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Abstract: We present heuristic arguments suggesting that if EM waves with wavelengths
somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it,
the second law of thermodynamics would be violated, under the Bekenstein interpretation of
the area of a black hole as a measure of its entropy. Thus, entropy considerations make the
well known fact that large wavelengths are only marginally absorbed by black holes, a natural
consequence of thermodynamics. We also study numerically the ingoing radial propagation of
a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads
to the eikonal equation, that the wave has zero spatial extent. We find that if these waves
have wavelengths larger that the Schwarzschild radius, they are very substantially reflected,
fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides
with the one derived from entropy considerations of the EM field, and is consistent with well
known limit results of scattering in the Schwarzschild metric. The propagation speed is also
calculated and seen to differ from the value c, for wavelengths larger than Rs, in the vicinity of
Rs. As in all classical wave phenomena, whenever the wavelength is larger or comparable to
the physical size of elements in the system, in this case changes in the metric, the zero extent
’particle’ description fails, and the wave nature becomes apparent.
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1. Motivation

The presence of a black hole divides the universe into two causally distinct regions. Essentially, an
event horizon hides a singularity from the external universe with an inside region which is causally
disconnected from the outside one. The simplest example of a black hole is the one given by the
Schwarzschild metric. These Schwarzschild black holes have a “spherical” event horizon. These holes
are described by a single parameter, their total collapsed mass M located at a single point, in the “centre”
of the event horizon.

The problem of accounting for the apparent entropy decrease for the universe when a body is swal-
lowed by a black hole, hence making its entropy disappear from the outside region, has been given an
answer [1] by associating an entropy to the area of the black hole horizon. This last quantity remains
accessible to measurements performed by external observers through its dependence on the black hole
mass. The extensive work on black hole thermodynamics of the 60s and 70s notably by Bekenstein and
Hawking (cf. [2] and references therein) has lead to the establishment of the so called laws of black hole
thermodynamics, where black holes appear as classical thermodynamical objects, having entropy SBH

and temperature TH given by:

SBH

kB

=
ASH

4AP

(1)

and

TH =
hc

8π2kBRs

. (2)

In the above equations ASH = 4πR2
s is the area of the Schwarzschild event horizon, AP = ~G/c3 is

the Planck area and Rs = (2GM)/c2, the Schwarzschild radius of a black hole of mass M. It can be seen,
for example, that the merger of two black holes of equal mass will result in a net increase in entropy, and
hence an event one should expect could happen, in terms of the second law of thermodynamics.

We now point to a particular process which would appear to violate the second law. Suppose a
black hole of mass M is absorbing an amount of classical black body radiation having an energy EEM ,
temperature TEM and entropy SEM . When far from the black hole, this entropy is given by

SEM

kB

=
4

3

EEM

kBTEM

. (3)

The total entropy before the radiation is swallowed by the black hole will therefore be SBH + SEM .
After swallowing the radiation, the black hole will experience an increase in mass ∆M = EEM/c2, and
hence an increase in entropy given by equation (1) as:

∆SBH

kB

=
8π2G

hc
M∆M, (4)
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in this case,

∆SBH

kB

=
8π2G

hc3
MEEM . (5)

We can now write the quotient of this increase to the original black body radiation entropy, which was
lost to the universe on it being swallowed, as:

∆SBH

SEM

=
6π2G

hc3
kBTEMM. (6)

Now using equation (2) we can write,

∆SBH

SEM

=
3π

8

TEM

TH

. (7)

The right hand side of the above equation becomes < 1 for TEM < 8TH/3π. We see that the process
of a black hole swallowing Planck radiation of a temperature somewhat lower than TH results in an
overall decrease in the entropy of the universe. Seen in this way, this process would violate the second
law of thermodynamics. It would appear to follow that at least part of the impinging radiation should not
be absorbed. The following considerations point to which part of this radiation one might expect not to
be absorbed.

We now consider a black hole of mass M swallowing a single photon of wavelength λγ and caring
an energy Eγ = hc/λγ . The increase in the black hole mass will now be ∆M = h/cλγ , to which there
corresponds an increase in the area of the Schwarzschild horizon of:

∆A = 8πRS
hG

c3λγ

, (8)

which we can write as:

∆A

AP

= 16π2RS

λγ

. (9)

We see that the increase in the black hole area becomes arbitrarily small, in particular less than the
Planck area, for photons having wavelengths somewhat larger than the Schwarzschild radius of the black
hole swallowing them. This last might seem uncomfortable if one adopts the point of view that the
smallest dimension of area which should appear in any physical theory or process is the Planck area,
e.g. a loop quantum gravity approach. The case of a “single photon” is of course an idealisation which
strictly should be treated in the quantum regime. For a black hole in the quantum regime itself, the results
of [3] already imply no violation of the second law of thermodynamics, it is the macroscopic limit what
we will consider here.

The preceding two thought experiments lead to the conclusion that either equation (1) is not valid
and arbitrarily small area increases are allowed for black holes, or radiation colder than TH (or photons
with wavelengths longer than RS) can not be fully swallowed by black holes, if one wants to keep the
second law of thermodynamics. We see that entropy considerations dictate the outcome of physical
processes around black holes. The detailed physical mechanism involved has to be explored in the
scope of scattering problems in the Schwarzschild space–time, as it has been done in the past by several
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authors [4–7], however entropy constrains offer qualitative indications of the results to be expected. The
results of [4] already point to an upper limit for the wavelength of an EM wave above which absorption
by a black hole strongly decreases, of order RS . We note that past studies of the interaction between
waves and black holes which identify upper critical wavelengths, typically fall within the scope of WKB
approximations, where monochromatic waves are assumed to remain as such. As will be seen in the
following, the particular nature of the problem makes the above assumption invalid. Indeed, as already
noted by [4], the error on the transmission coefficients under such approaches is of order M/λ, somewhat
worrisome as the critical wavelengths are typically of the order M .

The suggestion that EM wavelengths longer than the Schwarzschild radius cannot be absorbed by a
black hole is interesting, since going back to equation (9) implies that the smallest increase in the area
of a black hole which can result from the absorption of a photon, will be of order 16π2Ap. Bearing in
mind that whereas the quanta of action ~ can be inferred from experiments due to its direct effect on
observables of the electro-magnetic field, the quanta of area cannot, and has only been estimated to lie
close to Ap on dimensional grounds. The above results might hint at the quanta of area Aq, being of
the order of 16π2Ap, with the quanta of length resulting an order of magnitude larger than the canonical
Planck length.

We now turn to the propagation of EM radiation in the vicinity of a black hole, to see if any mechanism
to prevent radiation with wavelengths larger than RS from being swallowed might naturally arise. The
full EM problem, even with some simplifications, leads to complicated, coupled differential equations.
As a first approach we simplify to an equation which is valid for the problem of the interaction of a scalar
field and a black hole.

2. Scalar waves in the Schwarzschild space–time

We start this section with the problem of a propagating EM wave, moving towards a Schwarzschild
black hole. On first impression one would naively jump to the conclusion that as photons can be treated as
massless particles, and hence, any form of EM radiation, composed of photons, should simply follow null
geodesics into the black hole. However, such a treatment is derived under the assumption of vanishingly
small wavelengths. See for example [8, 9], where the geometrical optics approximation for EM waves is
derived by requiring that the metric can be treated as locally flat over the spatial variations in the studied
wave. The eikonal equation, trajectories described by ds = 0 are, strictly speaking, approximations to
the propagation of EM radiation valid only when the wavelengths can be treated as zero. In general,
whenever the dimensions of a system are much larger than the wavelength of radiation moving around
in it, light can accurately be treated as point particles having zero extent. However, whenever elements
appear with dimensions comparable or smaller than the wavelengths of the radiation present, the wave
nature of light is immediately apparent, and EM radiation must be treated explicitly as a wave. In the
case of radiation having wavelengths comparable or larger than the Schwarzschild radius of a black hole,
it is the variations in the metric which become comparable to the wavelength of the EM waves. We must
therefore treat the problem outside of the eikonal approximation, and study the full physics of it.

As it will be shown below, the problem becomes highly complex near R ∼ 1, with even simple wave
pulses developing complex structures in frequency space and exhibiting a large range of propagation
speeds. Thus, a tortoise coordinate system where the characteristics of the equations we are trying to
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solve correspond to waves with propagation speeds equal to that of light, will result cumbersome and
impractical. The coordinate singularity at the event horizon in the Schwarzschild space–time will not be
of concern as we are only interested in a careful treatment of the reflection of long wavelength waves
which occurs before they reach the event horizon. Examples of studies treating wave reflection of black
holes in the Schwarzschild metric can be found in [7, 10, 11]. The well known absorption of short
wavelength waves will not be treated in this article.

The electromagnetic potential one–form A is related to the Faraday 2–form F by [12] F := dA,
where d represents the exterior derivative. In the absence of charge–currents, one pair of Maxwell’s
equations are given by δF = δ dA = 0, where δ represents the codifferential operator. With this,
the electromagnetic potential one–form satisfies the relation ∆A − d δA = 0, where ∆ = (d + δ)2

represents Laplace–de Rham’s operator. By imposing the Lorenz gauge given by δA = 0 it then follows
that the electromagnetic potential one–form satisfies a wave–like equation given by [13] ∆A = 0. In
components, this equation yields:

Aα;β
;β =

1√−g

∂

∂xβ

{√−g
∂Aα

∂xβ

}

+ 2Γα
λβ

∂Aλ

∂xβ

+
AθΓα

θρ√−g

∂

∂xµ

(√−ggµρ
)

+ gβρAθ ∂Γα
θρ

∂xβ
+ gβρΓα

λβΓλ
θρA

θ = 0.

(10)

Limit and approximate solutions of this problem exist in the literature [7]. In what follows, we include
a simplified presentation leading to a full numerical integration. If we retain only the first term of the
above sum, for a particular component Ψ of Aµ this results in [see for example 10]:

1√−g

∂

∂xβ

{√−g
∂Ψ

∂xβ

}
= 0. (11)

We note that this equation rigorously represents the propagation of a massless scalar field Ψ in a curved
space–time, which is given by ∆Ψ = 0 [7]. The solution of equation (11) will shed some light as to the
qualitative behaviour of the full EM solution, e.g. [10] studies the reflection of scalar waves from black
holes under a spectral decomposition analysis, as a first order qualitative model for EM and gravitational
waves. We shall now concentrate on solving equation (11), rigorously valid for a scalar field in vacuum.

Taking a (−, +, +, +) signature the Schwarzschild metric becomes

ds2 =

(
−1 +

2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (12)

where

dΩ2 = dθ2 + sin2θdφ2. (13)

resulting in:

gµν = diag

[(
−1 +

2M

r

)
,

(
1− 2M

r

)−1

, r2, r2sin2θ

]
, (14)
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√−g = r2sinθ (15)

and,

gµν = diag

[(
−1 +

2M

r

)−1

,

(
1− 2M

r

)
, r−2,

1

r2sin2θ

]
(16)

We will retain the approximation that the metric is not modified by the presence of the scalar field,
vanishing field strength, but otherwise introduce no approximations on the derivatives of Ψ. We will not
introduce a vanishing wave dimension. For the Schwarzschild metric, equation (11) reduces to:

{ (
−1 +

2M

r

)−1
∂2

∂t2
+

[
2

r

(
1− 2M

r

)
∂

∂r
+

2M

r2

∂

∂r
+

(
1− 2M

r

)
∂2

∂r2

]}
Ψ = 0, (17)

where we have dismissed all non-radial spatial derivatives, as we are interested only on a purely radially
propagating scalar wave. Further algebra reduces the above equation to:

1

c2

∂2Ψ

∂t2
=

(r −RS)2

r2

(
∂2Ψ

∂r2
+

(2r −RS)

r(r −RS)

∂Ψ

∂r

)
. (18)

It is clear that for r >> RS the above equation reduces to the classical spherical wave propagation
equation, as should be expected, since the Schwarzschild metric reduces to Minkowski space–time for
r >> RS .

Defining dimensionless quantities for the problem, T := ct/RS and R := r/RS , equation (18)
becomes:

∂2Ψ

∂T 2
=

(
R− 1

R

)2
∂2Ψ

∂R2
+

(2R− 1)(R− 1)

R3

∂Ψ

∂R
. (19)

If we now propose a solution of the form Ψ(R, T ) = F (T )G(R), we can separate equation (19) to
obtain:

d2F

dT 2
= −W 2F (20)

and

(R− 1)2

R2

(
d2G

dR2
+

(2R− 1)

R(R− 1)

dG

dR

)
= −W 2G (21)

Where W = ωRS/c and the separation constant was chosen < 0 to guarantee periodic wave propa-
gation. The solution to equation (20) is trivial, while equation (21) requires somewhat more treatment.

We propose an approximate solution of the form G(R) = U(R)exp(iKR), which is then introduced
into (21), the imaginary component of which yields:

2R
dU

dR
+

(
2R− 1

R− 1

)
U = 0, (22)

and so,
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U =
C

R1/2(R− 1)1/2
. (23)

Again, it is clear that for R >> 1 the geometric dilution factor of 1/R on the potential, and hence
1/R2 on the energy, for spherical wave propagation is recovered. The real part of equation (21) after
introducing the trial solution gives the dispersion relation for the problem:

K2 =
1 + 4W 2R4

4R2(R− 1)2
. (24)

We can see that the standard K = W dispersion relation is recovered for R >> 1,W >> 1. At this
point we can calculate the propagation velocity as W/K,

V =
2WR(R− 1)

(1 + 4W 2R4)1/2
. (25)

We obtain the surprising result that the radial propagation of the scalar wave towards a black hole
does not always proceed at speed c (recall that c = 1 in the above units), but actually slows down on
approaching RS , at a rate that depends on the frequency of the wave, the effect becoming increasingly
strong as W decreases. Part of the above effect, that at W >> 1 is simply a consequence of the
Schwarzschild coordinate system, in which an inertial observer calculates infinite travel times for waves
travelling towards a black hole, however, a chromatic effect is introduced by having considered a fuller
physics than the standard zero wavelength approximation. Again, in the limit W >> 1, R >> 1 we
recover V = 1.

We have obtained a dispersion relation which shows clear deviations from the standard expression
for the standard ds = 0 solution corresponding to W ∼ 1 and smaller. We notice that the above
analysis offers only a local approximation, a first correction valid for non-zero, but small wavelengths, for
which K can be considered approximately constant; a fuller solution to the problem requires a numerical
treatment of equation (19). The dependence of K with R exemplifies the limitations of any spectral WKB
approach to the problem.

3. Numerical calculations

We note that the extensive literature on scattering of waves from black holes treats the problem either
from the point of view of perturbations to the metric (non–vanishing field strength for the wave), limit
behaviour, or using a Fourier decomposition analysis [e.g. 2, 5–7, 10, 11, 15, 16, 19–21, 24–26], or the
recent article by Dolan [14] and references therein. That the full complexity of the problem makes a
spectral decomposition approach only an approximation, specially for R ∼ 1, is already suggested by
the inconsistencies reached after the proposed G(R) solution to equation (21). In equation (24), K is
seen to be dependent on R, contradicting the original assumption. We shall perform a direct integration
of the resulting equations with the aim of following explicitly the full behaviour of the problem, in the
vanishing field strength limit, a test field interacting with the black hole.

In order to obtain numerical solutions to equation (19) we have used an explicit finite-difference
leapfrog scheme (central approximation in both time and space) which affords a local truncation error
(LTE) of order k2 + h2, where k is the fixed time step and h is the fixed position step. All of the results
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presented in this section have been obtained using k = h = 0.001, so that the LTE remains at all times
quite small. Note that in the numerical scheme, the right hand side of equation(19) is evaluated, and
used to obtain the evolution of the field through the left hand side of equation(19). In this way, there is
no singularity at R = 1, only a zero, which is in any case explicitly avoided by choosing a discretisation
which avoids having a grid point at R = 1.

It has also been checked that these choices of k and h satisfy the well known Courant-Friedrichs-
Lewy condition for the stability of an explicit finite-difference scheme for a hyperbolic partial differential
equation, such as equation (19), [18]. Reducing the size of k and h by a factor of 10 yields results with
only minimal differences from those shown, and then, only at the peaks, proving numerical convergence
of the scheme.

Figure 1. The figure shows four time steps in the propagation of a scalar pulse of char-
acteristic length R towards a black hole. We see substantial deformation of the pulse
on approaching R = 1, accompanied by a propagation speed which tends to zero. A
video of this simulation can be found at http://www.mendozza.org/sergio/bouncing-bh and
at http://www.youtube.com/watch?v=jBoHQv2BrF0
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Figure 1 shows results for a pulse of wavelength 0.1R, a regime where the standard small wavelength
approximation would be expected to hold. In the above, as in all that follows, the term wavelength
refers to the typical extent of the pulse when far from R = 1. We see that although propagation towards
R = 1 proceeds with deformations of the original pulse, the pulse approaches R = 1 with a speed
given by equation (25) (see figure 4), which appears indistinguishable from the ds = 0 solution of
c = (R − 1)/R. The spatial extent of the pulse is progressively reduced, in consistency with standard
gravitational blueshift. If played in reverse, we would see the gravitational redshift of a wave emitted
from an R → 1, tending to infinity. The pulse essentially stalls and would reach R = 1 in an infinite

http://www.mendozza.org/sergio/bouncing-bh
http://www.youtube.com/watch?v=jBoHQv2BrF0
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time, given the Schwarzschild description of the problem from the point of view of a distant observer.

Figure 2. The figure shows four time steps in the propagation of a scalar pulse of charac-
teristic length 10R towards a black hole. We see substantial deformation of the pulse as it
approaches R = 1, followed by the emission of a wavetrain of wavelength comparable to the
original wave 10R, after a finite time. A video of the simulation can be obtained from http:
//www.mendozza.org/sergio/bouncing-bh, http://www.youtube.com/watch?v=u52CqjVerlQ
and http://www.youtube.com/watch?v=g1AruhdDzGA
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On the other hand, figure 2 shows the propagation of a pulse having an initial extent of 10R, starting
at R = 10. This pulse approaches R = 1, is deformed substantially, and produces a reflected wave
train, with a residual amplitude in the vicinity of R = 1 which slowly decays. We see a reflected pulse
appearing in a finite coordinate time. Notice that a wave solution ceases to be valid for large pulses, as
the original pulse shape is completely lost. This shows that any description of the scattering problem
in terms of a WKB treatment is at best a first approximation as the evolution near R ∼ 1 invalidates
the assumptions of spectral decomposition analysis, e.g. as noted in [22], and treated in the improved
analytical method given there. A single component in frequency space gives rise to complex spectra as
R → 1 [21, 23].

In terms of the thought experiments of the opening section, we see that a strictly standard mecha-
nism naturally arises, such that scalar waves larger than the Schwarzschild radius are essentially pre-
vented from entering the black hole. It is interesting to see that the critical wavelength, for the scalar
field, appears approximately at the scale identified by the heuristic entropy considerations of Section 1,
when considering EM waves. We have identified the critical wavelength to lie somewhat below 1R.
By comparing reflected scalar waves of various initial wavelengths, we conclude that the characteristic
wavelength of the reflected wavetrain is of the order of the initial wavelength, as happens in the case of

http://www.mendozza.org/sergio/bouncing-bh
http://www.mendozza.org/sergio/bouncing-bh
http://www.youtube.com/watch?v=u52CqjVerlQ
http://www.youtube.com/watch?v=g1AruhdDzGA


Entropy 2009, 11 26

gravitational radiation [6].
Away from R = 1 we observe that, as expected, the physics is very similar to spherical propagation, as

the limiting form of equation (19) as R →∞ is precisely the equation for a spherically symmetric scalar
wave. As R → 1+, however, the propagation velocity decreases noticeably and the wave amplitude
increases, giving the impression that the waveform is being smeared against R = 1. This is explained
by the fact that the propagation term is proportional to (R − 1)2 while the spherical spreading term is
proportional to (R − 1), so that the influence of the propagation term becomes smaller at a more rapid
rate than that of the spreading term.

Figure 3. The figure shows four time steps in the propagation of a scalar pulse initially
with an extent of 1R towards a black hole. We see substantial deformation of the pulse as
it approaches R = 1, followed by the emission of a wavetrain of wavelength comparable to
the original wave, after a finite time.
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Figure 3 is analogous to figure 2, but for a pulse having an initial extent of 1R, close to the critical
value, we see an essentially equivalent behaviour to that of the 10R pulse. The critical value for the
strong qualitative change in regime, from that of figure 1 to that of figures 2 and 3, lying slightly below
this point.

The preceding results are not unexpected, if one considers existing studies of gravitational backscat-
tering of light, where the fact that light rays can travel along non-null geodesics is well known. We note
important precedents in the work of [19] who showed that in the limit as λ → ∞, electromagnetic and
gravitational waves will be reflected off Kerr black holes. Also, [20] demonstrated analytically, under
the assumption that a strictly wave solution should always apply, that the reflection coefficient for EM
waves tends to 1 for wavelengths of the order of RS . A comprehensive study of scattering from black
holes can be found in [7]. However a full numerical solution of scattering of a massless scalar test field
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is not found in the literature, neither are the entropy arguments relating limiting absorption wavelengths
and the second law of thermodynamics, as presented here.

More recent numerical studies include [21, 23–25] and references therein. It has been previously
found that for the case of backscattering by Schwarzschild black holes, although mostly treated in terms
of perturbations on the metric, the corresponding space–time works as a nonuniform medium with a
varying refraction index for electromagnetic waves. The magnitude of the back-scattered wave depends
on the frequency spectrum of the radiation: it becomes negligible in the short wave limit and can be
significant in the long wave regime [17, 21, 24]. For scalar waves, the full numerical treatment presented
here suggests that this process saturates and leads to zero absorption of light for wavelengths larger than
Rs.

Figure 4. Propagation speeds V of the maxima of the pulses shown in figures (1) and (2),
upper and lower panels, respectively, thick lines, compared to the corresponding solutions
of equation(25), thin line. The dotted curves show the speed along a null geodesic, c =

(R− 1)/R.
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Finally, we have calculated numerically the pulse propagation speeds. We have evaluated propagation
speeds as the time derivatives of the position of the maximum of the pulse, they are hence phase velocities
in the case where the pulse retains its shape and behaves as a wave, and group velocities when significant
distortions in the shape of the pulse appear. Figure 4 shows a comparison of the actual pulse propagation
speeds, thick lines, and the approximation of equation(25), thin lines, as a function of radius, for the
pulses shown in figures (1) and (2). The pulse which started with a wavelength of 0.1R is shown in the
upper panel, and is seen to propagate exactly at the speed predicted by equation (25) for that wavelength.
This was to be expected, as over the extent of the pulse no significant variations in the metric occur, until
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only very close to R = 1. The wavelength of the pulse changes, as seen in figure (1), but given the large
initial value of W = 100, and the rapid approach to the asymptote of equation (25) for large W , this
does not introduce significant variations.

The lower panel of figure (3) shows the propagation speed of a pulse starting with a wavelength 10R.
This time, the difference with the speed predicted by equation (25) is much more obvious, as significant
distortions in the metric, over the extent of the pulse, are apparent inwards of around 1 wavelength,
R = 10. In all cases, the actual propagation speed is seen to deviate upwards of the prediction of
equation (25), inwards of a certain critical radius. As in the previous case, the asymptote towards V = 1

is evident, both for the numerical wave and the solutions of equation (25). The function c = (R− 1)/R,
the propagation corresponding to the standard vanishing wavelength limit of ds = 0, is also shown, seen
completely superimposed onto the other two curves for the short pulse, and appearing just below the
numerical speed in the 10R case. This last merely a result of the pulse deformation, as the maximum
moves within the pulse towards the incoming edge of it, turning the numerical speed into a group velocity
of the problem. The above highlighting the dispersive nature of the problem and the intrinsic limitations
of fully analytic approaches. Results for the full electromagnetic vector field can be expected to be
qualitatively similar to the more limited scalar wave problem treated here, e.g. [10, 14].

To check the validity of the numerical scheme, we have performed two tests. The first one regarding
the sensibility of the problem to the complications that may arise at R = 1, we have repeated all simula-
tions after shifting the numerical grid by a fraction of the radial interval in such a way that the first grid
point to the right of R = 1 changes slightly. Results are completely insensitive to these shifts, showing
that the results are not sensitive to the coordinate singularity that appears at R = 1 in the Schwarzschild
space-time. The reflection we observe occurs very close to R = 1, still outside the event horizon. The
second test has been an explicit calculation of the total energy E of the scalar field, given by [8]

E = 4π

∫
T 00r2dr, (26)

where T 00 is the time-time component of the stress-energy tensor for a scalar field given by [27]

T 00 = g0αg0βΨ,α Ψ,β −gµνΨ,α Ψ,α /2 = (1/2)
[
(1− 1/r)−1 Ψ,2t +Ψ,2r

]
. (27)

The net result of this calculation is that the total energy is conserved in all simulations to better than
one percent accuracy, over 100 units of T, 105 simulation time steps. Thus, the total initial energy
in the large pulse simulations remains the same when compared with the energy after observing the
wave far away from R = 1 after it has “bounced” completely. We have found full reflection of pulses
larger than the critical wavelength, to our numerical accuracy of 99%. This however, does not constitute
a rigorous proof of full reflection for the problem being treated, indeed, going back to the heuristic
arguments of section 1 on the EM field, the apparent inconsistency vanishes not only in the case of full
reflection of large wavelengths, but also for any number of scenarios, provided large wavelengths are
very substantially reflected to possibly slightly varying degrees. Our numerical experiments allow us to
identify very substantial reflections of over 95% of the incoming energy in large pulses. This is not seen
to any degree in the case of small pulses.

These results suggest the possibility of direct detection of black holes through the study of radiation
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being reflected off them, as already mentioned by [4, 17], in connection with fractional backscattering in
general. For stellar black holes, the gravitational radii would be in the kilometre range, substantial EM
backscattering would hence be in this wavelength range, which is totally blocked by the atmosphere,
hence requiring presently non existent orbital or moon based observatories for their detection. The
possibility of much smaller black holes appearing in particle accelerators has been suggested, a case
where substantial backscattering, would be expected to occur in detectable ranges.

4. Conclusions

We have provided heuristic arguments suggesting that if a macroscopic black hole is allowed to swal-
low classical Plank radiation colder than itself, the Bekenstein interpretation of the horizon area of a
black hole as a measure of its entropy is not consistent with the second law of thermodynamics. In the
macroscopic regime, entropy considerations suggest a cut off limit for the light absorption spectrum of
black holes, or very substantial reflection of waves above a critical wavelength ∼ R. It is interesting
to note that this critical wavelength is consistent with previously identified critical wavelengths for the
interaction of waves and black holes, calculated in absence of any entropy considerations.

The standard ds = 0 treatment of an eikonal approximation necessarily fails when variations in
the metric appear over a scale comparable to the wavelengths present. In the particular case of scalar
waves, this variations imply a non-achromatic effect for their interaction with black holes, in particular,
propagation velocities which fall below c, even in the wave’s proper frame, as the frequency is decreased.

Scalar waves having wavelengths longer than the Schwarzschild radius of a black hole are very sub-
stantially reflected, or perhaps even fully bounce off. It is interesting that the critical values appear
precisely at the wavelength scale identified through entropy considerations on the interaction of Planck
radiation and black holes.
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