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1. Introduction 

B-ary trees are, together with stars and paths, one of the most studied acyclic graph structures. A 
survey on the available literature showed that almost 20% of papers dealing with graphs deal also with 
trees. The statistics calculated on trees are used in machine learning [1] and solving of 
nondeterministic polynomial-time hard (NP-hard) problems [2]. The concept of entropy in conjunction 
with regular trees was used as measure of similarity between two grammars [3]. Moreover, the 
information flows in b-ary trees was subject of some theoretical results, including a converse in [4]. 
General formulas characterizing the random walk in a b-ary tree were obtained in [5]. A general 
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formula giving the number of substructures by their sizes by systematically removal of a vertex in a b-
ary tree was also obtained [6]. 

As any other structure, a tree can be seen as a system that contains information. The aim of the 
present research was to assess through informational entropy the structural information changes in b-
ary trees after removal of an arbitrary vertex. 

2. Material 

Let T(b,Y) be a regular b-ary tree with Y levels (Figure 1).  The removal of an arbitrary vertex 
applied on a b-ary tree will generate one (when the removal is applied to a leaf), two (when the 
removal is applied to a root), or three (when the removal is applied to an inside node) sub-graphs. 

Figure 1. A b-ary tree with Y levels, T(b,Y) 

 
 

It is possible to evaluate the number of sub-graphs by removing every vertex from the tree one at a 
time. A statistical motivation is associated to this procedure. If we are able to obtain the entire 
population of sub-structures by their sizes after this procedure, then the probability of appearances of a 
substructure of a given size can be obtained (by dividing its occurrence to the total number of 
substructures). 

It could be said that systematically removal of every vertex is not a usual procedure for a given 
practical problem. Indeed, but usually in a real application, an issue may be the removal of one vertex 
when the specification of which one vertex is to be remove is unknown. One example may be a tree 
network topology (let us say a Regional Internet Registry providing Internet resource allocations). In 
this case, the assessment of the impact of removing a node is an important issue for projecting the 
network.  

The assumptions applied in the present research were as follows: all vertices and edges in the b-ary 
tree are present (or available) at the initial moment (before removing the first vertex), the tree is 
balanced, and the vertices and edges have no precedence/weight one to another. Then we will move 
from complete characterization of a set (the set of all sub-graphs obtained by removing of an arbitrary 
vertex of a tree) to an issue of probability (obtaining the appearance probability of a set of a given 
size). In terms of the entire structure (the tree), the appearance probability of a set of a given size may 
not be a relevant information but a global parameter which to characterize the tree under the given 
circumstances (removal of one vertex) could be of interest and was investigated. 
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3. Method 

Entropy is the parameter that characterizes the amount of disorder. Rényi [15] gave a generalization 
of the entropy through a family of functional for quantifying the diversity, uncertainty or randomness 
of a system. 

Let X be a discrete variable that take the values {x1, …, xn} and p(·) the probability mass function 
(gives the probability that a discrete random variable is exactly equal to a value). The Rényi entropy 
(abbreviated as Hα(X) for any non-negative order α, where α ≥ 0) is given by: 

n

2 i
i 1

1H (X) log p (x )
1

α
α

=

=
−α ∑  (1)

Two particular cases of Eq(1) are taken into consideration: α → 1 (or Shannon's entropy [8]), and α 
= 2 (negative logarithm of Simpson's diversity index D [10] or Onicescu's energy [9]): 
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4. Results 

Let us recall the structure from Figure 1. The following formula (abbreviated as NSSP) describes 
the number of substructures (coefficient of the X variable) by sizes (power of the X variable) for 
systematically removal of a vertex from a b-ary tree [6]: 
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The Eq(3) give the full description of the counts and sizes of substructures for any Y,b>0. The 
Table 1 presents the substructures and sizes for some particular cases of trees. Note that the coefficient 
of X0 counts the total number of vertices in the original structure. 

Table 1. Substructures obtained by remove of an arbitrary vertex: regular b-ary trees 

b Y Formula Comments 

1 1 2X0+2X1 A graph with two vertices and one edge 

1 >1 (Y+1)X0+2X(XY-1)/(X-1) For b=1 tree degenerates in a path 

>1 1 (b+1)X0+b(X+Xb) For Y=1 tree degenerates in a star 

b 2 (b2+b+1)X0+b(Xb+1+Xb2)+b2(X+Xb2+b) Powers of X's may be repeated in the series 

Y = number of levels; b = ramification degree of the b-ary tree

 
By using the Eq(3), we want to find the roots of the following equation: 
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21 k1Y1Yk1Y bb1b −++−+ −=−  i.e. )1Y(kkkk 2212 bbb1 +−− +=+  (4)

Excluding b=1 (b, Y, k1, and k2 are natural not null numbers; and 1 is also a natural number) the 
equality Eq(4) can be satisfied just when the only solutions of Eq(5) is for k1=Y+1 (that implying as 
consequence to have the b=1). The conclusion that can be drawn from here is that for b>1 all terms 
from Eq(3) are distinct. 

Since the problem of occurrences of sub-graphs sizes (no) was solved in the general case for b>1 (no 
repeats in terms of Eq(3)) we are able to perform the calculations for a given Y and b (note that the 
problem can be extended to any b and Y less than or equal to a given value): 
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in addition, the probability (of observing a structure of a given size in a random cut) is given by: 
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(6)

The replacement of Eq(6) into Eq(1) and Eq(2) leads to the following formulas: 
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where H1(b,Y) is the Rényi entropy of order 1; H2(b,Y) is the Rényi entropy of order 2 of a b-ary tree 
T(b,Y) after removal of a vertex, when b>1. The value of 2 is given by the fact that we have equal 
probabilities for fragments of size (bY+1-k - 1)/(b - 1), and (bY+1 – bY+1-k)/(b - 1) respectively (see 
Eq(6)). 

For b=1 (path) an entry from Table 1 can help us to obtain the values for H1(1,Y)=H1(Y) and 
H2(1,Y)=H2(Y), respectively: 

Y Y
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5. Discussion 

In terms of statistics, the random event subject of the investigation was to remove a vertex from a b-
ary tree, and the observation was to count the size of a connected structure (the size of a connected 
structure being the random variable). This statistical experiment allowed obtaining an important 
informational statistics: entropy and diversity index. 
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Equations (7)-(10) allow one to compute the values and based on the obtained results, to plot the 
dependence of the Hx(b,Y) (where x = 1, 2; H1(b,Y) = Rényi entropy of order 1; H2(b,Y) = Rényi 
entropy of order 2) and D(b,Y) by the number of levels (Y) and ramification degree (b) of the tree. 
These dependencies ranging from 1 to 20 for Y and b are presented in Figure 2. 

Figure 2. Rényi entropy of order 1 - H1 = H1(b,Y), Rényi entropy of order 2 - H2 = 
H2(b,Y), and Simpson's diversity index - D = D(b,Y) of a b-ary tree with Y levels after a 
vertex removal 
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The analysis of the calculated values obtained by applying the formulas for Rényi entropy of order 
1 and 2, and of Simpson's diversity index revealed the followings: 
÷ For a given value of b (ramification degree of the b-ary tree):  

o The values of Rényi entropy of order 1 are equal with the values of and Rényi entropy of 
order 2 for b=1 and 1≤Y≤20. 

o The distribution of D(b,Y), H1(b,Y) and H2(b,Y) follow a similar pattern for b > 2 and 
1≤Y≤20. 
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o Starting with b=4 the values of D(b,Y), H1(b,Y) and H2(b,Y) become a monotone function 
with the increases of the number of levels. Very small differences were observed for 7≤b≤20. 

o If the b=1 is excluded from the analysis, the values of D(b,Y) decrease with the increasing of 
Y while the values of H1(b,Y) and H2(b,Y) increase with increasing of Y (see Figure 3). 

Figure 3. Variation of Simpson's diversity index (D) and Rényi's entropy of order 1 (H1) 
for a given value of ramification degree 
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o The maximum value is systematically obtained by b=2 for D(b,Y) and b=20 for H1(b,Y) and 
H2(b,Y). The D(b,Y) values tend to varied with very small quantities (the differences are not 
observed at the level of first four decimals) starting with a certain value of Y (D(b,Y): 
D(2,12), D(3,9), D(4,7), D(5,7), D(6,7), D(7,5), D(8,5), D(9,5), D(10,5), D(≥11,4)). The 
variation with very small quantities are also observed for H1(b,Y) (H1(2,19); H1(3,12); 
H1(4,10); H1(5,8); …) and H2(b,Y) (H2(2,18); H2(3,10); H2(4,9); H2(5,8); …). 

÷ For a given value of Y (number of levels of the b-ary tree): 
o For Y=1: the values of D(b,Y) were equal with 0.5 for 2≤b≤20; the values of H1(b,Y) and 

H2(b,Y) were equal to 1 for 2≤b≤20. 
o The distribution of D(b,Y) follows a certain pattern for b>2 and 1≤Y≤20. A similar pattern is 

observed for distribution of H1(b,Y) and H2(b,Y). 
o The values of D(b,Y) increase with increases of b while the values of H1(b,Y) and H2(b,Y) 

decrease with increasing of b after an initial increase (see b>2 and Y>8, Figure 4). 

Figure 4. Variation of Rényi's entropy of order 1 (H1) and 2 (H2) for a given value of Y 
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The maximum value of Rényi entropy of order 1 was equal with the maximum value of Rényi 
entropy of order 2 (4.3219) for T(1,20). With a few exceptions (for T(1,<5)) the values of Rényi 
entropy were higher than 2 which leads to the conclusion that the most disorder structure were the 
ones from the path (unary-tree) class (T(1,5), T(1,6), T(1,7), T(1,8), T(1,9), T(1,10), T(1,11), T(1,12), 
T(1,13), T(1,14), T(1,15), T(1,16), T(1,17), T(1,18), T(1,19), and T(1,20)). The structures become 
more stable as the degree of the ramification of the b-ary tree increase (structures become more 
complex). The values of Rényi entropy of order 1 range from 1.2762 to 1.3015 for T(20, 1<Y≤20), and 
the values of Rényi entropy of order 2 range from 1.1372 to 1.1444 for T(20, 1<Y≤20). 
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A regression analysis for a give value of levels (Y) was applied in order to identify the relationship 
between Simpson's diversity index (D(b,Y)) and Rényi entropy of order 1 (H1(b,Y)), and between 
Rényi entropy of order 1 (H1(b,Y)) and 2 (H2(b,Y)). The obtained results expressed as equations and 
associated squared correlation coefficients are presented in Table 2. The relative variation (min=0; 
max=1) of regression equation coefficients from Table 2 for H1 = f(D) and H2 = f(H1) are graphically 
presented in Figure 5. 

Table 2. Substructures by removal of an arbitrary vertex for some regular b-ary trees 

Y H1 = f(D) H2 = f(H1) 

 Equation R2 (for 1<b<21) Equation R2 (for 1<b<21) 

2 -4.68·D2 - 0.17·D + 2.32 0.999904 0.77·H1
2 - 1.37·H1 + 1.63 0.999860 

3 -1.50·D2 - 3.50·D + 3.20 0.999948 0.39·H1
2 - 0.45·H1 + 1.07 0.999863 

4 0.82·D2 - 5.58·D + 3.66 0.999930 0.26·H1
2 + 0.08·H1 + 0.81 0.999934 

5 2.49·D2 - 6.94·D + 3.94 0.999855 0.19·H1
2 + 0.13·H1 + 0.66 0.999947 

6 3.61·D2 - 7.83·D + 4.11 0.999738 0.15·H1
2 + 0.25·H1 + 0.56 0.999989 

7 4.32·D2 - 8.37·D + 4.22 0.999614 0.13·H1
2 + 0.32·H1 + 0.51 0.999966 

8 4.76·D2 - 8.71·D + 4.28 0.999511 0.12·H1
2 + 0.36·H1 + 0.47 0.999936 

9 5.02·D2 - 8.90·D + 4.31 0.999436 0.11·H1
2 + 0.38·H1 + 0.45 0.999911 

10 5.17·D2 - 9.02·D + 4.34 0.999387 0.11·H1
2 + 0.40·H1 + 0.44 0.999893 

11 5.25·D2 - 9.08·D + 4.35 0.999357 0.10·H1
2 + 0.41·H1 + 0.43 0.999882 

12 5.30·D2 - 9.12·D + 4.35 0.999340 0.10·H1
2 + 0.41·H1 + 0.43 0.999875 

13 5.33·D2 - 9.14·D + 4.36 0.999330 0.10·H1
2 + 0.41·H1 + 0.43 0.999871 

14 5.34·D2 - 9.15·D + 4.36 0.999324 0.10·H1
2 + 0.41·H1 + 0.43 0.999868 

15 5.35·D2 - 9.16·D + 4.36 0.999321 0.10·H1
2 + 0.42·H1 + 0.43 0.999867 

16 5.36·D2 - 9.16·D + 4.36 0.999319 0.10·H1
2 + 0.42·H1 + 0.42 0.999866 

17 5.36·D2 - 9.16·D + 4.36 0.999318 0.10·H1
2 + 0.42·H1 + 0.42 0.999866 

18 5.36·D2 - 9.16·D + 4.36 0.999318 0.10·H1
2 + 0.42·H1 + 0.42 0.999866 

19 5.36·D2 - 9.16·D + 4.36 0.999317 0.10·H1
2 + 0.42·H1 + 0.42 0.999866 

20 5.36·D2 - 9.16·D + 4.36 0.999317 0.10·H1
2 + 0.42·H1 + 0.42 0.999866 

coef(D2) = 5.441 - 23.71·e-Y/2.39 
coef(D) = -9.195 + 23.08·e-Y/2.14 
Intercept = 4.361 - 5.92·e-Y/1.87 

0.999 
0.999 
0.999 

coef(H1
2) = 0.1 + 2.9·e-Y/1.35 

coef(H1) = 0.4 - 7.47·e-Y/1.39 
Intercept = 0.43 + 3.7·e-Y/1.77 

0.997 
0.994 
0.999 

 
The analysis of the results presented in Table 2 revealed the followings: 

÷ Very good relationships in terms of determination coefficient are obtained between Simpson's 
diversity index and Rényi entropy of order 1, and Rényi entropy of order 1 and 2, respectively. 

÷ The relationships are polynomial of second order for both investigated situations ((D(b,Y))- 
(H1(b,Y)) and (H1(b,Y))-(H2(b,Y)). 

÷ The H2(b,Y) = f(H1(b,Y)) obtained slightly better performances in terms of determination 
coefficients compared with H1(b,Y) = f(D(b,Y)) (the maximum value of R2 = 0.999989 – Y=4 
compared with R2 = 0.999948 – Y=3). Moreover, the distribution of the determination coefficient 
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is more narrow for H2(b,Y) = f(H1(b,Y)) (a difference between maximum and minimum of 
0.000129) compared to H1(b,Y) = f(D(b,Y)) (a difference between maximum and minimum of 
0.000631). 

Figure 5. Relative variation (min=0; max=1) of regression equation coefficients from 
Table 2 for H1 = f(D) and H2 = f(H1) 
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÷ The polynomial of second order dependency of H1(b,Y) by the D(b,Y) revealed to be done by the 
same equation if the number of decimals are reduced to two for Y ≥ 13. 

÷ The polynomial of second order dependency of H2(b,Y) by the H1(b,Y) revealed to be done by the 
same equation if the number of decimals are reduced to two for Y ≥ 11. Moreover, the 
determination coefficient of 0.999866 was systematically obtained for Y ≥ 16. 

The calculated values of information entropy proved to be negatively correlated for the arbitrary 
vertex removal from a b-ary tree. The variation of the correlations between these measures of 
information is graphically presented in Figure 6. 

The linear relationship between Rényi's entropy of order 1 (H1) and 2 (H2) of b-ary trees is perfect 
(equal to 1) for b=1 due to the equality of the values of these two parameters. The analysis of the 
obtained values of correlation coefficients revealed the followings: 
÷ Degree of ramification (b): 

o r(H1,H2): the minimum as well as the maximum values of correlation coefficient (expressed as 
absolute values) increase with increasing of ramification degree. Moreover, a certain pattern 
of variation could be observed. 

o r(H1,D): the correlation coefficients analysed as absolute value increase with increasing of 
ramification degree (the range of this variation is wider (0.036699) compared with the narrow 
variation of r(H1, H2) (0.005394)). The distribution of r(H1,D) follows two patterns according 
with the value of b (see Figure 7). 
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Figure 6. Correlation between Rényi's entropy of order 1 (H1) and 2 (H2), and between 
Rényi's entropy of order 1 (H1) and Simpson's diversity index (D) of a b-ary tree after a 
vertex removal 
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The correlations between H1 and H2,and between H1 and D were calculated by using the following formula:  
r(H1,H2) = r(b,Y) = r([H1(bb,YY)]1≤bb≤b;1≤YY≤Y,[H2(bb,YY)]1≤bb≤b;1≤YY≤Y) 
where [⋅] denotes a matrix having b columns and Y rows. 

Figure 7. Distribution of r(H1,D) with number of levels (Y) 
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÷ Number of levels (Y): 
o The minimum and maximum value (expressed as absolute values) increase with number of 

levels for r(H1,H2) as well as for r(H1,D). 
o The maximum value of r(H1,H2) is obtained for T(20,20). The highest correlation coefficient 
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of r(H1,D) was also obtained by T(≥16,20). 
o The absolute values of r(H1,H2) follows a similar pattern for Y≤9 with a slowly decrease until 

b=6 followed by an increase. For Y>9, the absolute value of correlation coefficients increase 
with increasing of b. 

o The variation of the r(H1,D) is presented in Figure 8. 
Overall, the correlations coefficients revealed to be good, being always higher than 0.9730 

(r(H1,H2) or smaller than -0.8724 (r(H1,D)). 
The linear relationships between H1 and H2, as well as between H1 and D became weaker with the 

increases of the degree of ramification (b) and of the number of levels (Y). The highest correlation 
expressed as the absolute value was of r(H1,D) = -0.9724 for T(2,2) and of r(H1,H2) = 0.9996 for 
T(2,2)). 

Figure 8. Variation of r(H1,D) with the degree of ramification (b) 
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The informational entropy computed on tress found its application on pattern recognition [16], 
clarification on self-similarity properties of river networks [17], characterization of kinetic equation 
[18], evaluation of comminution process [19], and so on. Moreover, the informational entropy analysis 
provide the information about the total loss of information of the investigated structure (the maximum 
entropy of a system correspond to the total loss of information), asymmetry or symmetry as well as 
about simplicity [20]. 

The formulas given by Eq(7) and Eq(8) may be used for larger b and Y as approximation formulas 
when the b-ary tree is not complete (having few gaps), by using an averaged (approximated) value for 
its number of levels, since few for larger trees may affect in small amount the entire information 
contained in the tree. Figures 2 and 6 sustain these assumptions; the entropy of the b-ary tree varies 
very slowly for larger values of b and Y. 
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As it could be observed, just the balanced b-ary trees were considered in the present research and 
this could be a limitation of the study due to the possibility to obtain a generalization. The behaviour 
obtained in this research on balanced b-ary trees will be assessing in further researches on unbalanced 
trees (note that the unbalanced trees are particular cases). 

Conclusions 

The values of Rényi entropy of order 1 are equal with the values of and Rényi entropy of order 2 for 
a value of the ramification degree of a b-ary tree equal to 1. The values obtained by Rényi entropy of 
order 1 and 2 decreases with the increases of the ramification degree of the b-ary tree. The Rényi 
entropy of order 1 and 2 increase with the increases of the number of levels for a give value of the 
ramification degree of a b-ary tree. The relationship between Rényi entropy of order 1 and 2, and 
between Rényi entropy of order 1 and Simpson's diversity index revealed to be of order two 
polynomial types rather than of a linear type.   
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