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Abstract: The speed-gradient variational principle (SG-principle) for nonstationary far from
equilibrium systems is formulated and illustrated by examples. The SG-model of transient
(relaxation) dynamics for systems of a finite number of particles based on maximum entropy
principle is derived. It has the form dX(t)/dt = A lnX(t), where X(t) is the vector of the
cell populations, A is a symmetric matrix with two zero eigenvalues corresponding to mass
and energy conservation laws.
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1. Introduction

The equations of motion for physical systems are often derived from variational principles: principle
of least action, maximum entropy principle, etc. [1–4]. Variational principles are based on specification
of a functional (usually, integral functional) and determination of real motions as points in an appropriate
functional space providing extrema of the specified functional. The principle is called integral if the
functional to be extremized has an integral form.

In addition to integral principles, differential (local) ones were proposed: Gauss principle of least
constraint, principle of minimum energy dissipation and others. It has been pointed out by M. Planck
[5] that the local principles have some preference with respect to integral ones because they do not fix
dependence of the current states and motions of the system on its later states and motions. In thermo-
dynamics two of such principles have become most popular during last century: I. Prigogine’s principle
of minimum entropy production and L. Onsager’s symmetry principle for kinetic coefficients. In the
1950s the so called Maximum Entropy Generation Principle (MEGP) was proposed by H. Ziegler [6, 7]
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who also showed that Prigogine’s and Onsager’s principles in the near equilibrium case can be derived
from MEGP under some conditions and that they are equivalent to each other. In 1957 E.T. Jaynes for-
mulated the Maximum Entropy Principle (MEP): the entropy of any physical system tends to increase
until it achieves its maximum value under constraints imposed by other physical laws [8]. In fact such a
prediction (implicit) can be found in the works of W. Gibbs.

In [9–11] a new local evolution principle, so called speed-gradient (SG) principle originated from
the SG-design method of nonlinear control theory [12, 13] was proposed and illustrated by a number of
examples from mechanics. In [14] SG-principle was extended to the case of systems with constraints.

This paper is aimed at application of the SG-principle to entropy-driven systems. First, the formula-
tion of the SG-principle is recalled and some illustrating examples are presented. Then the SG-principle
is applied to derivation of transient (relaxation) dynamics for a system driven by maximum entropy
principle.

2. Speed-gradient variational principle

Consider a class of physical systems described by systems of differential equations

ẋ = f(x, u, t), (1)

where x = (x1, . . . , xn)
T is n-dimensional column vector of the system state (T is the transposition sign),

u = (u1, . . . , um)
T is m-dimensional column vector of free (input) variables, ẋ = dx/dt, t ≥ 0. The

problem of modelling system dynamics can be posed as the search of a law of change of u(t) meeting
some criterion of “natural”, or “reasonable” behavior of the system. Let such a behavior be specified
as a tendency to achieve a goal, specified as decreasing the value of the goal functional Q(x, t), where
Q(x, t) is given apriori. The choice of Q(x, t) should reflect physical essence of the problem and it is
critical for the result. An ultimate goal may be also introduced as achievement of the minimum value of
Q(x):

Q(x(t), t)→ 0 as t→∞, (2)

if a nonnegative Q(x, t) is chosen: Q(x, t) ≥ 0.

The first step of the speed-gradient procedure is to calculate the speed Q̇ = dQ
dt

= ω(x, u, t), where
ω(x, u, t) = ∂Q

∂t
+ ∂Q(x)

∂x
f(x, u, t). The second step is to evaluate the gradient of the speed ∇uQ̇ with

respect to input vector u (speed-gradient vector). Finally the law of dynamics is formed as the feedback
law in the finite form

u = −γ∇uQ̇(x, u, t). (3)

or in the differential form
du

dt
= −γ∇uQ̇(x, u, t), (4)

where γ > 0 is a positive scalar or a positive definite symmetric matrix gain (positivity of a matrix is
understood as positive definiteness of associated quadratic form). The underlying idea of the choices (3)
or (4) is that the motion along the antigradient of the speed Q̇ provides decrease of Q̇. It may eventually
lead to negativity of Q̇ which, in turn, yields decrease of Q. Under some natural assumptions achieve-
ment of the ultimate goal (2) can be derived as a mathematical statement [9, 13] which is, however,
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beyond the theme of this paper. Now the speed-gradient principle can be formulated as follows.

Speed-gradient principle: Among all possible motions of the system only those are realized for
which the input variables change proportionally to the speed gradient ∇uQ̇(x, u, t) of an appropriate
goal functional Q(x, t). If there are constraints imposed on the system motion, then the speed-gradient
vector should be projected onto the set of admissible (compatible with constraints) directions.

According to the SG-principle, to describe a system dynamics one needs to introduce the goal function
Q(x, t). The choice of Q(x, t) should reflect the tendency of natural behavior to decrease the current
value Q(x(t), t). Systems obeying the SG-principle will be called SG-systems. In this paper only the
models (1) in a special form are considered:

ẋ = u, (5)

i.e. a law of change of the state velocities is sought.
Since gradient of a function is the direction of it maximum growth, the SG-direction is the direction

of maximum growth for Q̇(x, u, t), i.e. direction of maximum production rate for Q. Respectively,
the opposite direction corresponds to minimum production rate for Q. In the presence of constraints
SG-principle suggests that production rate for Q is maximum under imposed constraints. The laws of
dynamics under constraints can be found using the method of Lagrange multipliers.

The SG-laws with non-diagonal gain matrices γ can be interpreted by introducing a non-Euclidean
metric in the space of inputs is by means of the matrix γ−1. The matrix γ can be used to describe spatial
anisotropy. Admitting dependence of the matrix γ on x one can recover dynamics law for complex
mechanical systems described by Lagrangian or Hamiltonian formalism.

3. Examples of speed-gradient laws of dynamics

According to the speed-gradient principle, at first one needs to introduce the goal function Q(x). The
choice of Q(x) should reflect the tendency of natural behavior to decrease the current value Q(x(t)). Let
us consider illustrating examples.

3.1. Example 1: Motion of a particle in the potential field

In this case the vector x = (x1, x2, x3)T consists of coordinates x1, x2, x3 of a particle. Choose smooth
Q(x) as the potential energy of a particle and derive the speed-gradient law in the differential form. To
this end, calculate the speed Q̇ = ∂Q/∂x = [∇xQ(x)]T u and the speed-gradient ∇uQ̇ = ∇xQ(x).
Then, choosing the diagonal positive definite gain matrix Γ = m−1I3, where m > 0 is a parameter, I3 is
the 3× 3 identity matrix, we arrive at the Newton’s law u̇ = −m−1∇xQ(x) or

mẍ = −∇xQ(x). (6)

Note that the speed-gradient laws with nondiagonal gain matrices Γ can be incorporated if a non-
Euclidean metric in the space of inputs is introduced by the matrix Γ−1. Admitting dependence of
the metric matrix Γ on x one can obtain evolution laws for complex mechanical systems described by
Lagrangian or Hamiltonian formalism.
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The SG-principle applies not only to finite dimensional systems, but also to infinite dimensional
(distributed) ones. Particularly, x may be a vector of a functional space X and f(x, u, t) may be a
nonlinear differential operator (in such a case the solutions of (1) should be understood as generalized
ones). We will omit mathematical details for simplicity.

3.2. Example 2:Wave, diffusion and heat transfer equations

Let x = x(r), r = col (r1, r2, r3) ∈ Ω be the temperature field or the concentration of a substance
field defined in the domain Ω ⊂ R3. Choose the goal functional evaluating nonuniformity of the field as
follows

Qt(x) =
1

2

∫
Ω

|∇rx(r, t)|2 dr, (7)

where ∇rx(r, t) is the spatial gradient of the field and boundary conditions are assumed zero for sim-
plicity. Calculation of the speed Q̇t and then speed-gradient of Qt, yields

Q̇t = −
∫
Ω

∆x(r, t)u(r, t) dr, ∇uQ̇t = −∆x(r, t),

where ∆ =
3∑
i=1

∂2

∂r2i
is the Laplace operator. Therefore the speed-gradient law in differential form (4) is

∂2

∂t2
x(r, t) = −γ∆x(r, t), (8)

which corresponds to the D’Alembert wave equation. The SG-law in finite form (3) reads

∂x

∂t
(t) = −γ∆x(r, t) (9)

and coincides with the diffusion or heat transfer equation.
Note that the differential form of the speed-gradient laws often corresponds to reversible processes

while the finite form generates irreversible ones. For modelling of more complex dynamics a combina-
tion of finite and differential SG-laws may be useful.

In a similar way dynamical equations for many other mechanical, electrical and thermodynamic sys-
tems can be recovered. The SG-principle applies to a broad class of physical systems subjected to
potential and/or dissipative forces.

4. Speed-gradient entropy maximization

Let us underly that the speed-gradient principle provides an answer to the question: how the system
will evolve? It differs from the principles of maximum entropy, maximum Fisher information, etc.
providing and answer to the questions: where? and how far? Particularly, it means that the SG-
principle generates equations for the transient (nonstationary) mode rather than the equations for the
system equilibrium. Let us apply the SG-principle to an entropy maximization problem.

According to the 2nd law of thermodynamics and to the Maximum Entropy Principle of Gibbs-Jaynes
the entropy of any physical system tends to increase until it achieves its maximum value under constraints
imposed by other physical laws. Such a statement provides knowledge about the final distribution of the
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system states, i.e. about asymptotic behavior of the system when t → ∞. However it does not provide
information about the way how the system moves to achieve its limit (steady) state.

In order to provide motion equations for the transient mode employ the SG-principle. Assume for
simplicity that the system consists ofN identical particles distributed overm cells. LetNi be the number
of particles in the ith cell and the mass conservation law holds:

m∑
i=1

Ni = N. (10)

Assume that the particles can move from one cell to another and we are interested in the system
behavior both in the steady-state and in the transient modes. The answer for the steady-state case is
given by the Maximum Entropy Principle: if nothing else is known about the system, then its limit
behavior will maximize its entropy [8]. Let the entropy of the system be defined as logarithm of the
number of possible states:

S = ln
N !

N1! · . . . ·Nm!
. (11)

If there are no other constraints except normalization condition (10) it achieves maximum when N∗
i =

N/m. For large N an approximate expression is of use. Namely, if the number of particles N is large
enough, one may use the Stirling approximation Ni! ≈ (Ni/e)

N . Then

S ≈ N ln
N

e
−

m∑
i=1

Ni ln
Ni

e
= N lnN −

m∑
i=1

Ni lnNi = −
m∑
i=1

Ni ln
Ni

N

which coincides with the standard definition for the entropy S = −∑m
i=1 pi ln pi, modulo a constant

multiplier N , if the probabilities pi are understood as frequencies Ni/N .
To get an answer for transient mode apply the SG-principle choosing approximate entropy S(X) =

N lnN −∑m
i=1Ni lnNi as the goal function to be maximized, where X = col(N1, . . . , Nm) is the state

vector of the system. Assume for simplicity that the motion is continuous in time and the numbers Ni

are changing continuously, i.e. Ni are not necessarily integer (for large Ni it is not a strong restriction).
Then the sought law of motion can be represented in the form

Ṅi = ui, i = 1, . . . ,m, (12)

where ui = ui(t), i = 1, . . . ,m are controls – auxiliary functions to be determined. According to the
SG-principle one needs to evaluate first the speed of change of the entropy (11) with respect to the system
(12), then evaluate the gradient of the speed with respect to the vector of controls ui considered as frozen
parameters and finally define actual controls proportionally to the projection of the speed-gradient to the
surface of constraints (10). Evaluation of Ṡ yields

Ṡ = −
m∑
i=1

((ui lnNi +Ni
ui
Ni

) = −
m∑
i=1

ui(lnNi + 1).

It follows from (10) that
∑m
i=1 ui = 0. Hence Ṡ = −∑m

i=1 ui lnNi. Evaluation of the speed-gradient
yields ∂Ṡ

∂ui
= − lnNi and the SG-law ui = γ(− lnNi + λ), i = 1, . . . ,m, where Lagrange multiplier

λ is chosen in order to fulfill the constraint
∑m
i=1 ui = 0, i.e. λ = 1

m

∑m
i=1 lnNi. The final form of the

system dynamics law is as follows:

Ṅi =
γ

m

m∑
i=1

lnNi − γ lnNi, i = 1, . . . ,m. (13)
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According to the SG-principle the equation (13) determines transient dynamics of the system. To
confirm consistency of the choice (13) let us find the equilibrium mode, i.e. evaluate asymptotic be-
havior of the variables Ni. To this end note that Ṅi = 0 and

∑m
i=1 lnNi = m lnNi in the equilibrium.

Hence all Ni are equal: N∗
i = N/m which corresponds to the maximum entropy state and agrees with

thermodynamics.
The next step is to examine stability of the equilibrium mode. It can be done by means of the entropy

Lyapunov function V (X) = Smax − S(X) ≥ 0, where Smax = N lnN . Evaluation of V̇ yields

V̇ = −Ṡ =
m∑
i=1

ui lnNi =
γ

m
[(

m∑
i=1

lnNi)
2 −m

m∑
i=1

(lnNi)
2].

It follows from the Cauchy-Bunyakovsky-Schwarz inequality that V̇ (X) ≤ 0 and the equality V̇ (X) = 0

holds if and only if all the values Ni are equal, i.e. only at the maximum entropy state. Thus the law
(13) provides global asymptotic stability of the maximum entropy state. The physical meaning of the
law (13) is moving along the direction of the maximum entropy production rate (direction of the fastest
entropy growth).

The case of more than one constraint can be treated in the same fashion. Let in addition to the mass
conservation law (10) the energy conservation law hold. Let Ei be the energy of the particle in the ith
cell and the total energy E =

∑m
i=1NiEi be conserved. The energy conservation law

E =
m∑
i=1

NiEi (14)

appears as an additional constraint. Acting in a similar way, we arrive at the law (13) which needs
modification to ensure conservation of the energy (14). According to the SG-principle one should form
the projection onto the surface (in our case – subspace of dimension m− 2) defined by the relations

m∑
i=1

uiEi = 0,
m∑
i=1

ui = 0. (15)

It means that the evolution law should have the form

ui = γ(− lnNi) + λ1Ei + λ2, i = 1, . . . ,m, (16)

where λ1, λ2 are determined by substitution of (16) into (15). The obtained equations are linear in λ1, λ2

and their solution is given by formulas
λ1 =

γm(
∑m

i=1
Ei lnNi)−γ(

∑m

i=1
Ei)(

∑m

i=1
lnNi)

m
∑m

i=1
E2

i −(
∑m

i=1
Ei)2

,

λ2 = γ
m

∑m
i=1 lnNi − λ1

m

∑m
i=1Ei.

(17)

The solution of (17) is well defined if m
∑m
i=1E

2
i − (

∑m
i=1 Ei)

2 6= 0 which holds unless all the Ei are
equal (degenerate case).

Let us evaluate the equilibrium point of the system (12), (16) and analyze its stability. At the equi-
librium point of the system the following equalities hold: γ(− lnNi) + λ1Ei + λ2 = 0, i = 1, . . . ,m.

Hence
Ni = C exp(−µEi), i = 1, . . . ,m, (18)
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where µ = λ1/γ and C = exp(−λ2/γ).

The value of C can also be chosen from the normalization condition C = N(
∑m
i=1 exp (−µEi)). We

see that equilibrium of the system with conserved energy corresponds to the Gibbs distribution which
agrees with classical thermodynamics. Again it is worth to note that the direction of change of the
numbers Ni coincides with the direction of the fastest growth of the local entropy production subject
to constraints. As before, it can be shown that V (X) = Smax − S(X) is Lyapunov function for the
system and that the Gibbs distribution is the only stable equilibrium of the system in non-degenerate
cases. Substitution of λ1, λ2 from (17) into equation (16) yields general form of evolution law for the
frequencies in the form

d

dt
X(t) = A lnX(t), (19)

where logarithm of the vector is understood componentwise and symmetric m×m matrix A is defined
as follows:

aij = −δij +
1

m
+ ẼiẼj, i, j = 1, . . . ,m

δij = 1, if i = j, δij = 0, if i 6= j, Ẽi = Ei − 1
m

∑m
i=1Ei. It depends on the vector of energies

Ē = (E1, . . . , Em)
T
). According to its structure the matrixA is symmetric and has two zero eigenvalues.

It follows from Lyapunov arguments that Eq. (19) restricted onto the subspace defined by linear identities
(10), (14), has a unique relative equilibrium corresponding to Gibbs distribution. Similar results are valid
for continuous (distributed) systems even for more general problem of minimization of relative entropy
(Kullback divergence) [14].

5. Conclusions

Speed-gradient variational principle provides a simple yet useful addition to classical results in ther-
modynamics and statistical mechanics. Whereas the classical results allow researcher to answer the
question “Where it goes to?”, the speed-gradient approach provides an answer to the question: “How
it goes and how it reaches its steady-state mode?” SG-principle suggests that the transient behavior is
potential with respect to the rate of some goal function. This idea may be applied also to evaluation
of nonequilibrium stationary states and study of system internal structure evolution [17], description of
transient slow motions in vibrational mechanics, etc. A different approach to variational description of
nonstationary nonequilibrium processes is proposed in [18]. Other physical applications of techniques
and ideas developed in control theory (cybernetics) can be found in [11, 14, 19, 20].
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