

  Incremental Entropy Relation as an Alternative to MaxEnt




Incremental Entropy Relation as an Alternative to MaxEnt







Entropy 2008, 10(2), 124-130; doi:10.3390/entropy-e10020124




Article



Incremental Entropy Relation as an Alternative to MaxEnt



Angelo Plastino 1,*, Angel R. Plastino 2, Evaldo M. F. Curado 3 and Montse Casas 4





1



Exact Sciences Faculty, National University La Plata (UNLP), IFLP-CCT-CONICET, Argentinia






2



CREG-UNLP and Conicet, Argentina; Department of Physics, University of Pretoria, South Africa; Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Spain






3



CBPF, Rio de Janeiro, Brazil






4



Departament de Fisica and IFISC, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain









*



Author to whom correspondence should be addressed.







Received: 5 March 2008; in revised form: 14 June 2008 / Accepted: 22 June 2008 / Published: 24 June 2008



Abstract:



We show that, to generate the statistical operator appropriate for a given system, and as an alternative to Jaynes’ MaxEnt approach, that refers to the entropy S, one can use instead the increments δS in S. To such an effect, one uses the macroscopic thermodynamic relation that links δS to changes in i) the internal energy E and ii) the remaining M relevant extensive quantities Ai, i = 1, . . . , M, that characterize the context one is working with.






Keywords:


MaxEnt; probability density function; Thermodynamics’ relations








1. Introduction


Here we wish to address an issue belonging to the foundations of statistical mechanics (SM) by revisiting the role of the entropy S in Jaynes’ SM-formulation [1, 2], based upon the MaxEnt axiom: entropy is to be extremized (with suitable constraints). Of course, SM microscopically “explains” thermodynamics. The later can be axiomatized, as it is well-known, using four macroscopic postulates [3]. Now, Jaynes’ axioms for SM and those of thermodynamics belong to different worlds altogether. The former speak of “observers’ ignorance”, a concept germane to the thermodynamics language, that refers to laboratory-parlance. Of course, there is nothing to object in this respect. However, one might ask whether it would be possible to look for a SM-“Jaynes’ counterpart” that speaks a similar language to that of thermodynamics. We shall address this issue below and try to provide answers. Our starting point is a brief re-visitation of thermodynamics’ axioms. Its four postulates are enumerated below and they are entirely equivalent to the celebrated three laws of thermodynamics [3]:

	
For every system there exists a quantity E, called the internal energy, such that a unique E−value is associated to each of its states. The difference between such values for two different states in a closed system is equal to the work required to bring the system, while adiabatically enclosed, from one state to the other.



	
There exist particular states of a system, called the equilibrium ones, that are uniquely determined by E and a set of, say M, extensive (macroscopic) parameters Rν. The number and characteristics of the Rν depends on the nature of the system [4].



	
For every system there exists a state function S(E, ∀Rν) that (i) always grows if internal constraints are removed and (ii) is a monotonously (growing) function of E. S remains constant in quasi-static adiabatic changes.



	
S and the temperature  [image: Entropy 10 00124 i001] vanish for the state of minimum energy and are ≥ 0 for all other states.








From axiom 3 ones extracts, in particular, the following two statements, essential for our purposes

	
Statement 3a) for every system there exists a state function S, a function of E and the Rν


S = S(E, R1,. . . , RM).



(1)







	
Statement 3b) S is a monotonous (growing) function of E, so that one can interchange the roles of E and S in (1) and write


E = E(S, R1,. . . , RM),



(2)












Eq. (2) clearly indicates that


 [image: Entropy 10 00124 i002]



(3)




with Pν generalized pressures and the temperature T defined as [3]


 [image: Entropy 10 00124 i003]



(4)








2. Our goal


We will show here, as our goal, that one can give Eq. (3) the status of an axiom of statistical mechanics! We introduce first a set of new extensive quantities Aν, appropriately related (see below) to the Rν and postulate for statistical mechanics that (Axiom (1), the incremental entropy postulate)


 [image: Entropy 10 00124 i004]



(5)




a macroscopic statement whose microscopic import will become evident if we establish the relation between the Rν and the Aν (Axiom 2 below). This entails obviously that more is needed for the microscopic theory one is here building up. The minimum amount of microscopic information that we would have still to add to our axiomatics in order to get all the results of equilibrium statistical mechanics is precisely such relation. At this point we will merely conjecture that the following statements might suffice:



Axiom (2)



If there are W microscopic accessible states labelled by i, of microscopic probability pi, then

	
(2-i)


 [image: Entropy 10 00124 i005]



(6)







and



	
(2-ii)


[image: there is no content]



(7)







where [image: there is no content] stands for any set of additional quantities on which S and E may putatively also depend. Moreover,



	
(2-iii)E and the external parameters are now to be regarded as expectation values of suitable operators, respectively the Hamiltonian H and the quantum operators corresponding to the macroscopic quantities Rν, to be here called [image: there is no content], so that Aν ≡ < [image: there is no content] >.








Thus the Aν, and also E (we realize at this stage), will depend on the eigenvalues of these operators and on the probability set. One may recognize now that Axiom (2) is just a form of Boltzmann’s “atomic” conjecture, pure and simple: macroscopic quantities are statistical averages evaluated using a microscopic probability distribution [5]. In order to prove that the above two postulates indeed allow one to erect the mighty SM-edifice we show below that they are equivalent to Jaynes’ SM-axiomatics [1]. A brief sketch reviewing MaxEnt follows, for the reader’s benefit.



2.1. Information theory and the MaxEnt approach of Jaynes’


The main idea of information theory (IT) is to associate a degree of knowledge (or ignorance) I to any normalized probability distribution (PD) pi, (i = 1, . . . , W), determined by a functional of the {pi}. I is called an information measure [6,7,8]. Shannon, IT’s founder [7,8], proposed for I in 1948 the form


 [image: Entropy 10 00124 i006]



(8)




k being an appropriate information unit (for instance, the bit). The quantum I−version replaces the probability distribution by the density operator ρ and the sum by the Trace operation. The main SMobjective thus gets translated into the issue of finding the PD (or the density operator) that best describes the system of interest. Jaynes appeals for this to his MaxEnt postulate, the only one needed in his formulation [6]: MaxEnt axiom. Assume your prior knowledge about the system is given by the values of M expectation values


 [image: Entropy 10 00124 i007]



(9)




Then, ρ is uniquely fixed by extremizing I(ρ) subject to ρ−normalization plus the constraints given by the M conditions constituting our assumed foreknowledge


 [image: Entropy 10 00124 i008]



(10)




This leads, after a Lagrange-constrained extremizing process, to the introduction of M Lagrange multipliers λν, that one assimilates to the generalized pressures Pν . The truth, the whole truth, nothing but the truth [6]. If the entropic measure that reflects our ignorance were not maximized, we would be inventing information that we do not possess.



In performing the variational process Jaynes discovers that, provided one sets k = kB in (8) (kB being Boltzmann’s constant) the information measure equals the entropic one. Thus, I ≡ S, the equilibrium thermodynamic entropy, with the caveat that our prior knowledge  [image: Entropy 10 00124 i009] must refer just to extensive quantities. Once ρ is at hand,  [image: Entropy 10 00124 i010] yields complete microscopic information with respect to the system of interest.



The path to be followed should be clear now: we need to prove that the incremental entropy axiomatics, i.e., the set (5) - (7), is equivalent to MaxEnt.





3. The proof


We cover here only the classical instance. The quantal extension is of a straightforward character. We start with the generic differential change pi → pi + dpi, but constrained by Eq. (5). The differentials dpi must be of such character that (5) holds. Of course, S, Aj, and E will change with dpi and the concomitant changes are constrained by (5). We need not specify neither the explicit form of the information measure nor the way in which mean values are evaluated. In both cases, several possibilities have been advanced during the last 20 years [9]. For a detailed discussion of this issue Ref. [10] is to be recommended. The ingredients of our scenario are

	
an arbitrary, smooth function


I ≡ S({pi}),



(11)




such that S({pi}) is a concave function,



	
M quantities Aν that represent mean values of extensive physical quantities [image: there is no content]. These physical quantities [image: there is no content] take, for the micro-state i, the value [image: there is no content] with probability pi,



	
another arbitrary smooth, monotonic function g(pi) (g(0) = 0; g(1) = 1), that customarily (when the ordinary logarithmic Shannon entropy is used) is taken to be just g(pi) = pi.








We deal then with (we take A1 ≡ E)


 [image: Entropy 10 00124 i011]



(12)






 [image: Entropy 10 00124 i012]



(13)




where ϵi is the energy associated to the microstate i. The probability variations dpi in turn generate corresponding changes dS, dAν , and dE in, respectively, S, the Aν, and E.



3.1. Part I


The essential point that we are introducing is to enforce obedience to


 [image: Entropy 10 00124 i013]



(14)




with T the temperature and λν generalized pressures: λν = −Pν . We use now the expressions (11), (12), and (13) so as to cast (14) in terms of the probabilities, according to the change


pi → pi + dpi.








If we expand the resulting equation up to first order in the dpi it is immediately found that the following set of equations ensues [11,12] (remember that the Lagrange multipliers are identical to minus the generalized pressures Pν of Eq. (3)) :


 [image: Entropy 10 00124 i014]










 [image: Entropy 10 00124 i015]










 [image: Entropy 10 00124 i016]



(15)




where primes denote pi−derivatives. Eq. (15) should yield one and just one pi−expression (one probability distribution), which it indeed does (see [11,12]). We do not need here, however, an explicit expression for this probability distribution, as will be immediately realized below.




3.2. Part II


Alternatively, proceed à la MaxEnt. This requires extremizing the entropy S subject to the usual constraints in E, Aν, and normalization. The ensuing, Jaynes’ variational treatment is seen in [11,12], after appropriately dealing with delicate normalization-related issues [11,12], to yield the very set of Eqs. (15) as well! These equations arise then out of two clearly separate treatments: (I) our methodology, based on Eqs. (5) and (7), and (II), following the MaxEnt prescriptions. This entails that MaxEnt and our axiomatics co-imply each other, becoming thus equivalent ways of building up statistical mechanics.





4. Conclusions


We have seen that the set of equations


 [image: Entropy 10 00124 i017]








yields a probability distribution that coincides with the PD provided by either

	
the MaxEnt’s, SM axiomatics of Jaynes’



	
our two postulates: incremental entropy (5) and Boltzmann conjecture (7).





Let us repeat then, in our instance the postulates start with

	
the macroscopic thermodynamic relation dE = TdS + ∑ν PνdAν,, adding to it



	
Boltzmann’s conjecture of an underlying microscopic scenario ruled by microstate probability distributions.





The two postulates combine then (i) a well-tested macroscopic result with (ii) a by now un uncontestable microscopic state of affairs (which was not the case in Boltzmann’s times!). Thus one may confidently assert that these two postulates are intuitively intelligible from a physical laboratory standpoint, as promised in the Introduction. We have found a Jaynes’s SM counterpart centered on a differential entropy.
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