image perception of 2D figures, the 2D schematic contour rating
scale, developed by Thompson and Gray has been widely used [20]. In order to provide a
better reference for the visual assessment of 3D body images, Thompson and Gray’s 2D
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contour rating scale was converted into a 3D rating scale using CLO3D. Figure 3 shows the
converted 3D version of the body size scales and the VHI value of each avatar in the scale.

Figure 2. 3D avatar development process: (a) Convert body scan files into .obj files in MeshLab;
(b) Modify and repair the incomplete surfaces of the scan files in Maya; (c) Convert the scan files into
editable .avt files in CLO 3D; (d) Manually adjust joints of avatars in CLO 3D; (e) Extract key body
measurements in TG3D Studio; (f) Measure the volume of the avatars in Autodesk 3Ds Max.
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3.2. 3D Apparel Dataset

Apparel items of different sizes were designed to dress the human avatars through
the virtual fitting function in CLO3D. In developing an apparel sizing system to cover the
body size range of the avatars, the bust girth was selected as the core measurement for
both male and female avatars. The avatars were categorized into 6 groups based on their
bust girth, with an interval of 10 cm. The median measurement of each group was taken
as the reference body measurement for the next step of patternmaking. Under each size
group, three fit levels (tight, medium, and loose) were designed to create different levels
of fit, with ease allowance ranging from 3 cm, 10 cm, and 17 cm, respectively. Using this
sizing system, 36 T-shirt patterns were made for male and female avatars using CLO3D.
An example of the T-shirt pattern is shown in Figure 4. Table 2 presents the sizing system
and the bust girth measurements of each fit level.
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Table 2. Size groups and fit level designs for male and female sizing systems (cm).

Gender Group Median Bust
Girth (cm)

T-Shirt Bust Measurement (cm)

Tight Medium Loose

Male

Group 1 88.7 91.7 98.7 105.7
Group 2 100.2 103.2 110.2 117.2
Group 3 110.4 113.4 120.4 127.4
Group 4 117.8 120.8 127.8 134.8
Group 5 130.0 133.0 140.0 147.0
Group 6 140.7 143.7 150.7 157.7

Female

Group 1 90.2 93.2 100.2 107.2
Group 2 100.5 103.5 110.5 117.5
Group 3 110.1 113.1 120.1 127.1
Group 4 118.3 121.3 128.3 135.3
Group 5 134.8 137.8 144.8 151.8
Group 6 143.4 146.4 153.4 160.4

3.3. Avatar Fitting and Image Preparation

To prepare for the visual assessment of body image, each avatar was dressed in T-
shirts at different fit levels. Based on the sizing system described in the above section,
each avatar was fitted with three adjacent groups of T-shirts. Figure 5 shows an example
of fitting options of an avatar from Group 4. This customized fitting system provides a
diverse spectrum of fitting options with an ease allowance range of about −10 to 30 cm
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for all avatars. For avatars situated within Group 2 to Group 5, each avatar was dressed in
9 different fit levels of T-shirts. As for avatars in Group 1 or Group 6, they only have 6 fit
levels as there are no smaller/larger groups.
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In order to better assess the body size perception of dressed avatars, both standing
and walking posture front views were rendered in a uniform image size of 900 × 900 pixels.
Figure 6 provides examples of male and female avatars in two rendered poses. Eventually,
504 images were rendered for female avatars, and 444 images were rendered for male
avatars for experiment preparation.
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3.4. Rating Body Size Perception of Dressed Avatars

The body size perceptions of the dressed avatars displayed on a computer screen
were rated by a total of 38 viewers, primarily college students from Hong Kong SAR, aged
between 20 to 35. Before rating the dressed avatars, all participants were required to pass
through the training section. In the training section, participants were first shown the
3D version of Thompson and Gray’s contour rating scale to familiarize the process and
scale range of body size perception, then rated the 3D figures in the Thompson and Gray’s
contour rating scale in random order until they correctly rated all example figures. When
rating the dressed avatars, each image remained on the screen for 3 s before disappearing,
then the participants were asked to compare the dressed body images with the contour
rating scales and give the closest rating to the image. Once the rating was given, the
participants would see crosshairs on the center of the screen to reposition their line of sight
before viewing the next image. This process was repeated until all images were rated. For
both male and female avatars, four rounds of ratings were conducted, the first and third
rounds for the front-view in standing posture, and the second and fourth rounds for the
front-view in walking posture.
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3.5. Artificial Neural Network Application and Feature Analysis

To map the impact of garment fit levels on body size perception, artificial neural
network modeling was applied. Artificial neural networks are efficient in learning and
modeling the relationships between input and output data, especially when they are
nonlinear or complex [36,37]. Our methodology encompassed the utilization of an open-
source automated machine learning (AutoML) framework, named AutoGluon-Tabular,
developed by Erickson et al. in 2020 [38]. The architecture of the artificial neural network
section is shown in Figure 7. It used an optimized feedforward network architecture to
handle diverse types of values in tabular datasets. The artificial neural network model
could be represented as the function:

y = f(x1, x2, . . . , xn) (2)

where y represents the perceived body size from the experiment above, and x represents
pivotal parameters of size for the rendered images. We will explain the input x in more
detailed results and analysis later.
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The input tabular data in the .csv file was first normalized into similar scales for input
to speed up the training process, then fed forward to the hidden layers, in which each
neuron calculates a weighted sum of its inputs and activates them with the activation
function of Rectified Linear Unit (ReLU). The ReLU function is defined as follows:

f(x) =
{

0 for x ≤ 0
x for x > 0

= max{0, x} (3)

ReLU has been one of the most widely applied activation functions in neural net-
works due to its computational simplicity and superior training performance [39,40]. It
also benefits neural network training in the vanishing gradient problem by working as
a gradient blocker for negative inputs to block the backpropagation of small gradients
which may prevent weight from changing values and stop the neural network from further
training [41].

The hidden units and output units may have biases, and those biases are treated as
other weights. The output vector of the first hidden layer is both fed to a 3-layer feed-
forward network as well as directly connected to the output Y0 via a linear shortcut path.
This shortcut path structure could help to avoid performance degradation and vanishing
gradient problems when adding more layers [42]. The final output Y can be presented as:

Y0 = wz (4)
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Y1 = g(x) (5)

Y = Y1 + Y0 = g(x) + wz (6)

The 3-layer feed-forward network contains three steps for each layer: (1) batch nor-
malize to improve the training speed and stability by recentering and re-scaling the layer’s
inputs [43]; (2) dropout: a regularization method which randomly drops neurons during
the training process by the probability of p, and all forward and backward connections
with the dropped neurons are temporarily removed to construct a smaller new “thinned”
network architecture to prevent the prediction model from overfitting. When testing, the
effect of averaging the prediction of all these “thinned” networks can be approximated by
using a single un-thinned network with smaller weights [44]; (3) calculates the weighted
sum of inputs with the activation function of Rectified Linear Unit (ReLU).

The prediction model was trained using body size ratings obtained from our experi-
mental data. The k-fold cross-validation technique was used to evaluate the model. K-fold
cross-validation is a resampling approach which uses different portions of data to train and
test a model in different iterations, where k refers to the number of groups that a given data
sample is to be split into [45]. In this research, the collected data is randomly shuffled and
split into 4 equal subsets, or 4 folds. The evaluation process was then repeated four times,
with each iteration using one of the four folds (25%) of data as a test set and the rest three
folds (75%) as a training set, using the key features of avatars and apparel items as input
and the average of perceived body scales for output.

4. Results and Discussion
4.1. Data Processing and Noise Removal

In data analysis, it has come to our attention that disparities exist in how individuals
perceive avatar body scales. Although all viewers passed the body scale training practice
before starting rating dressed avatars, their rating behavior tended to be different. To
address this scenario, the rating scores of each participant were standardized and rescaled to
give a general body scale perception to the dressed avatars. Other than the standardization
and rescaling process, an additional refinement was executed to remove the extreme values
for each image rating score group. The five highest and five lowest ratings were removed
to avoid the influence of stochastic noise that might be caused by misoperation, such as
pressing the adjacent buttons on the keypad while rating the images.

4.2. Impact Factors on Human Body Scale Perception

Many factors potentially contribute to the perception of human body size, encompass-
ing attributes such as body volume, body height, bust girth, waist girth, hip girth, and
proportions derived from the above measurements including VHI, WHR, and Waist–Chest
Ratio (WCR). However, adding more variables does not necessarily mean that the predic-
tion model will have a better performance. Adding redundant variables might reduce the
model’s generalization capability, increase the overall complexity, and elongate the training
time. To enhance the predictive model’s parsimony without compromising its predictive
efficacy, the Pearson Correlation Coefficient (PCC) analysis and feature importance analysis
were undertaken to gain an overview of the variables. The AutoGluon-Tabular framework
was used to process the feature importance analysis and train the models with all-feature
subsets and reduced-feature subsets for the assessment of predictive performances. In the
data processing phase, since the human body images have been standardized to a uniform
size when rendering in the CLO3D environment, it is necessary to incorporate the relational
dimensions of horizontal measurements including shoulder width, bust girth, waist girth,
and hip girth, in proportion to the overall body height. The new variables are denoted as
shoulder width/height, bust girth/height, waist girth/height, and hip girth/height.

Figure 8 showcases the PCC results; these visualizations reveal that the basic body mea-
surement variables, including bust girth/height, shoulder width/height, waist girth/height,
hip girth/height, and VHI are highly correlated to each other, especially for female bodies.
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In this case, the VHI value could be used as a representative descriptor instead of other
body measurements for body scale descriptions.
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Figure 9 presents the feature importance analysis results of individual attributes to
the output of prediction models for females and males. The importance score of a feature
represents the performance drop when the model makes predictions on a perturbed copy
of the data with this feature’s value randomly shuffled. For a certain feature, the higher the
importance score is, the more important it is to the model’s performance. Notably, VHI
emerges as the paramount determinant across all variables for both genders. For male
avatars, the contribution of WCR is the fifth most important among all features, exerting a
more pronounced impact on prediction outcomes compared to females. This phenomenon
can be attributed to the direct correlation between WCR and obesity levels. The WCR value
is less connected to body shapes for male avatars than to female avatars. Furthermore,
the metric of the ease/bust girth ratio also has a larger contribution to the male prediction
model, which underscores the potential for garment fit levels to have a more significant
influence on the enhancement of body size perception within the domain of menswear.
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Figure 9. Female and male feature selection analysis.

Utilizing our three-dimensional dataset, we constructed regression models for females
and males VHI, expressed by Equations (7) and (8), respectively. Figure 10 illustrates
the comparison between the observed and predicted volume–height index (VHI) values
based on these regression equations. Using these regression models, the VHI value could
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be predicted using basic body measurements without requiring three-dimensional body
scanning technologies for real-world application.

VHIfemale = 0.8868 − 0.1533 ∗ Height + 0.0877 ∗ BustGirth + 0.1274 ∗ WaistGirth
+ 0.2527 ∗ HipGirth + 0.1125 ∗ ShoulderWidth

(7)

VHImale = 4.3383 − 0.1829 ∗ Height + 0.0957 ∗ BustGirth + 0.0899 ∗ WaistGirth
+ 0.2367 ∗ HipGirth + 0.2484 ∗ ShoulderWidth

(8)
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Based on the assumption that VHI could be used as a representative descriptor of
an avatar’s body image in terms of size perception instead of using multiple complicated
body dimension variables including bust girth/height, shoulder width/height, waist
girth/height, and hip girth/height. To further simplify the model for training and visu-
alization, we choose VHI, WCR, ease/bust, and height as the simplified features, as they
are not correlated and could give a relatively comprehensive description of the human
body image, especially the upper body. Two prediction models were trained to evaluate
the difference for verification.

The first prediction model used all four body dimension ratios (bust girth/height,
shoulder width/height, waist girth/height, hip girth/height) together with VHI, WHR,
WCR, ease/bust ratio, and avatar height as input features. By contrast, the second predic-
tion model used VHI to substitute the four related body dimension ratios while retaining
WCR, ease/bust girth, and avatar height as input features. The training and subsequent as-
sessment of the two prediction models’ k-fold cross-validation (k = 4) results are presented
in Table 3. The R2 score, or the coefficient of determination, emerged as the chosen metric
to encapsulate the predictive efficacy of the models, as articulated by Equation (9):

R2 = 1 − ∑m
i=1(Xi − Yi)

2

∑m
i=1

(
Y − Yi

)2 (9)

Table 3. Prediction model comparison between all features versus the reduced feature prediction
models.

Gender Body Features Fold 1
(R2)

Fold 2
(R2)

Fold 3
(R2)

Fold 4
(R2)

Female

Horizontal measurements, VHI,
WHR, WCR, Ease/Bust, and height 0.98 0.99 0.99 0.98

VHI, WCR, Ease/Bust, and height 0.96 0.98 0.96 0.95

Male

Horizontal measurements, VHI,
WHR, WCR, Ease/Bust, and height 0.91 0.92 0.94 0.92

VHI, WCR, Ease/Bust, and height 0.90 0.93 0.93 0.88
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This matrix can be interpreted as the proportion of the variance in the dependent
variable that is predictable from the independent variables [46].

The evaluation results showed that the prediction model, using a reduced number of
features, could achieve a similar R2 value with a very small loss as that of the prediction
model using all body dimension ratios, sometimes even increasing the model performance
by simplifying the prediction model (Male Fold2). This result suggests the feasibility
of substantial variable reduction by adopting a streamlined set of factors, specifically
encompassing VHI, WCR, ease/bust girth, and body height, as the principal determinants
in explicating body size perception. This result supported Hypothesis 1.

4.3. Body Scale Perception Prediction Model

According to the PCC analysis and feature importance analysis results, the final
prediction models selected VHI, WCR, ease/bust girth, and body height as the pivotal
input parameters. In this section, for Equation (2), a total of n = 4 pivotal input parameters
are used, namely x1, x2, x3, and x4. The new function is represented as:

y = f(x1, x2, x3, x4) (10)

where y represents the perceived body size, ranging from 1 to 9; x1 stands for the VHI
value, ranging from 20.5 to 45.5 (L/m2) for females, from 18.5 to 50.5 (L/m2) for males; x2
denotes the WCR value, ranging from 0.70 to 0.95 for females, from 0.80 to 1.05 for males;
x3 stands for the height, ranging from 1.50 to 1.85 m for females, from 1.65 to 1.95 m for
males; x4 stands for the ease/bust girth ratio, ranging from −0.1 to 0.4 for both genders.

For each value taken (x1, x2, x3, x4), the prediction model could estimate the possible
rating result from the population. By sampling equidistantly in feature space (x1, x2, x3, x4),
we plotted the prediction results with a partial dependency plot (PDP) to show the potential
relationship between garment fit, human body features, and body scale perceptions. The
partial dependency plot (PDP) could show the marginal effect one or two features have on
the predicted outcome of a machine learning model [47].

Figure 11 visualizes the female and male prediction models and underscores the
differential impact of garment fit levels, denoted by the ease/bust girth ratio, on the two
genders’ body perceptions. The y-axis shows the perceived body scale difference compared
to the nude body scale, and the error bars present the value changes caused by height
changes. Both genders were separated into three groups of VHI, representing the body
scale 4 to 5 (slim), 5 to 7.5 (regular), and 7.5 and above (obese). Figure 11 provides a strong
support for Hypotheses 2 and 3. For females, there is a notable tendency to underestimate
the perceived body scale when dressed, and the influence of garment fit appears to be
less pronounced compared to males, which echoes the results of the feature importance
analysis. There is a subtle increment in perceived body scale with larger ease allowances,
hinting at a milder impact. In this context, the WCR wields a greater influence, especially
for female bodies with a VHI under 37.5. These bodies experience a significant WCR-driven
impact on the perceived body scale, with those possessing a lower WCR more likely to
be underestimated. Contrary to some fashion theories suggesting that wearing oversized
garments could visually decrease body scale, our findings suggest that the primary function
of oversize garments may lie in concealing unwanted body parts rather than reducing
perceived body scale. Emphasizing the chest-to-waist ratio could potentially offer a more
effective solution for this purpose.

Turning to males, the perceived body scale is largely affected by garment fit levels,
particularly among individuals with a lower VHI. Among slender males with a VHI falling
within the range of 18.5 to 20.5, the perceived body scale increases significantly with the
ease/bust ratio when the WCR is smaller than 0.99. For small VHI males with a WCR
exceeding 0.99, the perceived body scale increases with the garment ease/bust ratio from
−0.1 to 0.2 and plateau after 0.2. Similarly, for regular-scale males with a VHI between 20.5
to 30.5, the perceived body scale increases with the ease/bust ratio when the WCR is smaller
than 0.99, and for a WCR surpassing 0.99, the perceived body scale slightly increases with
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the ease/bust ratio from −0.1 to 0.2 then slightly decrease. As for the large-size males
with VHI between 30.5 to 50, the impact of garment fit is minimal if the WCR is larger
than 0.99. For those large-scale males whose WCR is below 0.99, a garment ease/bust
ratio between −0.1 to 0.2 emerges as optimal for underestimating the wearer’s body scale.
This finding suggests that strategically wearing loose-fitted garments could significantly
help slender males to create a stronger body image, potentially enhancing their confidence
and self-perception to fit social expectations. Additionally, for obese males, wearing more
close-fitted garments could help to reduce their perceived body scales.
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Figure 11. Prediction model of female and male perceived body scales (y: perceived size difference
compared to nude body, x: proportion of ease allowance versus bust girth).

Based on the prediction models, it is clear that the effect of garment ease is different
depending on the wearer’s gender, original body size, and WCR. When determining gar-
ment ease allowance for customized apparel design, it is imperative to recognize that the
trajectory of desired body enhancement is multifaceted. The mere pursuit of a decrease or
increase in body size perception does not unequivocally signify an enhancement or detri-
ment to body image perception. For individuals who have concerns related to obesity, the
underestimation of body size might be their predominant objective, while for individuals
characterized by a petite physique or those exhibiting marked underweight, enlarging their
body scale could emerge as an effective strategy to enhance their body images.

5. Conclusions

Due to the diversity of fashion design elements, the countless combinations have
made it extremely challenging to quantitatively explore their impact on human body image.
This study attempts to explore one dimension of this multidimensional space—the fit
of garments—on human body perception using CAD software and AutoGluon-Tabular,
an ANN framework. The practice has shown that utilizing CAD software for avatar
measurement extraction, apparel pattern development, 3D model simulation, and image
rendering extraction can significantly reduce the consumption of labor and materials while
obtaining a more controllable and diverse digital database. On the other hand, the use
of ANN has greatly facilitated the exploration towards the impact of design elements
for prediction model training. By learning patterns from existing data, ANN enables
the prediction of previously unseen variables, facilitating extrapolation beyond the scope
of the experiment and enhancing our understanding with limited data. This research
methodology can be extended to investigate the influence of various factors such as garment
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silhouette, color schemes, and print patterns on body image perception to build up the
coordinate system of fashion design elements and body image. Such a system would
be valuable for guiding aesthetic-driven fashion product development and providing
personalized recommendations for consumers.

After mapping and interpreting the prediction model in this study, we found that
garment fit impact varies based on individual body measurements. Particularly, male
wearers exhibit a more pronounced influence of garment fit than female wearers, and the
fit of garment is not the only factor that could impact the perceived body scale. The obesity
and WCR of the wearer are also important factors. This study addresses a notable gap in
the literature by investigating the impact of garment fit on perceived body scales, especially
for females.

For practical implications, the prediction model offers potential application in OAMC
systems. While T-shirts were chosen for their simplicity and commonality, the underlying
principles of how garment fit affects body image perception may also be appliable to other
basic style tops such as shirts, blouses, and outwear. Manufacturers can predict consumers’
VHI values from basic measurements and adapt the model to determine optimal ease
allowance for garment designs based on consumers’ preferences. Beyond its application
in OAMC, this prediction model could also benefit online shopping in product and size
recommendation. By leveraging our prediction models, online retailers can provide per-
sonalized recommendations and tailored fit options. This approach helps to satisfy their
desire to reconstruct an ideal body image that aligns with their expectations while ensuring
physical comfort when wearing the garments. Moreover, a nuanced understanding of gar-
ment fit can contribute to the development of sustainable fashion practices. By optimizing
clothing production to minimize the waste associated with returns and maximize consumer
satisfaction, fashion companies can move towards more environmentally friendly practices,
fostering a more responsible and ethical fashion industry.

However, this research acknowledges certain limitations. One of the limitations is
the use of convenient samples. The recruited participants were mostly college students,
which does not fully represent consumers’ attitudes to the mass market. Other limitations
include the apparel category selection and design element application. The focus solely on
the upper body of male and female avatars within the chosen apparel category constrains
the breadth of inquiry. Future investigations might delve into the interplay between
clothing and the lower body or the entirety of the body, and incorporate additional design
elements, such as colors and silhouettes, to enhance the evaluation’s comprehensiveness.
Additionally, exploring the impact of avatars under diverse body shapes could provide
more comprehensive insights about apparel’s impact on body image enhancement.
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