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Abstract: We present a statistical dynamical Kalman filter and compare its performance to
deterministic ensemble square root and stochastic ensemble Kalman filters for error covari-
ance modeling with applications to data assimilation. Our studies compare assimilation and
error growth in barotropic flows during a period in 1979 in which several large scale atmo-
spheric blocking regime transitions occurred in the Northern Hemisphere. We examine the
role of sampling error and its effect on estimating the flow dependent growing error struc-
tures and the associated effects on the respective Kalman gains. We also introduce a Shannon
entropy reduction measure and relate it to the spectra of the Kalman gain.
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1. Introduction

A central problem in data assimilation is how best to model the error covariance matrices for the
background states and analyses. The aim of data assimilation is to obtain a near optimal estimate of the
state of the atmosphere, based on observations and on short term forecasts, that provide the so-called
background states with information in the data void areas. Data assimilation methods can be regarded
as generalized filters that extract the signal from noisy observations and produce assimilated data sets at
each required time and with complete coverage at the required resolution. The accuracy of numerical
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weather prediction models depends critically upon data assimilation for specifying the initial conditions.
Model initialization methods include variational data assimilation (Talagrand & Courtier (1987) [73],
Courtier & Talagrand (1987) [13], Courtier et al. (1994) [14], Rabier et al. (1998a) [66], Rabier et al.
(1998b) [67], Rabier et al. (2000) [68]), in which an optimal initial condition is found that minimizes
differences between observations and model solutions over a given finite time interval, and nudging data
assimilation, where the model state is relaxed toward observations dependent on empirically or optimally
determined relaxation coefficients (Zou et al. (1992) [81], Vidard et al. (2003) [77]). The Kalman
filter approach to data assimilation has become a possible alternative to variational data assimilation due
to the development and application of the ensemble Kalman filter (Evensen (1994) [21], Evensen &
van Leeuwen (2000) [23], Evensen (2003) [22] and references therein) and ensemble square root filter
(Andrews (1968) [3], Tippett et al. (2003) [74] and references therein) methodologies.

Schneider & Griffies (1999) [71], Roulston & Smith (2002) [69], DelSole (2004) [18] and Kleeman
(2007) [48] have extensively applied the use of information theoretic functionals to measure the informa-
tion content of probabilistic numerical weather prediction (NWP) models. In numerical weather predic-
tion the crucial question is how to estimate the current state of the system given observations of the past
state. Such an estimate must be obtained recursively in time utilizing new observations as they become
available. Zupanski (2005) [82] developed an ensemble data assimilation methodology whereby the in-
formation content of observations is considered in terms of the signal and entropy reduction analogous
to analysis and forecast covariances respectively (see Shannon & Weaver (1949) [70]). These quantities
are then used to determine the maximum likelihood state solution by minimizing a cost function. Eyink
& Kim (2006) [24] employed maximum entropy as a basis for selecting weights, means and covariances
to model prior distributions using mixture models of weighted sums of Gaussians. The current interest in
information theoretic approaches in the weather prediction and data assimilation community has to some
degree been motivated by the desire to develop methodologies that go beyond assumptions of linearity
and Gaussianity. O’Kane & Frederiksen (2008) [63] quantified the role of non-Gaussian cumulants
in ensemble weather prediction using statistical closure methods; in this current work we extend their
ensemble prediction method to data assimilation and demonstrate how this methodology relates to the
concepts of Shannon entropy and maximum entropy. A detailed discussion of the relationships between
entropy and statistical mechanical equilibrium states can be found in Frederiksen & O’Kane (2008) [34].

In numerical weather prediction and data assimilation there are a number of outstanding issues that
need to be addressed. For large numerical prediction models, with millions of variables, calculating
the full covariance matrices of the background errors as they evolve with time remains an intractable
problem. For this reason current data assimilation schemes frequently assume that the background error
covariances are homogeneous and even isotropic (Snyder et al. (2003) [72]). In addition the background
error covariances are often assumed to be stationary as is the case for the National Meteorological Cen-
ter’s (NMC) spectral statistical-interpolation (SSI) analysis method developed by Parish & Derber (1992)
[64]; see also Dee (1995) [17], Rabier et al. (1998b) [67], Derber & Bouttier (1999) [19], McNally et
al. (2000) [57], & Buehner (2005) [11], and in the the 3-D variational operational method developed
at ECMWF (Courtier et al. (1998) [15]). In the spectral data assimilation method used at the NMC it
is assumed that the background error matrices describe horizontally homogeneous correlations for the
field variables with correlations in the vertical. More recently 4-D variational (4D-VAR) methods have
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been implemented operationally, such as at ECMWF (Lorenc (2003) [54], Rabier et al. (2000) [68]),
which have been shown to be equivalent to a fixed-interval Kalman smoother (Ménard & Daley (1996)
[58]). In common with 3D-VAR (Andersson et al. (1998) [2]), current 4D-VAR methods employ the use
of a static background error covariance matrix independent of the background field itself and tuned to
ensure balance for any given observational network as discussed in Beck & Ehrendorfer (2005) [4] and
Derber & Bouttier (1999) [19]. In 4D-VAR the use of a stationary background error covariance model
at the beginning of each assimilation cycle means that the full flow dependent background error covari-
ances cannot be propagated from one data assimilation cycle to the next (Lorenc (2003) [54], Wang et
al. (2007b) [79]). In both 3D and 4D-VAR this stationary background error covariance model is often
nearly homogeneous and isotropic (see Wang et al. (2007b) [79] and references therein).

In both the ensemble Kalman filter (EnKF) (Evensen (1994, 2003) [21, 22]) and the ensemble square
root filter methodology (EnSF) (Andrews (1968) [3], Tippett et al. (2003) [74]) estimates of the flow
dependent background covariance matrices are constructed from ensembles of short term forecasts with
slightly differing initial conditions. In the EnKF approach an ensemble of model states is propagated with
a fully nonlinear model allowing the error covariance matrix to be calculated with no moment closure
required. This allows the construction of the forecast error covariance at any given time by averaging over
the ensemble. Because it is generally only practicable to perform of the order of a hundred background
forecasts using current operational numerical weather prediction systems additional assumptions must be
made about the nature of the background correlations. Such assumptions are required to reduce sampling
errors. Currently hybrid data assimilation methods have been trialled in which an ensemble of forecasts
is used to calculate flow dependent background error covariances and then augment those from a 3D-
VAR data assimilation scheme (Hamill & Snyder (2000) [39]) or optimal interpolation scheme (Wang et
al. (2007b) [79]).

Sampling error is one of the fundamental issues that affects our ability to estimate the posteriori state
of the atmosphere. Typically, sampling error is caused by an insufficient number of realizations such
as occurs when the sample size is less than the number of degrees of freedom. As well, sampling error
may arise through the use of perturbed observations. One common approach to reducing sampling error
is to assume that background error correlations vanish for points separated by a distance greater than
several thousand kilometers (Hamill et al (2001) [40], Buehner (2005) [11]). In these approaches the
effectiveness of the assimilation schemes is found to depend on the choice of the localization length
scale (see Buehner (2005) [11] and references therein). As well, to ensure that the filtering solution does
not diverge from the observations and to keep prior covariances small, it is generally necessary to employ
an empirically selected covariance inflation factor (Anderson (2001) [1], Hamill et al (2001) [40]).

Recently alternatives have been introduced that promise to overcome some of the sampling prob-
lems associated with the EnKF. Anderson (2001) [1] developed the ensemble adjustment Kalman filter
(EnAKF) and applied it to a non-divergent spherical barotropic model. Andrews (1968) [3] formulated
the square root Kalman filter and Tippett et al. (2003) [74] showed the relationship between various en-
semble square root filter variants including the EnAKF and ensemble transform Kalman filter. Whitaker
& Hamill (2002) [80] examined sampling error in a comparison of the EnKF to the EnSF. A recent
computationally efficient square root filter variant enabling higher resolution studies called the local en-
semble transform Kalman filter (LETKF) has been tested by Miyoshi & Yamane (2007) [61]. These



Entropy 2008, 10 687

assimilation methods share a common approach based on the use of unperturbed observations and form
a class of deterministic ensemble square root filters; see Tippett et al. (2003) [74] and references therein.

The calculation of the error covariance of fields described by an evolving nonlinear system requires
the solution of an infinite hierarchy of moment equations; this problem is formally identical to the clo-
sure problem that arises in statistical approaches to turbulence. Typically Kalman filter methods simply
discard cumulants of third order and higher, although these cumulants are often required to ensure that
regime transitions in nonlinear models are accurately tracked (Miller et al. (1994) [59], Bengtsson et
al. (2003) [5]). More generally it would seem to be desirable to develop a tractable data assimilation
scheme that incorporates information about the higher order cumulants.

In the case of homogeneous turbulence, with zero mean field and no topography, closures such as
the direct interaction approximation (DIA, Kraichnan (1959) [49]), self consistent-field theory (SCFT,
Herring (1965) [41]), and local energy transfer theory (LET, McComb (1974) [55]; McComb & Shan-
mugasundaram (1984) [56]) would provide a methodology for studying the data assimilation problem.
These closures have been shown to be related by different applications of the fluctuation dissipation
theorem by Frederiksen et al. (1994; 2000) [31, 35] and Kiyani & McComb (2004) [47]. Frederiksen
& Davies (2004) [32] showed that for accurate simulation of the small scales regularization of the clo-
sure, in which interactions are localized in spectral space, as first proposed by Kraichnan (1964) [50], is
required.

To treat the general statistical problem of mean fields interacting with inhomogeneous turbulence and
topography more general closures are needed. Frederiksen (1999) [27] formulated the quasi-diagonal
direct interaction approximation (QDIA) closure for the interaction of general mean flows with inho-
mogeneous turbulence and topography on an f -plane. O’Kane & Frederiksen (2004), hereafter OF2004
[62], studied the performance of the QDIA, including computationally tractable variants, and found that
in regularized form it is in excellent agreement with the statistics of DNS at all scales. Frederiksen &
O’Kane (2005), hereafter FO2005 [33], generalized the QDIA theory and numerics to apply to the inter-
action of inhomogeneous turbulence with Rossby waves, mean flows and topography on a β-plane. The
QDIA has also been successfully applied to ensemble prediction studies that have focused on the statis-
tics of error growth during blocking transitions (O’Kane & Frederiksen (2008) [63]). The QDIA closure
solves prognostic equations for the statistics of the mean field and the inhomogeneous covariance matri-
ces of the fluctuations or errors. It is called the quasi-diagonal DIA because the off-diagonal elements of
the covariance matrix (or two-point cumulant) in spectral space are expressed in terms of the diagonal
covariances and response functions, as are the elements of the three-point cumulant. The QDIA theory is
a suitable frame work for formulating a statistical dynamical Kalman filter (SDKF) methodology since
it provides prognostic equations for the mean field, inhomogeneous covariance matrix and three-point
cumulant without sampling error.

The Kalman filter schemes employed in this paper use gains that are diagonal in spectral space to
rescale the equations for the mean field and the errors; thus the gains are homogeneous but anisotropic.
The elements of the error covariance matrix in spectral space are then scaled by products of gains at the
different wavenumbers and similarly for the three-point function.

A major aim of this paper is to examine covariance error estimation comparing the performance of the
statistical dynamical filter in which sampling error is eliminated with the results for the ensemble square
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root (EnSF) and stochastic ensemble Kalman filters (EnKF). We do this in studies with the barotropic
vorticity equation for typical atmospheric conditions and in particular examine the issues of sampling
that naturally arise when random observational noise is used in ensemble data assimilation in addition to
the role of ensemble size. Further we analyze sampling issues when flow correlated perturbations, such
as used in square root filters, are employed. As well, we study error covariance gains for each of these
filters. We examine the performance of these data assimilation methods during the formation, maturation
and decay of a number of large scale atmospheric blocking events that occurred between mid October
and mid November 1979 in the Northern Hemisphere. Such regime transitions are typically associated
with a loss of predictability during the formation and decay phases and enhanced predictability during
the periods of the mature blocks (Frederiksen, Collier & Watkins (2004) [36] and references therein).

The plan of this paper is as follows. In section 2 we describe the barotropic vorticity equation for
flow over topography and Rossby wave turbulence on a generalized β-plane and in the presence of a
large scale flow U . The barotropic vorticity equations are discretized using Fourier series methods and
then the large and small scale evolution equations are written in compact form by making a judicious
choice of interaction coefficients. In section 3 we describe the Kalman filter methodologies including
the Kalman, extended Kalman and generalized extended Kalman filters. Section 4 develops the ensem-
ble Kalman and ensemble square root filters and the statistical dynamical Kalman filter. In section 5
we define the Shannon entropy (Shannon & Weaver (1949) [70]) and relate the entropy reduction to the
Kalman gain spectra. Section 6 defines a number of diagnostic quantities used throughout this paper
including the kinetic energy and Kalman gain spectra as well as the palinstrophy production which is
a sensitive measure of the small scales. In section 7 we compare the performance of EnKF, EnSF and
the closure based SDKF in 5 day data assimilation experiments followed by 5 day forecasts. Section 8
presents results on the performance of the ensemble square root filter including in 30 day assimilation
experiments. In section 9 we discuss the implications of our results and summarize our conclusions. Ap-
pendix A describes in detail the spectral Kalman filter equations, Appendix B details the mode coupling
or interaction coefficients used by the spectral barotropic vorticity equation and statistical dynamical
closure equations. A statement of the details of the QDIA equations is given in Appendix C.

2. Barotropic flow on a β−plane

The direct numerical simulations and statistical closure equations, and the applications to data assim-
ilation, considered in this paper are based on the generalized barotropic vorticity equation described by
FO2005 [33]. The evolution equation for two-dimensional motion of the small scales over topography
on a generalized β−plane is described by the vorticity equation

∂ζ

∂t
= −J(ψ − Uy, ζ + h+ βy + k2

0Uy) + ν̂O2ζ + f 0 (1a)

where ζ is the vorticity and the full streamfunction Ψ is given by ψ−Uy, with U a large-scale east-west
flow and where ψ represents the small scales. Here f 0 is the forcing, ν̂ the viscosity,

J(ψ, ζ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
(1b)

is the Jacobian and k0 is a wave number that specifies the strength of the large-scale vorticity correspond-
ing to the solid body rotation vorticity on a sphere. The vorticity is the Laplacian of the streamfunction:
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ζ = 52ψ. The scaled topography h is given by h = 2µgAH
RT0

where µ = sinφ, φ is the latitude, H is the
height of the topography, R = 287Jkg−1K−1 is the gas constant for air, T0 = 273K is the horizontally
averaged global surface temperature, g is the acceleration due to gravity and A = 0.8 is the value of the
vertical profile factor at 1000mb. We can also either replace or add to the forcing a Newtonian relax-
ation term κ(ζobs− ζ) where κ is the Rayleigh damping and ζobs are linearly interpolated daily observed
analysis fields.

The form-drag equation for the large-scale flow U is the same as on the standard β−plane. With the
inclusion of relaxation toward the state U it takes the form

∂U

∂t
=

1

S

∫
S

h
∂ψ

∂x
dS + α(U − U). (2)

Here, α is a drag coefficient and S is the area of the surface 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π. In the absence of
forcing and dissipation, Eqs. (1) & (2) together conserve kinetic energy and potential enstrophy.

The standard β-plane vorticity equation is obtained by setting k2
0 to zero. We note however that

there is a one-to-one correspondence between the generalized β−plane equation and that for flow on the
sphere in the presence of a solid body rotation contribution (FO2005 [33]). Because the blocking regime
transitions we consider occur near 600 North we use a β−effect of 1.15×10−11m−1s−1 corresponding to
a non-dimensional value of β = 1/2 and k2

0 = 1/2. The non-dimensional barotropic vorticity equation
can be derived by choosing a length scale of a/2, where a is the earth’s radius, and a time scale of Ω−1,
the inverse of the earth’s angular velocity.

From the barotropic vorticity equation, the corresponding spectral barotropic vorticity equations are
obtained by representing each of the small-scale terms by a Fourier series where

ζ(x, t) =
∑
k

ζk(t) exp(ik · x), (3a)

ζk(t) =
1

(2π)2

∫ 2π

0

d2x ζ(x, t) exp (−ik · x). (3b)

Here x = (x, y),k = (kx, ky), k = (k2
x + k2

y)
1/2, and ζ−k is conjugate to ζk. Throughout we will use 〈〉

andˆto denote mean and perturbation.
The spectral equations for all scales including U on the generalized β−plane can be combined into a

compact form by defining suitable interaction coefficients, representing the large-scale flow as a compo-
nent with zero wavenumber and extending the sums over wavenumbers to include the zero component.
The resulting compact form is

(
∂

∂t
+ ν0(k)k2)ζk(t) =

∑
p∈T

∑
q∈T

δ(k + p + q)[K(k,p,q)ζ−pζ−q + A(k,p,q)ζ−ph−q] + f 0
k + Sk(t) (4)

where

Sobsk (t) = κ(ζobsk − ζk) (5)

and κ determines the relaxation time scale. Eq. (4) holds for all k in the set T = R ∪ 0 where the set
R consists of all points in discrete wavenumber space except the point (0,0) and where κ is the Rayleigh
friction. Here

δ(k + p + q) =

{
1 if k+p+q=0,

0 otherwise.
(6)
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The complex ν0(k) is related to the viscosity ν̂ and the intrinsic Rossby wave frequency ωk by the
expression

ν0(k)k2 = ν̂k2 + iωk (7)

where ωk = −βkx

k2 . Also we have defined ζ−0 = ik0U , ζ0 = ζ∗−0 and introduced a term h−0 that we take
to be zero but which could more generally be related to a large-scale topography. In our notation ∗ denote
complex conjugate. We note that U is real and we have defined ζ0 to be imaginary in order to ensure
that all the interaction coefficients that we use are defined to be purely real (FO2005 [33]). Note that we
distinguish between 0 and −0 in this representation and these components are complex conjugate as is
the case for the small-scale components with oppositely signed wave vectors. The interaction coefficients
are defined in appendix B.

3. QDIA closure equations

To determine the mean field we need an equation for the two-point cumulantCk,−l(t, t
′) = 〈ζ̂k(t)ζ̂−l(t

′)〉
which in turn requires an expression for the third cumulant and so on. The barotropic vorticity equation
expressed in terms of mean and fluctuating fields take the forms

(
∂

∂t
+ ν0(k)k2)〈ζk〉 =

∑
p

∑
q

δ(k + p + q)[K(k,p,q)[〈ζ−p〉〈ζ−q〉+ C−p,−q(t, t)]

+A(k,p,q)〈ζ−p〉h−q] + 〈f 0
k〉, (8a)

(
∂

∂t
+ ν0(k)k2)ζ̂k =

∑
p

∑
q

δ(k + p + q)K(k,p,q)[〈ζ−p〉ζ̂−q + ζ̂−p〈ζ−q〉+ ζ̂−pζ̂−q

−C−p,−q(t, t)] +
∑
p

∑
q

δ(k + p + q)A(k,p,q)ζ̂−ph−q + f̂ 0
k. (8b)

Multiplying Eq. (8b) by its complex conjugate and taking the expectation gives the diagonal two-point
two-time cumulant in terms of two- and three-point cumulants

(
∂

∂t
+ ν0(k)k2)Ck(t, t′) =

∑
p

∑
q

δ(k + p + q)A(k,p,q)C−p,−k(t, t′)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)

×[〈ζ−p〉C−q,−k(t, t′) + C−p,−k(t, t′)〈ζ−q〉+ 〈ζ̂−p(t)ζ̂−q(t)ζ̂−k(t′)〉]
+〈f̂ 0

−k(t)ζ̂−k(t′)〉 = Nk(t, t′) (9a)

(
∂

∂t
+ 2<ν0(k)k2)Ck(t, t) = 2<Nk(t, t) (9b)

where we use the convention Ck(t, t′) = Ck,−k(t, t′) . The QDIA theory closes Eqs. (8a) & (9) through
prognostic integral equations for the off-diagonal two-point and three-point cumulants

C−q,−k(t, t′) = CQDIA
−q,−k(t, t′), (10a)

〈ζ̂−p(t)ζ̂−q(t)ζ̂−k(t′)〉 = 〈ζ̂−p(t)ζ̂−q(t)ζ̂−k(t′)〉QDIA, (10b)

and corresponding expressions for CQDIA
−p,−k(t, t′), CQDIA

−p,−q(t, t′), as given in Appendix C.
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4. Relationships between physical space and spectral space

For an ensemble of direct numerical simulations the vorticity can be expressed in terms of the mean
and fluctuating components: ζ(t) = 〈ζ(t)〉 + ζ̂(t) where ζ is a vector with elements ζ(xi, t) in physical
space or ζk(t) in spectral space respectively. The barotropic vorticity equation can be viewed as per-
forming the transformation ζ(t) → ζ(t+ M t). In terms of the means and transients we then have the
mappings

〈ζ(t)〉 → 〈ζ(t+ M t)〉 (11a)

C(t, t′)→ C(t+ M t, t′+ M t) (11b)

where the error covariance matrix C(t, t′) = 〈ζ̂(t)ζ̂T (t′)〉. Here T denotes transpose for real fields and
Hermitian conjugate for complex fields.

The QDIA closure equations again perform the transformations in Eq. (11). This may be seen by
employing Eq. (3) for calculating the physical space vorticity from its spectral components and by
calculating the elements of the physical space covariance matrix through:

C(x, t; y, t′) ≡ 〈ζ̂(x, t)ζ̂(y, t′)〉 =
∑
k

∑
l

Ck,−l(t, t
′) exp(i(k · x− l · y)), (12a)

Ck,−l(t, t
′) ≡ 〈ζ̂k(t)ζ̂−l(t

′)〉 =
1

(2π)4

∫ 2π

0

d2x

∫ 2π

0

d2yC(x, t; y, t′) exp(−i(k · x− l · y)). (12b)

For the QDIA equations, in common with all statistical equations, there is no sampling error in the
transformations given by Eq. (11a) and Eq. (11b). In contrast, for ensemble averaged direct numeri-
cal simulations (DNS) of the barotropic vorticity equation, the estimation of the mean and covariances
depend on the number of realizations used in the ensemble.

5. Kalman filters

A standard derivation of the matrix Kalman filter equations can be found in section 5.4 of Brown
(1983) [9]. These equations may also be derived simply by using Bayes’ theorem (Lorenc (1986) [53]).
The Kalman filter theory (Kalman (1960) [44]) implicitly assumes that both the observations and priori
(forecast) distributions, based on the background state, are Gaussianly distributed. The posteriori distri-
bution for the analysis is then derived based on the products of these two Gaussians and yields simply
the Kalman filter equations (Lorenc (1986) [53], Anderson (2001) [1]). In the standard Kalman filter
theory it is also assumed that the background or forecast field variable ζ(x, t) satisfies a linear equation.

The extended Kalman filter (Ghil et al. (1981) [38], Evensen (1992) [20]) (EKF) is formulated entirely
in terms of covariances and completely neglects higher order moments. This approach may be considered
to be a method of successive linearizations about the evolving nonlinear trajectory; it is a tangent linear
approximation for calculating Cf (x, t; y, t). In practice, a tangent linear model is used to transform a
perturbation ζ̂(x, t) at some initial time t to a final perturbation ζ̂(x, t+ M t) at time t+ M t (Kalnay
(2003) [45]). Linearizing about the nonlinear model trajectory will however be inaccurate whenever the
perturbations are large. EKF data assimilation studies using the shallow water equations (Budgell (1986)
[10]) with applications to oceanographic problems have enjoyed some success.
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In order to tackle strongly nonlinear systems, where bifurcations may occur, (Miller et al. (1994) [59])
developed the generalized EKF. The generalized extended Kalman filter (GEKF) uses a moment expan-
sion method in terms of Taylor series to estimate the contributions of the higher order moments to the
Kalman gain (Miller et al. (1994) [59]). The GEKF extends the EKF methodology to strongly nonlinear
systems by including contributions from the third and fourth order moments to the calculations of the
error variance Cf (x, t; y, t). This enables the tracking of regime transitions by increasing the estimated
Kalman gain which is typically underestimated in EKF comparisons. The inclusion of approximations
to the third and fourth moments into the EKF was found to be sufficient to track the reference solution
and to capture the bifurcation behavior of chaotic trajectories in both the three-component Lorenz and
double well models; however, it was found to be impractical for higher dimensional models.

In general the Kalman filter theory for estimating the a posteriori analysis fields, in terms of the
observations and prior forecast fields, takes the following form. Let d = 〈d〉 + d̂ denote the vector of
observations with mean 〈d〉 and error d̂, ζf is the vector of prior fields, K is the Kalman gain and H is
the operator that maps the fields from model space to the space of observations. Then the analysis field
is estimated by

ζa = ζf + K(d−Hζf ) (13)

where ζ = 〈ζ〉 + ζ̂ . The estimate Eq. (13) is the optimal linear combination of the observations and the
prior. The Kalman gain K is given by

K = CfHT (HCfHT + D)−1. (14)

where the observational error matrix D = 〈d̂d̂T 〉, the forecast error covariance matrix Cf = 〈ζ̂f ζ̂fT 〉
and T denotes transpose for real fields in grid point space.

The ensemble Kalman filter differs from the Kalman and extended Kalman filters in that Eq. (13) is
implemented directly for an ensemble of forecast fields, ζfi = 〈ζ〉 + ζ̂fi , rather than for the mean field
and covariance statistics. Again the prior covariance matrix can be calculated by ensemble averaging
over the fluctuating components with Cf = 〈ζ̂fi ζ̂fiT 〉. In both the ensemble and statistical approaches
the Kalman gain is given by Eq. (14).

For the statistical Kalman filter equations, the mean analysis field is given by

〈ζa〉 = 〈ζf〉+ K(〈d〉 −H〈ζf〉) (15)

and the analysis error covariance is

Ca = (I−KH)Cf . (16)

In contrast, for the ensemble Kalman filter, the analysis fields are calculated for each realization through

ζai = ζfi + K(di −Hζfi). (17)

Then averaging yields the mean analysis fields, the prior and analysis covariances, Cf and Ca and
consequently the Kalman gain can be calculated through Eq. (14).
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6. Ensemble data assimilation strategies

In general, calculation of the full error covariance matrix represents an intractable problem for data
assimilation based on DNS. In ensemble methods often the number of variables is very much larger
than the number of available ensemble members resulting in sampling errors in the estimation of the
background error covariance matrix. In particular inadequately sampled ensemble averaged DNS often
results in covariance matrices that have poorly resolved and under-estimated error covariances. Sam-
pling errors can manifest themselves as spurious long range correlations requiring some form of spatial
localization. In the horizontal plane localization is usually accomplished through the introduction of a
correlation cut-off factor of the order of several thousand kilometers beyond which the correlations are
zero (Houtekamer & Mitchell (1998) [43]). Studies using covariance localization have been demon-
strated to lead to more homogeneous background error covariances (Gaspari & Cohn (1999) [37]). As
well as localization a covariance inflation factor (Anderson (2001) [1], Bowler (2006) [7]) is often ap-
plied to the analysis perturbations to not only ensure that perturbations have the correct spread at the
next time step but to address problems such as filter divergence.

Alternative strategies may involve various other approximations, rather than applying the full matrix
Kalman filter methodology in which matrix size depends on the dimension of the state vector. One
approach that we shall discuss in some detail involves Kalman gains that are homogeneous, and generally
anisotropic, when acting on the mean fields and error fields. In spectral space this means that the Kalman
gains are diagonal when acting on the spectral coefficients of the mean field but that the covariances
“see” products of gains at different wavenumbers. More restrictive assumptions may also be considered
such as approximate homogeneity of covariance matrices (Parish & Derber (1992) [64], Courtier et al.
(1998) [15], Buehner (2005) [11]). Vidard et al. (2003) [77] discuss a variational data assimilation
method involving the determination of optimal nudging coefficients (ON) that is shown to be closely
related to the Kalman filter. In particular they compare the performance of the assimilation when their
nudging operator is a full 4D-ON matrix, when it is ”pseudo-diagonal” (correction coefficient varies over
observation locations) and when it is a constant coefficient over all spatial points at a given time. They
find that the results for the diagonal and scalar coefficient nudging parameters are better than for the full
4D-ON even though the latter is more than 60 times more expensive than the scalar case (see also Zou
et al. (1982) [81]). Vidard et al. (2003) [77] also note that both the pseudo-diagonal matrix and scalar
coefficients give about the same results.

From section 5, and Appendix A following Parish & Derber (1992) [64], we have the full Kalman
filter equations in both physical and spectral space. In general we now have four choices

1. Full Kalman filter equations in physical space with N × N , M × N , N ×M , M ×M matrices.
N refers to the number of variables in grid point space and hence determines the dimensions of
the background error covariance matrices. Similarly M refers to the number of observations and
hence the dimensions of the innovation. For an ensemble the number of perturbations is an added
consideration.

2. The Kalman filter equations of Appendix A with K×K matrices in spectral space where K refers
to the number of interacting wavenumbers in spectral space.
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3. Spectral Kalman filter equations with diagonal Kalman gainKk and diagonal observation operator
Hk (as described in Appendix A and Eqs. (18) through (21).

4. IfHk are nonzero then we may also have spectral equations in terms of E = 〈êêT 〉 = H0−1DH0−1

where e = H0−1d and Kk(t)⇒ KH
k (t) = Kk(t)Hk(t).

Here we consider choices 3 & 4. Choices 1 & 2 would present difficulties for both the ensemble and
square root filters in terms of sampling errors. As in many previous studies (Anderson (2001) [1],
Whitaker & Hamill (2002) [80], Bengtsson et al. (2003) [5], Kalnay (2007) [46]), we assume for sim-
plicity that Hk is unity; however, our results would equally apply to other specifications of Hk such as
being homogeneous or invertible. In Appendix A we derive the full Kalman filter equations in spectral
space (following Parish & Derber (1992) [64]).

Our method of implementing the Kalman gain uses a homogeneous but anisotropic spectral gain to
act on the mean field and error fields. Our approach generalizes the SSI method of Parish & Derber
(1992) [64] and Buehner (2005) [11] to flow dependent perturbations.

6.1. Ensemble Kalman filter

In our approach we use a prescribed observational error with perturbations d̂ik as well as analysis and
forecast fields defined by: di

k = 〈dk〉 + d̂i
k, ζfi

k = 〈ζfk〉 + ζ̂fi

k , ζai
k = 〈ζak〉 + ζ̂ai

k where i = 1, . . . , N runs
over the ensemble. Throughout the following discussion we will simply assume that the perturbation
field denotedˆruns over the entire ensemble i.e. ζ̂ i will be assumed. Given the background vorticity field
the equation for the analysis at time t is again in terms of a linear interpolation between observations and
predictions scaled by the Kalman gain K. dk are taken from a nudged integration of a barotropic model
but could in general represent the Fourier transform, Eq. (3), of observed fields ζobs.

Data assimilation using a Kalman filter methodology estimates the mean analysis field based on the
mean forecast and observations as

ζak = ζfk +Kk(dk −Hkζ
f
k), (18a)

〈ζak〉 = 〈ζfk〉+Kk(〈dk〉 −Hk〈ζfk〉), (18b)

ζ̂ak = ζ̂fk +Kk(d̂k −Hkζ̂
f
k). (18c)

Here, Kk and Hk are the spectral diagonal elements of K0 and H0 defined in Appendix A. The prior
field ζfk satisfies Eq. (4) in which we may include a model error through f 0

k = 〈f 0
k〉 + f̂ 0

k where f̂ 0
k is

generally taken to be white. As well the analysis covariance is modeled by

Ca
k(t, t) = (1−KkHk)Cf

k(t, t) (19)

where Ck = Ck,−k and the spectral Kalman gain is defined as

Kk(t) = Cf
k(t, t)H∗k(t)(Hk(t)Cf

k(t, t)H∗k(t) +Dk(t, t))−1. (20)

Eq. (18) implies that updating the perturbation field corresponds to covariance matrices given by

Ca
k,−l(t, t) = 〈ζ̂ak(t)ζ̂a−l(t)〉 = (1−Kk(t)Hk(t))Cf

k,−l(t, t)(1−K−l(t)H−l(t))

+Kk(t)Dk,−l(t, t)K−l(t). (21)
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The EnKF implements Eqs. (18) & (20) whereas Eqs. (19) & (21) follow by consistency.
More specifically we approach ensemble filtering following the EnKF formulation of Evensen (1994)

[21]. From Eq. (18c) for the error fields we can also construct the equation for the higher order cumulants
of analysis error. The mean and fluctuating vorticity fields 〈ζk〉 & ζ̂k see a Kalman gain described in
terms of homogeneous but anisotropic covariances in physical space, which is equivalent to one based on
diagonal covariances in spectral space (Parish & Derber (1992) [64]). The full analysis error covariances
including off-diagonal elements are then generated from the error fields and therefore the two-point
cumulants Ck,−l are acted on by products ofKk andK−l. Similarly the three-point cumulant 〈ζ̂kζ̂−lζ̂l−k〉
is acted on by products of Kk, K−l and Kl−k and so on to higher order.

6.2. Ensemble square root filter

We next consider a spectral formulation of the square root filter consistent with the EnKF formulated
previously. As before the Kalman gain acting on the mean field is homogeneous but anisotropic. Square
root filters have recently been applied in the meteorological context by Bishop et al. (2001) [8], Anderson
(2001) [1], Whitaker & Hamill (2002) [80] and Tippett et al. (2003) [74] following on from the work
of Andrews (1968) [3]. The square root filter methods were developed to address the problem of under-
estimated analysis error covariances due to insufficient sampling with the ensemble Kalman filter.

The EnKF methodology requires that observations be perturbed in order that the Kalman filter update
equation be satisfied, as seen from section 3. If one naively omits the perturbations on the observations
then it has been shown (Whitaker & Hamill (2002) [80]) that the term Kk(t)Dk,−l(t, t)K−l(t) is omitted
and we findCa

k = (1−KkHk(t))Cf
k(1−H∗k(t)K∗k) resulting inCa

k being systematically under-estimated.
The square root filter approach requires an ensemble filter that does not use perturbed observations
yet satisfies the Kalman filter equation for the analysis error. The general solution was developed by
Andrews (1968) [3] and employed in various forms by Bishop et al. (2001) [8], Anderson (2001) [1],
Whitaker & Hamill (2002) [80] and Tippett et al. (2003) [74]. The analysis mean field equation is as for
the EnKF, Eq. (18), while the analysis error field is given by

ζ̂ak = (1− K̃kHk)ζ̂fk . (22)

Our approach seeks to define a homogeneous K̃ for which the diagonal analysis covariance components
satisfy

Ca
k = (1− K̃kHk)Cf

k(1− K̃∗kH∗k) = (1−KkHk)Cf
k . (23)

The solutions are

K̃k = Cf
kH
∗
k

((√
HkC

f
kH
∗
k +Dk

)−1
)∗(√

HkC
f
kH
∗
k +Dk ±

√
Dk

)−1

(24)

or K̃kHk = 1∓
√

1−KkHk. Thus from Eq. (22) & (24), we have

ζ̂ak = ±
√

1−KkHk ζ̂fk (25)

where Kk is again given by Eq. (20).
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In order that 0 ≤ K̃ ≤ 1 in Eq. (24) we choose the positive branch in Eq. (25). The full analysis error
covariance matrix elements are, by construction from Eq. (22),

Ca
k,−l(t, t) = 〈ζ̂ak(t)ζ̂a−l(t)〉 =

√
(1−KkHk)Cf

k,−l(t, t)
√

(1−K−lH−l) (26)

and can be obtained by taking the ensemble average over the perturbation fields. Eq. (18b) & Eq. (25),
leading to Eqs. (23) & (26), define our spectral square root filter (EnSF). The EnSF explicitly implements
Eqs. (18b) & (25) while Eqs. (23) & (26) follow implicitly. Again, from Eq. (25) for the error fields we
can also construct the equations for the higher order cumulants of analysis error.

6.3. Statistical dynamical Kalman Filter

The statistical dynamical Kalman filter (SDKF), which is used for the closure based assimilation
method, is analogous to the EnKF. However the SDKF implements

〈ζak〉 = 〈ζfk〉+Kk(〈dk〉 −Hk〈ζfk〉), (27a)

Ca
k(t, t) = (1−KkHk)Cf

k(t, t), (27b)

Ca
k,−l(t, t) = (1−KkHk)Cf

k,−l(t, t)(1−K−lH−l) +KkDk,−l(t, t)K−l, (27c)

〈ζ̂k(t)ζ̂−l(t)ζ̂(l−k)(t)〉a = (1−KkHk)(1−K−lH−l)(1−Kl−kHl−k)〈ζ̂k(t)ζ̂−l(t)ζ̂(l−k)(t)〉f

+KkK−lK(l−k)〈d̂k(t)d̂−l(t)d̂(l−k)(t)〉 (27d)

where the prognostic equations for the statistics 〈ζk〉, Ck, Ck,−l and 〈ζ̂kζ̂−lζ̂l−k〉 are given in Section 3
and in Appendix C.

In our numerical experiments we choose our initial Ck,−l(t0, t0) to be isotropic; it subsequently
evolves to an inhomogeneous Ck,−l(t, t

′) and take Ca(t, t′) = Cf (t, t′) for t 6= t′. Higher order cu-
mulants or non-Gaussian contributions are included through Eq. (59) of Appendix C. In our numeri-
cal experiments we also employ the common assumption that the statistics of d̂k are Gaussian, so that
〈d̂k(t)d̂−l(t)d̂(l−k)(t)〉 = 0; as well we set Dk,−l = 0 for l 6= k.

To reiterate Eqs. (8a), (9), (10), (54), (59), the response function Eqs. (57), (58) and the Kalman
filter Eqs. (27) constitute the SDKF. The SDKF includes specific terms for the full background error
covariance matrix and non-Gaussian three-point cumulant terms. We note from Eq. (27) that while the
mean field and diagonal covariance are scaled by the diagonal Kalman gain, the off-diagonal covariance
is scaled by products of two gain terms at different wavenumbers. In turn the three-point function is
scaled by three gain terms at different wavenumbers. In these respects the form of the SDKF is similar
to the EnKF and EnSF.

7. Entropy measures

The Shannon entropy has the general expression

S = −〈lnP (x)〉 = −
∫

dxP (x) lnP (x) (28)

in terms of the probability distribution function P (x). If P (x) is multivariate Gaussian with covariance
C then up to an arbitrary constant

S =
1

2
ln det C. (29)
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The Shannon entropy reduction when the information content is increased due to new observations in
the assimilation is

S∆ = Sf − Sa =
1

2
ln det Cf − 1

2
ln det Ca. (30)

If Cf and Ca are diagonally dominant in spectral space we have

S∆ =
1

2
ln
∏
k

Cf
k −

1

2
ln
∏
k

Ca
k (31)

=
1

2

∑
k

lnCf
k −

1

2

∑
k

lnCa
k. (32)

This is also the expression we obtain if we base our analysis on the statistical mechanical equilibrium
expression of the entropy i.e. S = 1

2

∑
k lnCk, applied out of strict statistical mechanical equilibrium

(Frederiksen & Bell (1983, 1984) [29, 30], Frederiksen & O’Kane (2008) [34]).
Now from Eq. (19)

Ca
k = (1−KkHk)Cf

k (33)

and hence

S∆ = −1

2

∑
k

ln(1−KkHk) (34)

≈ 1

2

∑
k

KkHk (35)

for small KkHk, on using a Taylor expansion. We may then define the entropy reduction spectrum

S∆
k = −1

2
ln(1−KkHk) (36a)

≈ 1

2
KkHk (36b)

so that

S∆ =
∑
k

S∆
k . (37)

Thus the behavior of Kk relates directly to the entropy reduction through the relations in Eq. (36).

8. Diagnostics

The main diagnostics used in this study are the zonally averaged kinetic energy as well as the palin-
strophy production measure. Palinstrophy is a measure of a higher order than enstrophy hence it empha-
sizes the smaller scales more. In the absence of mean flows and topography the palinstrophy production
measure PM reduces to an estimation of the skewness and is a common diagnostic in statistical turbu-
lence theory for the statistics of the small scales. In the current form PM also includes inhomogeneities
arising from the nonlinear interaction of the two-point cumulant and the mean field and topography.
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As such PM allows us to very sensitively measure error growth due to non-Gaussian correlations and
inhomogeneity.

The zonally averaged perturbation (error) ê(kx, t) and mean 〈e(kx, t)〉 kinetic energy spectra are de-
fined as

ê(kx, t) =
1

2

∑
ky

[Ck(t, t)] /k2, (38a)

〈e(kx, t)〉 =
1

2

∑
ky

[〈ζk(t)〉〈ζ−k(t)〉] /k2. (38b)

The kinetic energy of the large-scale flow is plotted at zero wave number.
In the flow regime where strong mean-field dominates very weak initial transients our measure, PM ,

of the small scale differences between the EnKF, EnSF and SDKF effectively becomes a measure of
the growth of small scale inhomogeneities. If we define the transient enstrophy F̂(t) = 1

2

∑
kCk(t, t),

transient palinstrophy P̂(t) = 1
2

∑
kCk(t, t)k2 and palinstrophy production K by

K(t) =
∑
k

k2Nk(t, t) (39a)

where ( ∂
∂t

+ 2<ν0(k)k2)Ck(t, t) = 2<Nk(t, t) then PM can be defined as

PM(t) = 2K/(P̂F̂1/2). (39b)

From Eqs. (39a) & (39b) we see clearly that PM is dependent on the tendency of the diagonal covariance
and thus its amplitude reflects sensitively not only the contribution of the off-diagonal terms and any non-
Gaussian contributions but the slope indicates the rate at which errors are growing (OF2004 [62], O’Kane
& Frederiksen (2008) [63]).

9. A comparison of ensemble and statistical dynamical Kalman filter methods

In this section we compare EnKF, EnSF and SDKF filters in a range of experiments. These include
5 day assimilation experiments followed by 5 day forecast studies and as well 30 day assimilations
experiments. In our studies we focus on 500-hPa Northern Hemisphere atmospheric flows during a 30
day period starting on the 16th of October 1979. During this period three major Northern Hemisphere
atmospheric blocking high low dipoles formed. The first large-scale block began developing over the
United Kingdom around the 21st of October then matured to form a high (over Scandinavia) - low
(over Spain) dipole around the 27th of October. The second occurred in the middle of this period over
the Gulf of Alaska on the 5th of November, amplified and persisted until the 12th of November and
then weakened and moved downstream. A third blocking high formed over the Atlantic Ocean around
the 13th maturing into a high-low dipole on the 16th and finally decaying during the period between
17th − 18th of November. By conducting our data assimilation experiments over this period we are
rigorously testing the ability of the various assimilation methods to track the truth trajectory through a
number of atmospheric regime transitions. As such our results are analogous to the study of Miller et al.
(1994) [59] examining the ability of the general extended Kalman filter (GEKF) methodology to track
regime transitions associated with the chaotic trajectory of the Lorenz model. Miller et al. (1994) [59]
also consider the strongly non-Gaussian stochastically forced double well.
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The dynamics and predictability of these particular events have been analyzed in detail by Frederiksen
(1989) [25] and in the bred perturbation ensemble prediction studies of Frederiksen, Collier & Watkins
(2004) [36]. As well, O’Kane & Frederiksen (2008) [63] compared closure and ensemble averaged
DNS results for 5 day forecasts starting after an initial 5 day breeding period; the QDIA closure was
used to separate and quantify the various contributions to error growth from the covariances and higher
order cumulants and with the DNS providing a means to measure the accuracy of the closure. Figure
1 displays the model Northern Hemisphere topography and the mature block over the Gulf of Alaska
on the 6th November 1979. Note that there is some slight evidence of the Gibbs effect after Fourier
transformation.

Throughout, the truth trajectory is calculated by running the barotropic vorticity equation over the
desired period with a relaxation Eq. (5) where κ = 1day−1 and ζobs are linearly interpolated daily
observed fields. The source term is calculated at each timestep of the unperturbed simulation, stored
and then applied to both the perturbed ensemble DNS and mean field equation of the closure for data
assimilation and prediction. In all the studies that follow we use the general dissipation ν0(k)k2 =

ν̂k2 + iωk as in Eq. (7) where ν̂ = 2.5 × 105m2s−1. We choose the observational error to have an
rms of 1 × 106m2s−1 and define the nondimensional variance Dk(t, t) = 1.826 × 10−6k, which results
in an almost flat kinetic energy spectrum. Our choice of observational error variance is similar to that
employed by Anderson (2001) [1] in studies of data assimilation using the ensemble adjustment Kalman
filter that belongs to the same family of square root filters considered here. Throughout we assume
the model error variance Qk(t, t) to be zero. As well, in all calculations we use a circularly truncated
wavenumber space k = 16 (C16) resolution (which has 797 degrees of freedom).

9.1. Performance of QDIA closure

As a basis for the subsequent discussion and to rule out systematic differences between closure and
ensemble models we first examine the performance of the QDIA as compared to DNS without data
assimilation. In Figure 2 we compare QDIA closure and ensemble average DNS calculations for the
period from the 29th of October to the 3rd of November 1979 without data assimilation but including
the source term Sobsk (t) Eq. (5). Figure 2a) shows the initial zonally averaged mean and isotropic
error kinetic energy fields with Figure 2b) depicting the evolved closure and DNS fields after a five day
evolution period. The evolved fields are in close agreement for both mean and perturbation energies and
are included to show that there is close agreement between closure and DNS in the flow regime prior to
the implementation of the various data assimilation schemes.

9.2. Comparison of EnKF with SDKF

In Figure 3 we compare the SDKF to the EnKF run with 3600 and 20 member ensembles after a 5
day period (3rd November 1979) with 6 hourly data assimilation. There is little difference between the
20 and 3600 EnKF evolved perturbation kinetic energy. This result is in agreement with the study of
Houtekamer & Derome (1995) [42] who also considered the role of sample sizes. However, in com-
parison to the SDKF, the EnKF calculations underestimate the assimilated error variances at day 5 and
consequently the initial forecast perturbations. Subsequently the ensemble Kalman filter error variances
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Figure 1. 500 hPa streamfunction field at 1200 UTC on the 6th November 1979 in km2s−1

(a) and Northern hemisphere topography in m (b).

a)

b)

grow more slowly (see the comparison of the day 5, 8th November 1979, forecast error variances in
Figure 3b). The EnKF assimilates data as described in section 4.1 where d̂k has newly sampled random
phases at every assimilation time. The effect of sampling error due to introduced Gaussian random initial
perturbations is to randomize the evolved analysis vorticity field perturbations thus hindering alignment
in the direction of the evolving flow instabilities. Figure 3b) clearly shows rapid growth in the SDKF
error variances whereas the forecast EnKF calculations show slow error growth whether the sample size
is 20 or 3600. The problem is that for each ζ̂fi

k we may require a large number of d̂ik to adequately sample
the observational error .
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Figure 2. Figure a) shows the initial mean (dotted) and perturbation (dashed) kinetic energy
spectra (non-dimensional) as functions of zonal wavenumber on the 29th October 1979. Fig-
ure b) compares the evolved energy spectra on the 3rd November 1979. The close evolution
of both DNS and QDIA mean fields is evident in the near concurrent plots.
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Figure 3. Evolved mean and analysis error kinetic energy spectra (non-dimensional) as
functions of zonal wavenumber after 5 day data assimilation (3rd November Figure a)) and
5 day forecast periods (8th November Figure b)).
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9.3. Discussion

As noted by Leith (1974) [52] and Pham (2001) [65] the number of forecast perturbations in the
vorticity field required to resolve the mean at reasonable resolutions is considerably less than the number
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required to accurately resolve the covariances. The problem of accurately resolving the second moment
is significantly more complex due to sampling error in the tendency equation for Cf

k arising through
the Jacobian terms. FO2005 [33] have discussed the mechanisms by which errors in representing the
Jacobian arise starting from diagonal (homogeneous or isotropic) initial conditions in the context of
turbulent barotropic flows. In the present study this initial sampling problem arises for each ζ̂fi

k at each
assimilation time. However the sampling error in estimating ζ̂fi

k may to some extent be ameliorated due
to convergence toward the leading flow instabilities.

We first considered the role of sampling on the growth of the diagonal error variances by calculating
the amplitude of any spurious cross correlations in the EnKF which for the purposes of clarity we will
refer to as the ”direct” sampling error contribution to the analysis error variance. For 3600 realization
ensembles this direct error was typically much less than 1 percent while for 20 realizations it was found
to be as large as 10-20 percent. For our covariance modeling studies the sampling error in specifying d̂k

turns out to be crucial.
The more difficult problem arises in estimating d̂ik for each ζ̂fi

k in such a way that the tendency of
the background variances i.e. the Jacobian terms, are well represented. FO2005 [33] have discussed in
some detail the role of sampling error in the Jacobian and have suggested some methods to reduce its
impacts in flow regimes typical of atmospheric data assimilation studies. FO2005 [33] demonstrated that
for resolutions and flows typical of those considered here that of the order of a few thousand realizations
were required to reduce noise associated with sampling error to levels that allowed the Jacobian to
be resolved and hence grow. In the current context of the EnKF with perturbed observations NxMxL
realizations are required, where N is the number of variables, M the number of perturbations required to
resolve the Jacobian and L the number of perturbations required to resolve the statistics of the perturbed
observations with M typically equal to L. More encouragingly FO2005 [33] showed that in order to
obtain the correct error growth rates due to flow inhomogeneities it is crucial to resolve the Jacobian as
opposed to the more difficult problem of resolving the full background error covariances. On the basis
of the square root filter results presented in the next section we expect that the Jacobian sampling errors
are, as in FO2005 [33], due to terms involving d̂k.

10. Performance of the ensemble square root filter

Next we contrast the SDKF and EnKF with the ensemble square root filter (EnSF) on the 3rd Novem-
ber 1979 after a 5 day period of 6 hourly data assimilation (Figure 4). The EnSF shows much closer
agreement to the SDKF with very close agreement for k ≥ 3. Although the results presented in Figure 4
are for 3600 realizations little difference was found for calculations of kinetic energy down to 20 mem-
ber ensembles. The mean streamfunction fields are shown in Figure 5. Clearly, as far as resolving the
mean is concerned, each of the filters produces nearly identical results, at least at the larger scales. In the
presence of fast growing instabilities the Kalman gain adjusts itself in order to give increasing weight to
the observations. It is therefore of interest to consider the spectra of the gain. In Figure 6 we plot the
band averaged Kalman gain

K(ki) =
∑
k∈S

Cf
k(t, t)/

(∑
k∈S

Cf
k(t, t) +

∑
k∈S

Dk(t, t)

)
(40)
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where the set S is defined as

S =

[
k|ki = Int.[k +

1

2
]

]
(41)

and the subscript i indicates that the integer part is taken in Eq. (41) so that all k that lie within a given
radius band of unit width are summed over. Following from Eq. (37) we may now define the entropy
reduction in terms of the band averaged Kalman gain

S∆(k) ≈ 1

2
K(k) (42)

(for Hk = 1 in Eq. (36) and so S∆(k) may be inferred directly from the spectra of the Kalman gain.

Figure 4. Evolved mean and analysis error kinetic energy spectra (non-dimensional) as
functions of zonal wavenumber after a 5 day data assimilation period ending on the 3rd

November 1979 for the SDKF, EnKF and EnSF filters.
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By summing each term in Eq. (40) over the set S we obtain a simple ratio at each wavenumber; our
initial gain is constant over all modes. As the flow evolves the gain spectra evolve to profiles that peak at
the fast growing instability vectors, which range between k = 3 & 8 during this period. Thus, the Kalman
gain gives more weight to the observations when the prior contains rapidly growing instabilities. We
also notice that the EnKF under-predicts the analysis error covariance while exhibiting a systematically
weaker Kalman gain (see Figure 6 b). From Eq. (42) we see that the entropy reduction is correlated with
the Kalman gain spectra and that maximum entropy reduction occurs where the gain peaks, as is to be
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expected. The square root filter performance is much improved as it is better able to capture the evolving
spectral gain resulting from the developing large scale flow instabilities. To understand the reason for
this we again need to consider the respective equations for the gains. These are

ζ̂a EnKF
k = (1−Kk)ζ̂fk +Kkd̂k, (43a)

ζ̂a EnSF
k =

√
1−Kkζ̂

f
k , (43b)

Ca SDKF
k = (1−Kk)Cf

k . (43c)

In Eq. (43a) there are competing contributions to the amplitude of the analysis field through the
rescaling (1−Kk)ζ̂fk of the growing part and the term Kkd̂k which is stochastic. In Eqs. (43b) & (43c)
we essentially only have rescaling of the growing contributions to the analysis error. In Eqs. (43a) &
(43b) rescaling ζ̂fk transparently results in a rescaling of the constructed full background error covariance
matrix. By rescaling the background error variances in the manner of (43c) we are necessarily rescal-
ing the full off-diagonal background error covariance matrix as a consequence of it being a functional
of diagonal cumulant and response function matrices in the SDKF formalism. Importantly, assuming
Gaussian statistics, the effect of sampling error in the stochastic term of the EnKF Eq. (43a) will be
compounded by producing errors in Dk,−l in the equation for the two-point cumulant Eq. (21), and also
result in a spurious three-point non-Gaussian observational error term 〈d̂kd̂−ld̂(l−k)〉.

In the recent ensemble prediction study of O’Kane & Frederiksen (2008) [63] the palinstrophy pro-
duction measure was shown to be a very useful measure of the small scale differences between DNS and
closure simulations with different approximations for the higher order cumulants. In Figure 7 we com-
pare the evolution of PM(t) for the SDKF with that for EnKF and EnSF. The growth of PM(t) over the
assimilation period may be divided into two phases. The initial 12hr period corresponds to the growth of
off-diagonal covariances generated by flow inhomogeneities starting from isotropic initial error statistics.
The second period of nearly monotonic growth corresponds to the growth of small scale disturbances as
the European block decays. Interestingly it is the SDKF and EnKF models that seem most sensitive to
the 6 hourly data assimilation with the EnSF showing a much less sensitive small scale response at each
assimilation time. Closer examination shows that for the EnKF PM drops at each assimilation time and
then gradually increases over the subsequent 6 hour period before the process is repeated. This is due to
the sampling error in the Jacobian reducing the covariances and results in the systematic underestima-
tion of the small scale kinetic energy. The SDKF on the other hand undergoes an upward boost in PM at
each assimilation time and then relaxes over the interim period. The EnSF is very much smoother in its
response to data being assimilated, presumably because the posteriori perturbation has the same phase
as the prior, but closer inspection shows similarities with the SDKF filter response. It is also apparent
that compared to the EnSF model the EnKF systematically under predicts the palinstrophy production
measure over the first 2.5 days. However in the later period it is the EnSF that shows less growth in PM .

Our results are in agreement with Anderson (2001) [1] in that sampling error introduced through
the use of perturbed observations and small ensembles is a likely cause of the poor performance of the
EnKF compared with square root filters. Our results also suggest that improving the performance of the
traditional EnKF may be difficult to achieve in realistic models without tuning parameters.
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Figure 5. Assimilated mean streamfunction in m2s−1 after a 5 day period of 6 hourly data
assimilation ending on 3rd November 1979 for the SDKF, EnKF and EnSF filters.

SDKF EnKF

EnSF

10.1. 30 day EnSF results

We next examine the performance of the ensemble square root filter EnSF during a 30 day period
of 12 hourly data assimilation beginning on the 16th of October 1979. As discussed earlier, during
this period three major large-scale atmospheric regime transitions occurred in the Northern Hemisphere
corresponding to blocking high low dipoles. The European block formed in the period leading up to the
27th of October. The block over the Gulf of Alaska amplified rapidly on 6th of November to form the
mature anomaly on the 8th. A third block formed over the Atlantic Ocean during the period leading up
to the 16th of November. In Figure 8 we plot the evolved zonally averaged mean and error kinetic energy
spectra on the initial day a) and at subsequent 5 day intervals b)-g). Figure 8 clearly shows that the prior
covariances remain small, in relation to the mean, throughout the entire 30 day assimilation period.
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Figure 6. a) Band averaged Kalman gain spectra (non-dimensional) on the 29th October and
after the 5th day of data assimilation. b) Comparison of ensemble Kalman, ensemble square
root and statistical dynamical re-scaling gains as defined in Eqs. (43a), (43b) & (43c) after
the 5th day of data assimilation.
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In Figure 9 we show the evolved Kalman gain spectra for the EnSF. From Figure 9 we see that the
Kalman gains again reflect the flow dynamics with the strongest gains occurring for the fast growing
scales. The spectra are peaked at various wavenumbers between 3 & 8 consistent with the error growth
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Figure 7. The evolution of the palinstrophy production measure for SDKF, EnKF & EnSF
models respectively over the 5 day assimilation period beginning on 29th October 1979 with
6 hourly data assimilation.
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studies of Frederiksen (1997, 2000) [26, 28]. As in Figure 3 maximum entropy reduction occurs at the
fastest growing scales. Figure 10 portrays PM over the 30 day period. Because PM is a measure of
palinstrophy production steep slopes correspond to periods of rapid growth in the small scale statistics
and we note that the evolution is again dominated by the flow inhomogeneities even at the smallest
resolved scales. In Figure 11 we estimate the systematic differences between the EnSF methodology and
the truth by plotting

Sψ(t) = abs

(∑
k

〈ψfk(t)〉〈ψf−k(t)〉 −
∑
k

〈ψtk(t)〉〈ψt−k(t)〉

)
, (44)

and comparing it with

Dψ(t) =
∑
k

Dk(t, t)/k4. (45)

Here superscript f indicates background forecast and t indicates truth.
Figures 10 and 11 are strongly correlated because at the resolution considered the systematic differ-

ences between the EnSF and the control (Figure 11) are again dominated by small scale flow inhomo-
geneities. This is the reason for the broad similarities between Figures 10 & 11. Figure 11 shows that the
EnSF methodology performs well over the 30 day assimilation period. The EnSF calculation maintains
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Figure 8. The mean (solid lines ) and error (dashed lines) kinetic energy spectra (non-
dimensional) as a function of zonal wavenumber for EnSF calculations on the 16th October
1979 a) and at every 5 days subsequently b)-g).

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

1 10
10-8

10-7

10-6

10-5

10-4

10-3

10-2

a) b)

c) d)

e) f )

g)

e(k
  ) x

k  +1x

e(k
  ) x

k  +1x

e(k
  ) x

k  +1x

e(k
  ) x

k  +1x

e(k
  ) x

k  +1x

e(k
  ) x

k  +1x

e(k
  ) x

k  +1x

<e>
ê



Entropy 2008, 10 710

Figure 9. The gain spectra K(k) as functions of band averaged wave number for the EnSF
calculation on the 16th October 1979 a) and at every 5 days subsequently b)-g).
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Figure 10. The evolving palinstrophy production measure over a 30 day assimilation period
starting on the 16th October 1979.
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a very close trajectory to the truth, that is ‖Sψ‖ � ‖Dψ‖, with little evidence of a systematic drift over
the period considered. We note that our test, Eq. (44), is similar to that used by Anderson (2001) [1],
where a similar measure was calculated at a single grid point. Note that here we are summing over the
entire spectral domain and so incorporate all regions of instability.

In Figure 12 we compare the evolved zonally asymmetric, or eddy, streamfunction and variances in
physical space on the 6th of November 1979 when the block over the Gulf of Alaska was amplifying
rapidly. We note that the largest amplitudes of the error variance in general occur in the regions of large
potential vorticity gradients, as expected from the Raleigh-Kuo barotropic instability criterion. This
phase shifting between the evolved zonally averaged asymmetric streamfunction and the error variances
during blocking is evident in the earlier instability studies of Frederiksen (1997, 2000)[26, 28].

11. Discussion and conclusions

We have compared covariance modeling methodologies with applications to data assimilation based
on statistical dynamical, square root and ensemble Kalman filters within the frame work of diagonal
dominance of the Kalman gain. As stated in the introduction our approach can be regarded as a gen-
eralization of the spectral statistical interpolation (SSI) method of Parrsih & Derber (1992) [64]. The
performance of the statistical dynamical Kalman filter has been examined through direct comparison
with the ensemble filter methods. We have compared the SDKF to ensemble Kalman filter results for
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Figure 11. Sψ(t) versus Dψ(t) (non-dimensional) during a 30 day assimilation period start-
ing on the 16th October 1979.
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atmospheric regime transitions from strong zonal flows to the development of large scale meridional
circulations associated with the formation of blocks in the Northern Hemisphere. The SDKF accurately
incorporates information about the higher order cumulants into the Kalman gain enabling close tracking
of the analysis trajectory. Many of the problems observed in the EnKF have been shown to arise be-
cause of sampling error associated with the use of perturbed observations. In order to further elucidate
the role of sampling we have run both the stochastic ensemble Kalman and deterministic square root
filters over a very large number of realizations (up to 3600) and compared the results with the SDKF
which corresponds to an infinite number of realizations. Our results show that even when the sample
size is significantly larger than the state space the EnKF systematically under estimates the gain leading
to reduced amplitude of the evolved variances.

Firstly we have compared integrations of the QDIA closure with ensemble averaged DNS of the
barotropic vorticity equations in a 5 day forecast experiment. We have found that the QDIA closure
compares closely with the statistics of DNS, confirming the findings of our previous studies and showing
that there are no systematic differences in the underlying methodologies. We have further demonstrated,
in 5 day periods of 6 hourly data assimilations followed by 5 day forecast experiments, that the EnKF
significantly under estimates the prior covariances. In addition, the initial forecast perturbations gener-
ated by the EnKF method were not able to match the growth demonstrated by the SDKF error variances
over the forecast period. The deterministic EnSF was much better able to match the SDKF results due to
an improved estimate of the Kalman gain. The failure of the EnKF was then shown to be due to sampling
error introducing spurious off-diagonal elements in the prior covariance matrix. This in turn affects the
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Figure 12. The 500hPa EnSF a) mean eddy streamfunction (km2s−1) and b) variance
(km4s−2) respectively on 6th November 1979 showing the forming block over the Gulf of
Alaska.

EnSF

a) b)

Jacobians in the prognostic equation and consequently the diagonal prior covariances. The source of the
sampling error was shown to arise from the use of random observational noise. This process was also
shown to lead to an underestimation of the EnKF gain.

The deterministic square root filter uses flow dependent perturbations and avoids the sampling prob-
lems of the EnKF, where random observational noise is added, by rescaling the prior to have the same
theoretical gain as the SDKF. The EnSF was better able to capture the growth of the error covariances due
to the fact that while the amplitudes are rescaled the phase directions of the forecast perturbations were
preserved during the assimilation. This allows information about the fast growing flow instabilities to ac-
cumulate throughout the assimilation cycle in a similar manner to the method of bred perturbations (Toth
& Kalnay (1993, 1997) [75, 76]; Frederiksen, Collier & Watkins (2004) [36]; O’Kane & Frederiksen
(2008) [63]). The spectra of the Kalman gains for each of the deterministic (EnSF), statistical (SDKF)
and stochastic (EnKF) variants were compared. All methods displayed bell shaped spectra peaked at the
wavenumbers of the evolved fast growing instability modes. We have also compared the evolution of the
palinstrophy measure for each of the three filters. In all experiments the square root filter displays very
similar performance to the statistical dynamical filter.

We have estimated the systematic differences between the EnSF methodology and the truth in compar-
ison to the observed error variances and found that the EnSF calculation maintains a very close trajectory
to the truth with little evidence of a systematic drift over the period. In addition the prior covariances
remain small, in relation to the mean, throughout the entire 30 day assimilation period. No localization
or inflation factors have been used in these experiments.

We have examined the performance of statistical and ensemble filters in a setting consistent with the
assumptions of the QDIA closure. Our motivation for taking this approach has been twofold. Firstly,
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Table 1. Description of the forward and backward transformation matrices and vectors.

K = K0K1K2 H = H2H1

K0 scaling H0 = K1K2H2H1

K1 grid to spectral transform H1 inverse spectral to grid transform
K2 transforms from obs to model grid H2 transforms from model to obs grid

d = K1K2dobs grid D = 〈d,d〉

it is in general not possible to calculate the full covariance matrices, and hence the full inhomogeneous
Kalman gain, for data assimilation based on DNS and hence some method of reducing the dimensionality
of the problem is required. Secondly, in light of our results, the method of using a homogeneous but
anisotropic gain acting on the mean field and a diagonally dominant inhomogeneous gain acting on the
covariances is shown to be likely to be successful in terms of assimilation and filter stability. We should
emphasize however, that the SDKF, as well as the EnKF and EnSF, methodology is general and can in
principle be used to study data assimilation with the full inhomogeneous Kalman gain. In a future study
we plan to examine and compare the performance of the SDKF with both the full inhomogeneous gain
and quasi-diagonal gain and to explore issues such as the effect of covariance localization and inflation
in relation to filter stability.
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A Appendix: Spectral Kalman Filter equations

Our approach to the formulation of the Kalman filter theory in spectral space is in the spirit of the
approach taken by Parish & Derber (1992) [64]. They formulate the Kalman filter equations directly in
terms of the spectral amplitudes of the forecast model rather than in terms of physical space grid point
values. Their appendix A describes the factorization of the observational operator which transforms from
analysis to pseudo-observations. In our case the spectral space analysis is determined from the spectral
space model forecast and the observations on the observational grid through the following equation:

ζa = ζ f + K(dobs grid −Hζ f ) (46a)

where ζ has spectral components ζk. Here the analysis and forecast variables are vectors in spectral
space. Following Parish & Derber (1992) [64] we factorize the observational operator and the Kalman
gain into transformations between spectral and model grid point space (and back) and between model
grid and observational grid space (and back). The factorizations of the operators are summarized in table
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1 which also defines the operator H0 and the spectral space transform of the observations d in terms of
the observations dobs grid on the observational grid.

With the operators defined in table 1, we can also write the equation for the analysis in the form

ζa = ζ f + K0(d−H0ζ f ) (46b)

where d has spectral components dk. For the more general multi-level problems considered by Parish
& Derber (1992) [64] they also have operators (and inverses) that perform EOF analyses in the vertical.
Parish & Derber (1992) [64] and McNally et al (2000) [57] discuss strategies for and the relative merits
of the direct assimilation of observations simultaneously as opposed to pre-processing and sequential
data selection approaches.

In spectral space the Kalman gain is determined by

K0 = CfH0T (H0CfH0T + D)−1 (47)

where H0 and K0 are square matrices and

Ca = (I−K0H0)Cf . (48)

If D, Cf and H0 are quasi-homogeneous or diagonally dominant in spectral space with components
Dk, Cf

k and Hk respectively then so is K0 with components Kk. The Kalman filter equations then take
the form of Eqs. (18) through (21).

B Appendix: Interaction coefficients

The interaction coefficients (see FO2005 [33]) are defined by

A(k,p,q) = −γ(pxq̂y − p̂yqx)/p2, (49)

K(k,p,q) =
1

2
[A(k,p,q) + A(k,q,p)] =

γ

2
[pxq̂y − p̂yqx](p2 − q2)/p2q2. (50)

Our definitions of the interaction coefficients are generalized to include the zero wave vector as any of
the three arguments by specifying γ, q̂y and p̂y as follows:

γ =


−k0

2
if k = 0

k0 if q = 0 or p = 0

1 otherwise

(51)

q̂y =

1 if k = 0 or p = 0 or q = 0

qy otherwise
(52)

p̂y =

1 if k = 0 or p = 0 or q = 0

py otherwise.
(53)
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C Appendix: QDIA closure equations

The formulation of the QDIA closure starts with primitive perturbation theory in which to lowest
order the perturbation field ζ̂

(0)
k (t0) is multivariate Gaussian and its cumulant matrix is diagonal and

equal to C(0)
k (t, t′). The off-diagonal elements Ck,−l(t, t

′) and Rk,l(t, t
′) are determined at lowest or-

der in perturbation theory and are expressed as functionals of the diagonal elements, mean field and
topography. As discussed in detail by Frederiksen (1999) [27] the perturbation theory is then renormal-
ized to give expressions for the cumulant and response function matrices that have validity when the
perturbation parameters are not strictly small. Renormalization removes the possibility of divergences
due to secular behavior and may be likened to a Padé-approximant scheme for functions. Technically
renormalization involves replacing terms in the perturbation expansion by their full representations i.e.
C

(0)
k (t, t′) → Ck(t, t′), C(1)

k,−l(t, t
′) → Ck,−l(t, t

′), R(0)
k (t, t′) → Rk(t, t′), R(1)

k,−l(t, t
′) → Rk,−l(t, t

′) etc.
The consequent equations conserve energy and potential enstrophy and are realizable.

The work of Frederiksen (1999) [27] and OF2004 [62] shows that the two-point cumulant function
expressed as a functional of purely diagonal terms may be written in terms of the QDIA closure as

CQDIA
k,−l (t, t′) =

∫ t

t0

ds Rk(t, s)Cl(s, t
′)[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]

+

∫ t′

t0

ds R−l(t
′, s)Ck(t, s)[A(−l,k, l− k)h(k−l) + 2K(−l,k, l− k)〈ζ(k−l)(s)〉]

+Rk(t, t0)R−l(t
′, t0)K̃

(2)
k,−l(t0, t0) (54)

where K̃(2)
k,−l(t0, t0) represents contributions from the initial off-diagonal covariance at time t0. In Eq.

(54) we also require expressions for the response function, which measures the change in the vorticity
perturbation due to an infinitesimal change in the forcing:

R̂k,l(t, t
′) =

δζ̂k(t)

δf̂ 0
l (t′)

(55)

Rk,l(t, t
′) = 〈R̂k,l(t, t

′)〉. (56)

The off-diagonal elements of the response function take the form

RQDIA
k,l (t, t′) =

∫ t

t′
ds Rk(t, s)Rl(s, t

′)[A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]. (57)

where Rk(t, t′) = Rk,k(t, t′). In the QDIA formalism the expression for the diagonal response function
is given by:

(
∂

∂t
+ ν0(k)k2)Rk(t, t′) =

∑
p

∑
q

δ(k + p + q)A(k,p,q)RQDIA
−p,k (t, t′)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q)[〈ζ−p(t)〉RQDIA
−q,k (t, t′) +RQDIA

−p,k (t, t′)〈ζ−q(t)〉]

+4

∫ t

t′
ds

∑
p

∑
q

δ(k + p + q)K(k,p,q)K(−p,−q,−k)R−p(t, s)C−q(t, s)Rk(s, t′) (58)
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with Rk(t, t) = 1 and Rk(t, t′) = 0 for t < t′.
To close Eq. (9a) we also need an expression for the three-point cumulant and this is derived in a

similar manner to the DIA closure for homogeneous turbulence of Kraichnan (see Frederiksen & Davies
(2004) [32] and references therein) except that the cumulant terms now contain information about flow
inhomogeneities. Additionally we also include the effects of initial non-Gaussian cumulants:

〈ζ̂−l(t)ζ̂(l−k)(t)ζ̂k(t′)〉QDIA = 2

∫ t′

t0

ds K(k,−l, l− k)C−l(t, s)C(l−k)(t, s)Rk(t′, s)

+2

∫ t

t0

ds K(−l, l− k,k)R−l(t, s)C(l−k)(t, s)Ck(t′, s)

+2

∫ t

t0

ds K(l− k,−l,k)R(l−k)(t, s)C−l(t, s)Ck(t′, s)

+R−l(t, t0)R(l−k)(t, t0)Rk(t, t0)K̃
(3)
−l,(l−k),k(t0, t0, t0) (59)

where K̃(3)
−l,(l−k),k(t0, t0, t0) allows for non-Gaussian initial conditions (Frederiksen & Davies (2000)

[31], OF2004 [62]). In the QDIA the two- and three-point cumulants in Eqs. (9) are replaced by
Eqs. (54)-(59) in Appendix C. OF2004 [62] describe the methodology whereby initial inhomogeneities
K̃

(2)
k,−l(t0, t0) and initial non-Gaussian effects K̃(3)

−l,(l−k),k(t0, t0, t0) may be incorporated. This approach
enables an effective methodology for calculating non-Markovian time-history integrals via an additional
numerical approach known as the cumulant update procedure. In the present study the QDIA closure
equations have been implemented in regularized form as described in OF2004 [62] in order that the
amplitudes of the small scale transient perturbations be accurately calculated.
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