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Abstract: The algorithmic entropy of a system, the length of the shortest algorithm that spec-
ifies the system’s exact state adds some missing pieces to the entropy jigsaw. Because the
approach embodies the traditional entropies as a special case, problematic issues such as the
coarse graining framework of the Gibbs’ entropy manifest themselves in a different and more
manageable form, appearing as the description of the system and the choice of the univer-
sal computing machine. The provisional algorithmic entropy combines the best information
about the state of the system together with any underlying uncertainty; the latter represents
the Shannon entropy. The algorithmic approach also specifies structure that the traditional en-
tropies take as given. Furthermore, algorithmic entropy provides insights into how a system
can maintain itself off equilibrium, leading to Ashby’s law of requisite variety. This review
shows how the algorithmic approach can provide insights into real world systems, by outlin-
ing recent work on how replicating structures that generate order can evolve to maintain a
system far from equilibrium.
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1. Introduction

The traditional understandings of entropy include the thermodynamic approach of Clausius, the sta-
tistical mechanics approaches of Boltzmann and Gibbs and the information theory approach of Shannon.
As these different approaches refer to the same quantity, with some provisos (allowing for the units used
and recognising that the Boltzmann entropy is a special case of the Gibbs entropy), one might well ask
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what are the advantages in developing another entropy based on Algorithmic Information Theory. This
paper argues that algorithmic entropy, based on Algorithmic Information Theory (AIT) adds a piece to
the entropy jigsaw puzzle; providing insights into the issues surrounding the Gibbs’ entropy and the
second law of thermodynamics (section 2.6.); providing a measure for an individual configuration that is
consistent whether it is an equilibrium or non equilibrium state; and finally consistently tracking entropy
flows between a system and its environment in a way that clarifies the role of Maxwell’s demon (section
4. and references therein).

While the basic idea behind AIT was first articulated in embryonic form by Solomonoff [1], the
approach has been put on a robust footing by Kolmogorov [2] and independently by Chaitin [3]. The
extension to prefix coding by Levin [4], Gács [5], and later Chaitin [6], provided the tools to better align
the approach with Shannon’s information theory. The length in bits of the shortest computer programme
or algorithm that generates the string defining the particular configuration of a system represents the
system’s algorithmic entropy or its information content. This length is known as the “Kolmogorov
complexity”, the “algorithmic complexity” or the “program-size complexity”. In effect, those structures
or configurations that show order or pattern will be described by much shorter algorithms than those
that are random. For example, Ratsaby [7] argues that the algorithmic complexity (i.e. the algorithmic
entropy) of a static structure is a measure of its order. The description of the momentum and position
of the molecules in a container of water at instant of time are random, but the algorithm that specifies
the position and momentum of the particles of frozen water is much shorter, as ice shows an ordered
structure.

While the length of the description will depend on the computational method used to define the
structure, as is argued later in section 2.1., this entropy measure is not particularly dependent on the
choice of the reference abstract machine. Thus the algorithmic entropy provides a useful measure of
the entropy of a physical situation. However, in contrast to the traditional entropies, the algorithmic
entropy measure applies to a particular configuration of a system. Nevertheless, once allowance is made
for the units used, the expectation value of the algorithmic entropy for a set of strings belonging to an
ensemble is virtually the same as the Shannon entropy, or the Boltzmann or Gibbs entropies derived for
a set of states. Where the statistical physics entropies might use the phrase “equilibrium configuration”,
the algorithmic approach would use the phrase “typical string”. An atypical string would have a very
low probability of representing an actual state in an equilibrium configuration.

Two subsequent developments have helped to align the algorithmic approach with the traditional
approaches.

• As the algorithmic description is an exact description of a system, the underlying determinants of
the system must in principle be specified. In the traditional approaches to entropy these are taken
as given. Nevertheless, as entropy is a state function, any information common to the states of a
system does not affect the entropy differences between the states. For example, the algorithmic
description of the position and momentum coordinates of the planets in the solar system at an
instant of time can take the physical laws as given, as the algorithmic description of the physical
laws can be embodied in subroutines that are common to all configurations. From a physical point
of view, the useful algorithmic entropy measure can ignore these long and usually unspecifiable
strings that make no difference in comparing configurations.



Entropy 2009, 11 87

• Until recently the algorithmic entropy concept seemed limited to ideal situations as the algorithm
must provide an exact description of the string at an instant of time; the entropy would be meaning-
less where random variations dominated the pattern. This problem was resolved by recognising
(see section 2.4.) that the best algorithmic description of a patterned, but noisy, string involves
combining the algorithm that identifies the particular string in the set of patterned strings with the
algorithm that specifies the structure of the pattern or model that defines the set. Rather than being
a problem, this resolution reinforces the connection between algorithmic entropy and the tradi-
tional entropies in a way that allows one to slip from one approach to another. When no pattern
is recognised, the algorithmic entropy of a string is virtually the Shannon entropy, whereas with
further information, if a pattern is recognised, the description can be shortened as is outlined in
section 3..

As is discussed in more detail in section 2.6., the algorithmic approach provides a methodology to
deal with the issues such as phase space resolution and course graining that arise with the traditional
statistical thermodynamic approach to entropy. Also, for the interested reader Algorithmic Information
Theory is closely related to the Minimum Description Length in its ideal form [8] or its stochastic form
[9–11] and can be used to justify the maximum entropy approach of Jaynes [12, 13].

While Algorithmic Information Theory provides insights into the idea of entropy, the technique has
not been readily accessible to the scientific community as most of the development has taken place in
mathematics with a focus on randomness, Kolmogorov probability, inference and non computability.
The hope is that this article will allow interested researchers to get a sufficient understanding of the
issues underpinning the approach, that they can pursue the significant mathematical developments when
appropriate.

2. Algorithmic Information Theory

The idea behind Algorithmic Information Theory was first articulated by Solomonoff in embryonic
form [1]. Solomonoff recognised that it was much simpler to send a coded message of structured infor-
mation such as the first 100 digits of π by sending the algorithm that generates π, rather than sending the
actual string of digits. On the other hand, as a random string cannot be coded simply, the complete string
must be transmitted. Later Kolmogorov [2] with the insights of Levin [14] and independently of both,
Chaitin [3] developed Algorithmic Information Theory (AIT) to provide a measure of the complexity,
or the algorithmic entropy of a system. As a system can be represented by a string s, the complexity or
algorithmic entropy of the system is defined as the length of the shortest algorithm p∗ that is able to gen-
erate string s. The length of this algorithm, which is usually in binary form, is denoted by |p∗|, where the
vertical lines denote the number of characters in the enclosed algorithmic description. In mathematical
terms, systems and their string representations that show no pattern or order are the most complex - they
appear random and, because their description cannot be compressed, the algorithmic entropy is maxi-
mum. On the other hand ordered strings have low algorithmic entropy or, in mathematical terms, low
complexity and can be described by a shorter algorithm. As scientists use the word “complex system” in
a different sense to mean a system that is not random, but is highly complicated, the phrase “algorithmic
entropy” rather than “algorithmic complexity” is the preferred term in this paper (see section 2.5.).
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While in principle, any structure can be described by a string and its entropy measured by |p∗|, p∗

is non computable. As a consequence of Turing’s halting theorem there is no certainty that a particular
description is the shortest possible as the shortest description cannot be effectively computed. Neverthe-
less, where symmetry is observed, or models have been discovered that explain much of the data, some
order clearly exists and the data can be compressed into a shorter algorithm. Once pattern or structure
is identified, by whatever means, compression is possible. The obviously patterned string s = 111 . . . 1

with N repeated 1’s illustrates this. It can be represented by the following algorithm or programme, p′.

p′ = PRINT “1” N times. (1)

In general, if a binary algorithm for p′ generates s on a computer C, the length of the shortest possible
algorithm |p∗| must be ≤ |p′|; i.e.

|p∗| ≤ |p′| = |N |+ the size of the code for the PRINT (2)

instruction

+ the number of bits to specify the object,

where |N | represents the length of the description of N . The length of the above algorithm in binary
notation is much shorter than the original string and is therefore a compressed or coded form of the
string. Even though the above programme may not be the shortest possible, for large N the length of
the shortest description will be dominated by the |N | which is log2N rounded up, usually denoted by
dlog2Ne. In this case,

|p∗| ≈ |p′| = dlog2Ne+ |1|+ O(1), (3)

In the literature, dlog2Ne is often represented by log2N for large N . The O(1), or order 1 term, is
independent of N and represents the string defining the “PRINT” instruction.

On the other hand a random string of the same length will show no pattern. A representative random
string might be something like 10111 . . . 01011 . . . 101. Such a string, if random, cannot be represented
by a simple algorithm. In which case the algorithm that generates the string must itself specify the string
exactly and the shortest description |p∗| is given by

|p ∗ | = |10111 . . . 01011 . . . 101|
+size of print instructions etc. (4)

I.e. as strings with no pattern cannot be compressed, their information content, or algorithmic entropy
must be slightly greater than the length of the string itself.

In AIT, the word “code” can refer to each binary instruction that makes up the algorithm. It also can
refer to a compressed version of a complete string. For example the string si = 1y1y1y1y1y, where y

is a 0 or a 1, can be coded by replacing each 10 by a 0 and each 11 by a 1. If the original string has
length N , the compressed string has length N/2. However, the coded string itself is not an algorithmic
measure. In order to be an actual algorithm, the code must be given together with the decoding process
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that replaces each ‘1’ by a ‘11’ and each ‘0’ by a ‘10’. The algorithmic entropy of the string is then made
up of

|p ∗ | ≤ |algorithmic code for si|
+|decoding routine| (5)

Here again, the vertical lines denote the length of the instruction string enclosed by the lines.

2.1. Self-delimiting coding and the Invariance Theorem

If the algorithmic entropy of a string is to be defined in terms of the size |p ∗ | of the minimal pro-
gramme that generates the string, and if the definition is to be aligned with the definition of Shannon
entropy, it is necessary to ensure that the instructions and numbers in binary form, are encoded in a way
that it is clear where one instruction finishes and the other starts. In such a formalism, no codeword
is a prefix of any other. This can be achieved by using self-delimiting coding, codes that can be read
instantaneously [5, 6, 14] (see also [15]). (Note, as all such codewords must come from a prefix-free set,
these codes are sometimes called prefix codes which is somewhat confusing.)

The self-delimiting requirement adds about log2N to the specification of a string of length N . If there
are n words to be coded, and if |xi| is the length of the code of the ith word xi, then the code lengths
satisfy the Kraft inequality; i.e.

n∑

i

2−|xi| ≤ 1. (6)

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a self-delimiting
code with these word lengths. This inequality can be seen if one generates the tree of all possible binary
codewords. Whenever a codeword such as 1011 is assigned to a word, no code starting with 1011 is
legitimate so that the code tree terminates at that point. Similarly 101 cannot be a code as any branch of
the coding tree starting with 101 would already have terminated. A simple proof is to be found in Calude
[16]. Chaitin extended the Kraft inequality [6] to infinite, recursively enumerable sets of source words,
not just finite codes.

Where the computation only accepts self-delimiting instructions, the program-size complexity of
string s is often denoted by K(s) or, where the input string i is given, K(s|i). However, in this pa-
per, the algorithmic entropy, which denotes the information content of the string, denoted by Halgo(s)

is the preferred term. i.e. Halgo(s) = K(s). The conditional algorithmic entropy, given input string i,
is the extra information required for the shortest algorithm on the reference UTM able to produce the
output string s; i.e. the length of the shortest programme p∗ such that U(p∗, i) = s. The conditional
algorithmic entropy is denoted by Halgo(s|i). Here, the subscript “algo” distinguishes the algorithmic
entropy measure from the Shannon entropy Hs.

Chaitin [6] has shown that the Kraft inequality holds if the algorithmic entropy or information content
of the string si is defined as the length of the algorithm that generates si on a reference Universal Turing
Machine (UTM) that only accepts inputs from a prefix-free, or self-delimiting, set of codes [16]. As such
a reference UTM machine can simulate any other Turing machine [6, 15, 16] the computer dependence of
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the algorithmic entropy can be mostly eliminated. Denoting U(p) as the computation using programme
p on UTM U ;

HU(si) = minimum |p| such that U(p) = si

While the definition is somewhat dependent on the UTM used, the use of an alternative UTM will add an
O(1) constant, corresponding to the size of the algorithm that will simulate one UTM on another. This
leads to the following relationship known as the Invariance Theorem;

Halgo(s) ≤ HU(s) + O(1). (7)

While there are an infinite number of possible UTMs, by choosing the reference UTM to be one with an
appropriately chosen instruction set, the O(1) term can be made small relative to the algorithmic entropy
of a string that, for example, describes the microstate of a thermodynamic system. Marvin Minzky has
described a 7-state, 4-symbol UTM [17] and the 2-state 3 colour Turing Machine of Stephen Wolfram
has recently been shown to be universal by Alex Smith [18]. In practice, as Li and Vitányi (page 199)
[15] using combinatory logic and Chaitin [19] using LISP have shown the O(1) term need only be a
few hundred bits. Recently Tromp [20] has outlined two simple computational devices; one based on a
210 bit lambda calculus self-interpreter, and the other a 272 bit binary combinatory logic self-interpreter.
Tromp has given an example where the O(1) term is 130 bits. Nevertheless, as entropy difference is
usually the critical measure, machine dependence becomes irrelevant.

2.2. Efficient coding

If one wishes to code a message efficiently, it makes sense to use the shortest codes for the message
symbols that occur most frequently. Shannon’s noiseless coding theorem shows how this can be done.
Consider a finite set of message symbols s1, s2, s3, s4, s5,. . sk that occur in the expected message with
probabilities p1, p2, p3, p4, p5, ... pk. Let the self-delimiting binary code words for these be ŝ1, ŝ2, ŝ3 ,ŝ4,
ŝ5, ...ŝk. Shannon - Fano coding is an efficient coding methodology that satisfies the Kraft inequality
with the length of the code words constrained by:

− log2pk ≤ |ŝk| ≤ 1− log2pk. (8)

This implies that 2−|ŝk| ≤ pk ≤ 21−|ŝk|. The Shannon Fano coding can be implemented by ordering the
message symbols from the most probable to the least probable using the binary tree expansion to assign
the most probable symbols to the shortest code lengths in the tree. As the codes are to be prefix-free,
once a code has been assigned, codes belonging to that particular branch are no longer available.

An alternative, Huffman coding, combines probabilities to form even more efficient coding, while
an arithmetic code [21] is slightly better. Hence, given the probabilities of symbols in the message, the
average length of coding can be made very close to the Shannon entropy, Hs = −Σkpklog2pk, of the
source; i.e. the entropy based on the expected occurrence of symbols.

It follows from Equation 8 above that, the expected code length per symbol (i.e.
∑

pk|ŝk|,) in a
message is given by

Hs ≤
∑

pk|ŝk| ≤ Hs + 1 (9)
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As a consequence, the expected length of a message consisting of N symbols can be made close NHs.
This equation is known as Shannon’s noiseless coding theorem. A code where the expected code length
per symbol equals the Shannon entropy is optimal for the given probability distribution in that it cannot
be bettered.

However, there is an ambiguity in coding a natural number n in binary form as “01” is the same as
“1”. Lexicographic ordering (E.g. the integers from 0 to 6 etc are coded as ® , 0, 1, 00, 01, 10,11,
etc, where ® is the empty string.) can be used to avoid this ambiguity as the length of n’s description
becomes blog2(n+1)c. Here the floor notation denotes the greatest integer ≤ to the enclosed term. This
integer specifying the length of string n will be represented by l(n), which is no more than one bit less
than dlog2ne, where the ceiling notation means rounding up.

However where n comes from an unknown probability distribution, and where a self-delimiting code
is needed for n, the length of the code must be explicitly included within the code [15]. One possibility is
to use code(n) = 1l(n)0n, which has an overall length of 2l(n)+1. While there is no simple expression for
the most compressed code, more sophisticated coding procedures can produce a shorter self-delimiting
description of n by including the length of the code for n or, better still, the length of the length of
the code for n in the description. In practice |code(n)| ≤ l(n) + 2l(l(n)) with two iterations and
|code(n)| ≤ l(n) + l(l(n)) + 2l(l(l(n))) with three iterations and so on. Tromp [20] has a different
process for generating a self delimiting code but with the same result.

A common application is where all members of a finite set of N strings occur with probability 1/N .
Shannon’s coding theorem shows that any string xi in the set can be represented by a code that is self-
delimiting having length dlog2Ne. In what follows, e.g. in the discussion on provisional entropy, as
is customary, log2N will be used to represent this integer. (One could choose a logarithmic base that
ensured logQN was an integer, and the result converted to base 2. In which case, log2N would be the
converted value.) In general, the decoding routine associated with the code word for a string xi must
contain information about the length of code(xi) to know when the code ends. I.e. the routine must read
each character in turn and decide whether it has read sufficient characters or not. As the overall routine
will include a term specifying the length of code(xi), the contribution to the entropy will include not just
|code(xi)| but also ||code(xi)||.

2.3. Entropy relative to the common framework

Where there are two strings x and y, and the information about one string can be used as an input to
calculate the other, there are three different situations.

• In general Halgo(x) ≤ Halgo(y) + Halgo(x|y) + O(1). If there is mutual information between the
strings, knowing y reduces Halgo(x|y) and if y actually contains x, the conditional terms is zero.

• The entropy measure based on the algorithm that computes both x and y is given by Halgo(x, y) =

Halgo(y) + Halgo(x|y, Halgo(y)) + O(1) = Halgo(y) + Halgo(x|y∗) + O(1). Gács [5] and later
Chaitin [6] have shown that either y∗ the compressed version of y, or both y and Halgo(y) are
needed, otherwise small logarithmic corrections are needed to make the equation consistent.

• In the particular case where y is the optimally compressed subroutine needed in the calculation of
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x, then y =y∗, and the two routines can be concatenated (joined) to generate x. The algorithmic
entropy defined by combining two compressed routines is Halgo(x) = Halgo(y) + Halgo(x|y) +

O(1). Here the O(1) refers to a simple instruction to link the subroutine to the main programme
[22, 23]. This allows one to consistently nest subroutines within subroutines in a way that allows
models or physical laws to be nested within higher level models or laws.

As entropy is a state function only differences in entropy are important. Subroutine strings such as
“PRINT ” and “FOR/NEXT ” etc., and the O(1) uncertainty related to the reference UTM that are
common to different states can be taken as given. Similarly, the complete description of a physical
system may require the physical laws that determine the particular state of the system to be specified,
together with the description of the system such as the specification of the coarse graining regime [24–
26]. Common subroutines that specify the relevant physical laws or describe the physical system, can be
taken as given. This makes the algorithmic approach tractable for many actual situations.

Let the common instruction string be represented by ‘CI’ [27] and, given the common instructions or
common subroutines, the physically significant entropy will be denoted by the conditional algorithmic
entropy Halgo(x|CI). In what follows unless specifically stated otherwise, Halgo(x) can be used to
represent Halgo(x|CI). I.e. the zero of entropy is chosen by subtracting Halgo(CI), from the full entropy.

2.4. Provisional entropy

Until recently AIT seemed restricted, as the algorithm must describe the string exactly; including
both the structure and any noise or randomness. As most real world configurations, even if ordered,
show noise and variation, it was thought that the random components would dominate the length of the
generating algorithm obscuring any pattern [28].

Devine [27] has shown that where pattern in a noisy sequence is recognized there is an implicit
reference to a set containing all similar strings exhibiting the pattern. As this set will be recursively
enumerable (i.e. a procedure exists to generate the set), a noisy string that exhibits this pattern can be
generated by an algorithm that consists of two routines; one that enumerates the patterned set of strings
S containing the string of interest, and one that specifies which particular string in the set is the string
of interest. The algorithmic entropy of the string xi in the set is Halgo(S) + Halgo(xi|S); the first term
is the length of the routine that defines the set consistent with the pattern or model and the second is the
length of the routine that identifies the particular string within the set. Let there be NS equally probable
members of the set S. As was shown in the previous section, a particular member can be identified by an
algorithmic code of length Halgo(xi|S) = log2NS . However as there is always the possibility that more
structure can be recognised the algorithmic description above is only a provisional entropy measure and
will be denoted by Hprov(xi). It is the best estimate of the entropy of a particular noisy patterned string
representing the state of a physical system. Devine [27] used the phrase “revealed entropy” instead of
“provisional entropy” to indicate the value depended on the observed or revealed pattern.

The provisional entropy is derived by combining the length of these two routines [27]. Hence

Hprov(xi) = Halgo(S) + log2NS + O(1).

Or, in effect;

Hprov(xi) = Halgo(description of the set′s structure)
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+Halgo(identifying the string in the set). (10)

The second contribution is equivalent to the Shannon entropy of the set. In other words the provisional
algorithmic entropy depends on the uncertainty in defining the member of the set together with the
algorithmic description of the set’s pattern. The provisional entropy is the entropy of a typical member
of the patterned set. It is the upper measure of the algorithmic entropy for that member and is the best
estimate of the length of the minimum description of the physical system given the available information.
However a very few atypical members of the set may be further compressed, or some unidentified pattern
may exist. For example if y is taken to represent 0 or 1 selected on a random basis, the provisional
algorithmic entropy of the noisy period two string s = 1y1y1y1 . . . 1y1y is (see Devine [27])

Hprov(s) ∼= N/2 + log2(N/2) + |1|+ |0|.
Nevertheless the string s′ = 11111 . . . 11 from the same set has the much lower entropy; Halgo(s

′) ∼=
log2N+|1|. I.e. Halgo(s

′) ≤ Hprov(s). Whenever the description of a member of a set can be compressed
further, a more refined model is needed to capture the pattern in those particular strings.

Kolmogorov introduced the algorithmic equivalent of the minimum sufficient statistic concept known
as the Kolmogorov Minimum Sufficient Statistic, or the Algorithmic Minimum Sufficient Statistic (AMSS).
This provides the basis of a methodology that, when applied to strings with a recognised pattern, gives an
identical result to that above. The approach is outlined in the earlier work of Gács et al., and Vereshcha-
gin and Vitányi [29]. A string showing pattern or structure is a member of a finite set of similar strings
and can be specified by the algorithm that generates the set of strings, coupled with an algorithm that
specifies the particular string in the set. However this description may not be the shortest. The shortest
description involves finding the optimum set where the string is a typical member; i.e. relative to other
members in the set it is random. In which case all the structure embodied in the string is captured by
the algorithm that specifies the set. The result is the same as Equation 10 as the two part algorithm first
specifies the set, and then the string within the set by log2NS . It is worth noting that the ideal version of
the Minimum Description Length [8] gives a similar result provided a short decoding routine is appended
to the minimum description.

2.5. Relationship with logical depth

As has been mentioned scientists, in contrast to mathematicians, use the word “complexity” to char-
acterise a sophisticated structure. Bennett [23, 30] developed the concept of ”logical depth” to provide
a basis for this intuitive idea. Logical depth is a measure of how difficult it is, in terms of time, for
a universal computer to generate a particular outcome; in effect it is a measure of the effort to derive
the outcome from a hypothetical cause. However such a measure cannot just be the time (as measured
by the number of cycles) taken for the shortest programme to generate the output, as a slightly longer
programme might be significantly more efficient than the shortest one. Bennett [23, 30] (see also refer-
ence [15] page 510) allows for these more efficient programmes in terms of a significance level s. The
depth of a string representing an object at significance level s is the least time to compute the string by a
programme that is compressible by no more than s bits. Particularly useful is the logical depth relative
to the length of the string itself as the input to the computation. A random string has minimal logical
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depth as the computation must specify each character. On the other hand a string of repeated ones has
a short computation time and therefore shows little depth. Readers should not that logical depth does
not compete with algorithmic entropy as a measure of order as it is a measure of the process, not the
outcome. It addresses a different issue, as the most interesting biological and physical structures appear
to be characterised by programmes that are logically deep; i.e. the algorithmic description of the struc-
tures require significant computational processing time. Like program-size complexity the result is not
particularly machine dependent.

2.6. Relationship with other entropies

The equilibrium approach of statistical thermodynamics relates the entropy to the logarithm of the
number of states in the system. In practice, this is taken to be the logarithm of the number of equilibrium
states as these overwhelm the statistical entropy measure. When no pattern is recognised, the algorithmic
entropy of a string is virtually log2NS , i.e. the Shannon entropy, rounded up to the nearest integer.
Whereas if a pattern is recognised or discovered as information is gathered, the description may be
shortened as is outlined in section 2.4.. The approach is effective for any string that exhibits a noisy
pattern reflecting data derived from a model. While the algorithmic approach requires the underlying
structure and physical situation to be defined, including the physical laws, the graining structure, and the
computational system, the Shannon entropy only defines the remaining uncertainty. In the algorithmic
case this remaining uncertainty measure is captured by a term that corresponds to the length of the
algorithm required to identify a particular string in the set of all strings. The resolution of the problem
of noisy strings reinforces the connection between the algorithmic entropy and the traditional entropies
in a way that allows one to slip from one approach to another.

However the algorithmic measure of entropy, is conceptually different from the Shannon entropy
as it returns a value for the entropy of the actual state of a physical system at an instant of time, and
has meaning for a non equilibrium configuration. On the other hand, the traditional entropies return
a value for a set of states which, in the thermodynamic case, is the set dominated by the equilibrium
states. Nevertheless, allowing for the differences in the units (bits or kBln2 where kB is Boltzmann’s
constant), the expectation value of the algorithmic entropy, 〈Halgo〉, for a typical or equilibrium state
is asymptotically identical to the traditional entropies, once allowance is made for differences of O(1)

[24, 31] due to the computational overheads. This is because an equilibrium state is a typical state and
cannot be compressed to less than the log2W where W is the number of possible equilibrium states. One
can say that the Shannon, or (allowing for units) the thermodynamic entropy, provide the most likely
value of the algorithmic entropy of an individual state in the set of states.

Consider a classical physical system, initially isolated from the rest of the universe where the instan-
taneous microstate of the system is represented by a point in the multidimensional state space. Over time
the state point of the system will move through state space under the operation of classical physical laws.
As is discussed in section 3., the instantaneous microstate of the system can be represented by a binary
string (e.g. Zurek [24] and Li and Vitányi [15]). The size of the most concise algorithmic description of
the configuration’s microstate gives the algorithmic entropy.

Just as in the statistical mechanics description of a thermodynamic system such as a gas, the algo-
rithmic entropy measure depends on the resolution chosen to specify a microstate of the system. In both
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cases, the quantum limit provides the ultimate possible resolution. However as was outlined in section
2.3., the algorithmic approach can take the physical situation, such as the resolution of the phase space,
as given when comparing the entropy of different states. Furthermore, Zurek has shown how the algo-
rithmic approach can resolve the difficulties with the coarse graining issue that arises from the Gibbs
approach. In the algorithmic version, the coarse graining must be specified in principle as part of the
description of the system. The requirement that the description must be minimal constrains the allowable
coarse grain shape for a given Universal Turing computer that implements the algorithm. Zurek points
out, the subjectivity associated with coarse graining emerges in a different form; namely the definition
of the given universal computer. In this case the problem is easier to deal with conceptually as simple
UTMs provide similar algorithmic descriptions of the physical situation and any measure on a more
sophisticated Universal Machine can always be translated into a measure on a simple one.

Again, Gács [26] (see Li and Vitányi [15]), by using a different approach, shows that an algorithmic
entropy can be defined that converges to a specific value as the resolution of the system implied by the
grain size increases.

2.7. The algorithmic equivalent of the noiseless coding theorem

Let the algorithmic halting probability QU(x) be the probability that a randomly generated pro-
gramme p will halt on the reference UTM with x as its output. I.e. all programmes generated by the toss
of a coin that halt giving x as an output are included in QU(x). Thus QU(x) is defined by

QU(x) =
∑

U(p)=x

2−|p|. (11)

From the Kraft inequality, the sum of all such probabilities cannot be greater than one. Chaitin [6] defines
this sum as Ω =

∑
x QU(x) ≤ 1. As the sum Ω may not reach 1, QU(x) is not a true probability. In

measure theory the term used for a defective probability of this nature is semi measure. Because it is not
a true probability Q rather than P is used here to denote this measure. Furthermore, there is no gain in
normalising QU(x) by dividing by Ω as there is no halting computational procedure to evaluate Ω. The
value of Ω is highly machine dependent and it can be proven in some cases that not even 1 bit of Ω can
be computed [32]. Calude and Dineen [33] outline the issues and, using a specific UTM, calculate the
first 43 bits of Ω in base 16 and the first 40 bits in base 2. Despite not being a true probability, the halting
probability measures relative probabilities and furthermore there is a very important connection with the
algorithmic entropy of a string. The argument is as follows.

• As QU(x) must contain the programme that specifies HU(x) on the reference UTM as outlined in
section 2.1., QU(x) ≥ 2−HU (x) or,

HU(x) ≥ −log2QU(x) (12)

• But, HU(x) cannot be much greater than −log2QU(x) as there are few short programmes able to
generate x. It can he shown that all longer descriptions contribute little to the sum [6] so that

HU(x) ≤ d−log2QU(x)e+ c (13)
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leading to
HU(x) = −log2QU(x) + c′. (14)

The halting probability, and the algorithmic entropy of string x can be related to a semi measure m(x)

whose negative logarithm is defined to be a universal code for x; one that is asymptotically optimal in
coding a message independently of the distribution of the source words. For a discrete sample space,
there exists such an optimal universal enumerable semi measure. It is one that multiplicatively dominates
all other constructive semi measures; i.e. all semi measures that can be computed from below [34]. This
leads to the algorithmic equivalent of the Shannon’s noiseless coding theorem outlined in section 2.2.,
but in this case the distribution is not the distribution of source words, but the halting probability of the
source word as the input to the UTM. In other words, if m(x) is taken to be the universal enumerable
semi measure then m(x) ≥ cµ(x) where µ(x) is any other semi measure. The significance of this will
become apparent, but firstly it should be noted that the universal property only holds for enumerable
semi measures (see Li and Vitányi page 246 [15]).

It can be shown the Q(x) is a universal semi measure as the set of all random inputs giving rise to
Q(x) will include the simulation of every Turing Machine and every programme p that runs on each
Turing machine Ti. Because Q(x) includes every semi measure, it multiplicatively dominates them all.
However, 2−H(x) is also a constructive semi measure, and because H(x) is equal to−log2Q(x) to within
a multiplicative constant, 2−H(x) can also be taken to be a universal semi measure. In other words, as
universal semi measures, m(x), Q(x) and 2−H(x) are all equal to within a multiplicative constant.

This gives rise to the algorithmic equivalent of the coding theorem [4]. The following equality holds
to within an additive constant or an O(1) term.

H(x) = −log2m(x) = −log2Q(x)

This allows 2−H(x) to be taken to be the universal semi measure m(x). This semi measure is a measure
of maximum ignorance about a situation as it assigns maximal probability to all objects (as it dominates
other distributions up to a multiplicative constant) and is in effect a universal distribution. As a universal
distribution, the universal semi measure provides insights into defining a typical member of a set and
provides a basis for induction based on Bayesian principles.

3. Information uncertainty and the algorithmic description

The microstate of a Boltzmann gas of N particles in a container can be specified by a string rep-
resenting the exact configuration of the system in terms of the coordinates of each particle in the 6N
dimensional phase space known as Γ space. The 6 dimensional position and momentum coordinates of
each particle are specified in binary form to a required degree of precision. Generally a macrostate of
the system will embody many microstates. However in principle, with sufficient precision, this process
can impose a fine grained cellular structure in the phase space that can distinguish between the different
microstates of the system. As the string is binary, doubling the resolution of each axis of the Γ space
is equivalent to adding an extra significant figure to the representation of each position and momentum
value. An alternative description outlined by Zurek [24] defines the resolution and structure of the Γ

space first, and then specifies the configuration by a sequence of 0’s and 1’s, where a 0 represents a cell



Entropy 2009, 11 97

in Γ space that is empty and a 1 a cell that is occupied; the size of the cell depending on the required
resolution. These two specifications can be interchanged using a simple algorithm. However, the Zurek
approach has advantages that, where the phase space resolution or structure can be taken as given and
assumed to be an optimum description, the contribution can be ignored as part of the common infor-
mation. The algorithmic entropy of the configuration is then the shortest programme that generates the
sequence of 0’s and 1’s.

The algorithmic description of an equilibrium state will be no shorter than log2W where W is the
number of available states; i.e. the algorithmic entropy coincides with the Shannon entropy. However,
where a measurement shows that the microstate is partially ordered, the algorithmic entropy will be
lower than the Shannon entropy; as would be the case if all particles were moving in the same direction.
No amount of extra information can lower the algorithmic entropy of an equilibrium configuration, but
where measurements narrow the configuration of a microstate to an ordered subset, the algorithmic
description can be compressed.

This insight prompted Zurek [24] to define the ‘Physical Entropy’ Sd of a microstate. This is the sum
of (a) the most concise but partial algorithmic description based on the available information, and (b) a
Shannon entropy term to allow for the remaining uncertainty. Comparison with section 2.4. shows that
the physical entropy is virtually equivalent to the provisional algorithmic entropy. I.e.

Sd = Hprov = Halgo(specification of the set structure) + Halgo(identification of string in set).

This can be summarised as Hstructure + Huncertainty (see Figure 1). As the last term measures the un-
certainty, the provisional algorithmic entropy decreases when the uncertainty decreases with further
information; i.e. the provisional algorithmic entropy will drop for ordered states, but remain constant for
equilibrium states.

Zurek [24] originally articulated this argument in some detail in terms of physical entropy. Our Figure
1 illustrates the two cases using an identical argument based on the provisional entropy in (a) and (b).

1. When the microstate is an equilibrium or typical state (Figure 1a), additional information cannot
provide a lower value of the provisional entropy. The shortest description of the state returns the
same value as the Shannon entropy despite increasing the available information.

2. When the microstate is ordered as in Figure 1b, the extra information about the actual state leads
to a reduction in provisional entropy as the extent of the ordering is ascertained. This is equivalent
to refining a model when further information narrows down the uncertainty. Li and Vitányi [15]
describe the particular case of ascertaining the microstate of a gas. At low resolution there is only
sufficient information to identify the macrostate and the corresponding provisional entropy is high
because of the uncertainty. Increasing the measurement resolution of the system decreases the
algorithmic entropy as the uncertainty is less. The process of doubling the resolution for each of
the 6N axes corresponds to adding one more significant (binary) Figure to the specification of the
coordinate of that axis. This process will ultimately identify that the configuration is an ordered
one because the provisional algorithmic entropy will decrease with increasing resolution finally
approaching the true algorithmic entropy.
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Figure 1. Provisional entropy (a) Where the string is a typical member of the set (b) Where
the string comes from an ordered configuration.

4. Maxwell’s Demon, Irreversibility and Information processes

A historic difficulty with the statistical approach to thermodynamics is illustrated by the thought
experiment involving an informed agent, commonly known as Maxwell’s demon, who is able to extract
work at no cost by judiciously manipulating the particles of a gas in a container. One version of the
thought experiment makes the argument that a container of a gas can be divided into two halves both at
the same temperature. Maxwell’s demon opens a trap door in the dividing wall to allow faster moving
particles to collect on one side of the container and closes the door to stop the faster particles returning,
thus keeping the slower moving particles on the other side. Over time, the side with the faster moving
particles will be at a higher temperature than the side with the slower moving particles. Work can then
be extracted which violates the second law of thermodynamics.

Initially it was understood (see Szilard [35, 36] and Brillouin [37]) that, as the demon needed to
measure the position-momentum coordinate of a particle to know when to open the trap door, it was
necessary for the demon to interact with the system under study. It was argued that the measurement
process would require an entropy increase corresponding to kBln2 for each bit of information obtained.

Landauer [38] showed that this explanation was not completely satisfactory as a thermodynamically
reversible process cannot lead to an overall increase in entropy. The demon is a computational device.
Landauer [39] points out that any computing process is constrained by physical laws. A conventional
computation is a process which uses physical laws, under the control of a programmer, to map the input
to the output in the desired way. However, the input and the output from a computational point of view
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are not the digits written on an input/output device such as a tape, but the initial configuration and final
configuration of bits stored within the computer at the start and finish of the computation. It is these
input bits that are processed by the bits in the programme, and the programme itself defines a trajectory
through a state space represented by on or off bits in the computer.

While a computer can map the evolution of states in the natural world, the natural world itself can be
envisaged as a Turing computer. Similarly, the information processing of the real world computation is
encapsulated in what Landauer [39] and Bennett [40] call the Information bearing Degrees of Freedom
(IBDF). The input string to the computation is stored in the states of the atoms and molecules at the start
of the physical process.

The simple ballistic computer of Fredkin [41] illustrates how a physical process can act as a compu-
tation. However a more relevant example that illustrates the relationship between a physical or chemical
process and a computation is the Brownian computer of Bennett [31, 42]. This is the computation em-
bodied in the process by which RNA polymerase copies a complement of a DNA string. Reversibility is
only attained at zero speeds as the computation randomly walks through possible computational paths.
Indeed, because the process is driven forward by irreversible error correction routines that underpin
natural DNA copying, the process is no longer strictly reversible.

In practice, most real world systems are open systems and information and material may enter or
leave the system. As Landauer [38] and subsequently Bennett [23, 31, 42] and Zurek [24] discuss, when
energy is removed, either because an information state of the system is changed, or because molecules are
removed, the computational possibilities of the system are altered. Because the Hamiltonian dynamics
of the system conserves information, whenever a process becomes irreversible, information must be
lost. Landauer showed that the discarding 1 bit of information from the IBDF contributes about kBT ln2

joules to the environment. Both logical and thermodynamic irreversibility correspond to the situation
where information is removed from the computation. This removal leads to a reduction of entropy of the
system, matched by an increase of entropy to the universe.

Alternatively where information appears to be wiped (e.g. such as a chain of aligned spins ran-
domised) a full algorithmic description of the system and the environment would need to account for the
degrees of freedom in the environment acting on the system to wipe the information.

Bennett [23, 31, 40, 42], Zurek [43] show the demon cannot violate the second law of thermodynamics
as it is part of the total system. Bennett (see also [43]) illustrates the argument with a gas of one particle
showing how the demon traps the particle on one side of a partition in order to extract work. The entropy
loss occurs when the demon memory is reset to allow the process to cycle. However, there are subtleties
as Bennett [40] points out. Where information initially is random, the entropy of the system drops if
the random information is erased, but the entropy of the environment still increases. Setting a random
string of bits to zero is an ordering process. The key papers expressing the different interpretations of
the Maxwell demon problem, and a discussion on the “new resolution” involving erasure and logical
irreversibility, are to be found in Leff and Rex [44].

The Algorithmic Information Theory approach provides a framework to understand the thermody-
namic cost of a real world computation as is discussed in the next section. The erasure of kBln2 entropy
units per bit is the thermodynamic cost of the physical process. Similarly the algorithmic entropy in-
creases by kBln2 per bit when information enters the system.
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The consistency of the argument can be seen by considering the following examples.

• An adiabatic expansion of an ideal gas against a piston, increases the disorder. The movement of
the piston in effect is like a programme, changing the computational trajectory of the components
of the gas. The algorithmic entropy is derived from the shortest description of the instantaneous
configuration of the gas in terms of the position and momentum coordinates of each gas particle.
In algorithmic terms, while the contribution to the algorithmic entropy of the position coordinates
increases through disordering, the algorithmic entropy of the momentum coordinates decreases to
compensate. This decrease corresponds to a drop in the temperature. Adiabatic compression or
adiabatic demagnetisation are the converse effect. Adiabatic demagnetization randomises a set of
aligned spins by transferring entropy embodied in the thermal degrees of freedom to the ordered
magnetic degrees of freedom thereby lowering the temperature. While a system remains isolated
no erasure of information, or total change in entropy occurs.

• A closed system, such as a set of aligned spins, can be disordered or randomised by the equivalent
of the isothermal expansion of a gas against a piston. The algorithmic description of the system, in
contrast to the adiabatic case, increases as heat flows in; i.e. the thermodynamic entropy increases
by kBln2 per bit. In a sense, the order is the fuel that does work in the randomising process. The
converse ordering process is analogous to isothermal compression. E.g. the ordering process re-
quires each random spin, which was previously either 0 or a 1 (representing up or down), becoming
a 0 indicating that all spins are now aligned. As two states must map on to one, this process loses
kBT ln2 joules per spin to the environment.

• In an open, real world system, the computational processes that reset the states of the computa-
tional elements (i.e. the atoms, molecules, spins etc.) require energy to be expended or released.
This may occur through electrical energy where pulses reset bits, or where magnetic field gradients
align spins, or where material enters or leaves the system. Energy sources within the system can
also be redistributed to reset the computational states as, for example, when hydrogen and oxygen
are converted to water by these real world computational processes. In this case, the energy re-
leased is passed to the kinetic energy states of the system increasing the algorithmic description of
the momentum states while reducing the algorithmic specification of the position and composition
of the species involved. The physical (or computational) processes within the system provide an
entropy gradient. Higher entropy regions, such as those embodied in the kinetic energy degrees of
freedom can then pass excess entropy to the environment leaving the more ordered regions behind.
Ordering only occurs when entropy is ejected; for example when heat is passed to a low entropy
sink in the environment or high entropy molecular fragments escape the system.

4.1. Reversibility

Physical processes are in principle reversible and can map on to a logically reversible Turing machine
that operates on the input string (representing the initial state) to produce an output string (representing
the final state). The computation takes place through the operation of the physical laws determining the
trajectory of the system through its states. It is only when information is discarded that the process be-
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comes irreversible. However where this information is able to be stored in memory, reversibility can be
maintained by keeping the computational history. This allows information to be inserted at critical steps
when the computation is reversed. However, a Universal Turing Machine is not in general reversible, as
more than one prior state can lead to a given state [40]., unless the history of the computation is stored.
Nevertheless, a reversible process can be mapped on to a non reversible UTM by using a reversible algo-
rithm that works in both the forward and the reverse direction, inserting the information that otherwise
would be lost at the irreversible computational steps [13, 24, 42].

In general, the shortest algorithm able to describe the system will be less than the length of a reversible
algorithm or an algorithm embodied in a real world computation. For example, the programme implicit
in the Brownian computer described by Bennett [31, 42] may be able to be shortened if a path involving,
say, a catalyst could be replaced by a more direct computing path. The speed of such a process might
be less, but the outcome would be the same. Several authors [13, 45, 46] have considered the trade
off between computer storage and number of computing steps to reproduce a given output. The shorter
the computation the more information storage is required to achieve the reversible computation. For
on going computations, the stored information must be erased and entropy is lost to the environment,
making the process more difficult to reverse.

5. The cost of cycling an irreversible computation

These understandings allow Algorithmic Information Theory to describe the behaviour of real world
systems and the maintenance of order. Maintaining order is a recycling process with a thermodynamic
cost. Zurek [24] and Bennett et al. [47] have shown that the minimum entropy passed from the physical
system to the universe in an irreversible process is Halgo(i)−Halgo(o), noting that Halgo(i) represents the
entropy or information content of the initial state and Halgo(o) that of the final state. However, a process
in which a complex string is ordered is not in itself an erasure, if the history of the process is stored
elsewhere in the system. It is only when the informational bits capturing the history of the process, are
discarded that erasure occurs. The change in entropy represents the difference between the minimal bits
added to specify the original input string, and the minimal bits discarded in the final description of the
output. Reversibility requires that this lost information must be restored. Zurek [24] argues that if one
knew the exact description of these states, a cyclic process based on this knowledge would be maximally
efficient for extracting work. In practice the exact state is seldom known. However the provisional
entropies Hprov(i) and Hprov(o) provide the best information available about the states i and o. If the
system is to return to an equivalent state i′ which has the same provisional algorithmic entropy as i, the
entropy change from i to o must be compensated for.

This approach has led to an algorithmic equivalent of Ashby’s law of “requisite variety” [48] which
is the governing principle behind the maintenance of homeostasis by an open autonomous system. If
variety denotes the total number of available states, Ashby’s law of requisite variety states that to achieve
control, the variety in the regulatory or control system must equal, or be larger than, the variety of the
perturbations. In effect the regulatory part of the system must generate sufficient internal variety to
match the variety disturbances from the external environment (See Casti [49] for a review). The law is
sufficiently general that it can be applied to any complex system whether such a system is a firm, an
economy or a living system.
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While the law can be derived from a game theory approach, Ashby developed a more general ap-
proach using the logarithm of the number of available states to measure variety [48]. In this case variety
becomes the Shannon entropy Hs. If regulation is to be effective, there must be an appropriate state in
the regulating set of states R that can react to every disturbance in in the set D. This implies, given the
set of disturbances D, that Hs(R|D) is zero - there is no uncertainty about the state of the regulation
component. Ashby showed that Hs(D) = Hs(R); i.e. the logarithmic measure of variety given by
the number of states in the regulatory system must match the logarithmic measure of the variety of the
disturbances.

From an algorithmic point of view, any disturbance has the capacity to shift the state εi in the set E ,
the current state in the viable region, to a state ηj outside the viable region. The disturbance resets the
system trajectory to give the output ηj and the algorithmic change will be Hprov(εi) − Hprov(ηj). The
regulatory system must compensate for this effectively providing a computational path that redirects the
trajectory to another viable state εf having the same provisional entropy. If εi and εf are typical states in
the viable region, they will both have the same provisional algorithmic entropy and belong to the same
macroscopic state of the system, analogous to the traditional entropy for an equilibrium state. This leads
to the algorithmic equivalent of Ashby’s law. For a system to maintain itself off equilibrium, Ashby’s
law becomes the requirement that the provisional algorithmic entropy of the regulating system match
that of any disturbance. This is a necessary, but not a sufficient condition for regulation, as the regulator
must have an appropriate, or in Ashby’s terms, a requisite response. Ashby’s law can then be rewritten
as :

If a regulatory process of a system is to have an effective response to any external disturbance, the
provisional algorithmic entropy of an appropriate regulatory process must match the provisional algo-
rithmic entropy of any disturbance.

As the algorithmic approach focuses on individual disturbances and individual responses, whenever
the description of the disturbance can be compressed because of pattern or structure, the provisional
algorithmic entropy of the regulating programme will be less than where no order is recognised. If
the regulatory system can model the disturbance, greater regulation capability exists than where the
disturbances appear to be random. While the approach is appropriate for individual disturbances and
responses, it also applies to sets of disturbances. However, as the concept of variety only has meaning
for sets of states, it is not an appropriate term to describe the entropy of an individual state used in the
algorithmic formulation of the law.

6. Replication and Algorithmic Information Theory

If the universe started in a highly ordered state, how did the far from equilibrium local order emerge
as the universe trended towards equilibrium? Algorithmic Information Theory suggests that the physical
process of replication accesses existing order, usually in the form of high grade energy, and ejects dis-
order to create new ordered structures. Replication, to some extent offsets the disorder arising from the
free expansion of the universe.

A replicating system can be an autocatalytic set, bacteria growing in an environment of nutrients, a
crystal that forms from a melt, a set of spins that align in a magnetic material, or coherent photons that
emerge through stimulated emission. These are physical or biological structures that can reproduce by
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utilizing energy and resources from an external environment. In a resource rich environment, where
the probability that a structure will replicate increases with the number of existing structures, replicated
structures are more likely to be observed than alternative structures. For example, molecules are more
likely to solidify on a seed crystal in a melt and, given one strand of DNA in the right environment, the
probability of a second strand of DNA appearing is comparatively high. Where resources are limited,
the number of replicates grows over time until a state of homeostasis is reached; a state where the set of
replicates and the environment reach a long-term stable relationship. Here the noun ‘replicate’ is used
to distinguish the copied structure, such as the DNA information string, from the full replicating system
which, in the DNA case, is the whole cell.

Structures consisting of replicates have low entropy as they can be simply described by an algorithmic
”Repeat replicate N times”. The algorithmic entropy of such a system.

Halgo(system) = |N |+ |replicate description|+ |CI|,
where CI refers to the common information.

Algorithmic Information Theory makes the following points [50, 51]

• Structures generated by replication processes are highly ordered, having low algorithmic entropy,
and are more likely to emerge than similar structures produced by non replicating or random
physical processes.

• Replication processes can maintain an ordered system away from equilibrium in an attractor-like
region of the system’s dynamical state space, where all the states have the same provisional algo-
rithmic entropy.

• Variation in replicated structures leads to an increase in the algorithmic entropy. Nevertheless,
variation allows the dynamical system to maintain homeostasis in a changing environment by
providing a mechanism for the system to evolve to a more restricted region of its state space -
i.e. diversity in the replication process can maintain the system in a stable configuration through
adaptive evolutionary-like processes.

• Coupled replicator systems create greater stability against change by co evolving.

6.1. Replication

Consider a physical system, initially isolated from the rest of the universe where the instantaneous
microstate of the system is represented by a point in the multidimensional state space. Over time the
state point of the system will move through state space under the operation of classical physical laws.
As the probability of replicates appearing increases with their occurrence, replication will drive the state
point to a region of state space dominated by a large number of repeated replicated structures. Other
physical processes, such as collisions or chemical reactions, will destroy replicates and the system will
eventually settle in a region of long term stability.
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6.2. Examples of replication

A fixed structure of identical replicates is simple to describe algorithmically. Consider a simple
replicating system of coherent photons produced by a set of atoms with an excited state and a ground
state [50, 51]. Assuming that initially all the atoms are in the excited state, once a photon is emitted,
that photon can stimulate others to generate a coherent photon system. If the system is isolated the
algorithmic description of an instantaneous configuration of the total system after a period of time will
consist of the description of the atomic states in terms of whether they are excited or in the ground
state; a description of the state of each incoherent photons and finally the description of the coherent
photon states which are replicates of the original stimulating photon. Because the process is like a free
expansion, without replication of coherent photons, the entropy of the total system would increase until
equilibrium is reached. While the replication of coherent photons creates local order, disorder must be
passed to the momentum states of the atoms. In general a replication process creates order by passing the
disorder elsewhere; effectively partially randomizing other degrees of freedom. If the system is isolated
for long periods, the system will settle in a region of state space where replicates die and are born
as the total system moves through possible configurations. Nevertheless, the system is still in principle
reversible. It is only when entropy embodied in the thermal degrees of freedom is passed to other degrees
of freedom in an external sink, that the system will settle in an attractor region of the state space. The
length of the algorithmic description is reduced and the entropy cost of this is kBln2 per bit.

However if photons can escape, the system will need to access a low entropy source to re-create some
excited state to allow the photon loss to be replenished. In other words to maintain such a system off
equilibrium the order needs to be replaced, as for example would happen if external photons can excite
the atomic states. The cost of maintaining the system in such a configuration was discussed in section 5.

6.3. The entropy cost of replication with variations

Many real world systems are made of non-identical replicates. For example the expression of a cell
in the eye is not identical to one in the liver. In this case the provisional algorithmic entropy provides
a measure of the entropy increase due to the uncertainty of the variations; the algorithmic description
is longer because of the uncertainty. The provisional entropy approach provides a tool to measure the
increase in entropy due to variation. As Equation 10 implies, if there are V members in the set of strings
where variations in the replicate are possible, the provisional entropy is:

Hprov(o) ∼= log2V + |description of pattern of replicates|. (15)

For example, if there areM different variations of the replicate and these form a sequence of L replicates,
there will be ML members in the set of possible strings.

The algorithm that produces the replicate string must include the specification of the number of dif-
ferent variations ML, the number of replicates in the sequence (L), while P , the size of the replicate
description usually needs to be specified to define the set of replicates. In which case the provisional
entropy for a string o of variable replicates is:
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Hprov(o) ∼= L(log2M) + log2L + log2P + |description

of pattern of subset given P |+ O(1). (16)

Where the replicates die and are born, non replicate structures will need to be specified [50, 51]. If
information or entropy is being lost, the attractor region needs to be maintained off equilibrium by
accessing order from a higher energy source.

6.4. Adaptation of replicates in an open system

The new resources flowing into an open system are seen as additions to the input string expanding its
state space. Similarly, resources flowing out of the system lead to a loss of information and a contraction
of the state space. Where a changing input mix creates new computational paths some variations of the
replicate may become less likely, while others may become more likely. As the replicates that dominate
will represent only a subset of possible replicates. The attractor region of the state space will contract.

7. The second law of thermodynamics

Devine [50, 51] has discussed how the replicating system follows a trajectory towards an attractor
region of its state space. An account of all the entropy or information flowing in and out of a system
implies that information is neither created nor destroyed, but is conserved. The question is whether this
is consistent with the second law of thermodynamics. That the approach is consistent can be seen by
considering a simple model of a classical universe which assumes the universe evolves through a series
of discrete computational steps from an initial state s0, (which for convenience is taken to be one shortly
following the Big Bang) through an incomprehensibly large, but finite, set of discrete states W .

Zurek Appendix C [24] has argued that a closed dynamical system evolves from a low entropy initial
state s0 where Halgo(s0) << log2W , and where log2W corresponds to the Boltzmann entropy of a
system with W states. Such a system will eventually return to the initial state in the Poincaré repeat
number of steps which, for an ergodic system will be W . While from an observers point of view such a
system is chaotic, from the computational point of view the universe itself is the computer and, ignoring
quantum effects, can be considered deterministic. In this process, the traditional entropy increases as
the universe initially undergoes a free expansion into a discrete set of states that were previously not
accessible and ultimately for most of the existence, the universe will be in an equilibrium configuration.

Following this approach, the algorithm describing the present state of the universe after t steps from
the beginning is of the form:

STATE = s0

FOR STEP = 0 to t

Compute next STATE.

NEXT STEP . (17)
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Figure 2. Nested structures at scales d0, d1, d2 and d3.

The length of the reversible algorithm is≈ |initial state|+|t∗|+|physical laws|where t∗ is the shortest
representation of the number of computational steps t undertaken. At the early stages of the evolution of
the universe, the algorithmic entropy will be dominated by |t∗|. While this fluctuates, as Li and Vitányi
[15] point out, |t∗| mostly hugs log2t. However, if the universe is assumed closed, after a time t′ where,
log2t

′ À log2t the most likely configurations are the typical equilibrium states. In which case as log2t

approaches log2W , the typical sized algorithm will be dominated by log2W . As some highly ordered
states exist in the set of equilibrium states, spontaneous fluctuations from equilibrium can occur.

8. Coupling of replicator systems

When entropy or information flows out of a system that is not at equilibrium, this must be replenished
if the system is to maintain itself. However, where a system, such as a replicating system, accesses
resources from another replicating system (for example where the input string of one replicating system
accesses the output of another) the systems are coupled. As entropy flows between the systems the
overall less entropy is lost and there is a lower throughput of energy. In which case the replicating
systems become interdependent and tend to stabilize each other.

A simple example, is where photons from one laser system create a population inversion in another
laser system, there is less information lost to the environment. Where sufficient variety in the systems’
states occur, each system may adapt by settling in more restricted areas of its state space; the coupled
systems co evolve by using resources more efficiently. In a resource constrained environment, depen-
dence will emerge in preference to alternatives, as the coupled systems are more stable against input
perturbations. Their mutual attractor region will not drift through state space at the same rate as similar,
but uncoupled, systems.

8.1. Nested systems

As nested structures, such as cells nested within higher structures, can be described by nested algo-
rithms they are more ordered. Chaitin’s [52] concept of ‘d-diameter complexity’, which quantifies order
at different levels of scale, applies to nested systems.

Figure 2 illustrates a nested system of replicates. Let Hd0 represent the algorithmic entropy of the
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Figure 3. Variation of d-diameter complexity with scale; — nested replicators with no vari-
ation; – – – – – nested replicators with variation; - - - - No organization at any scale.

system, based on its minimal description at the largest scale d0 [50, 51]. However, where the system
is dismantled so that the large scale structure is suppressed, the system is perceived as a collection of
structures at scale d1 < d0. As the scale reduces, the algorithmic entropy cannot decrease. However
whenever large scale pattern that previously could be specified by a compressed algorithm is lost, the
algorithmic entropy increases as the structure now must be specified in detail. I.e. the algorithmic
description where the large scale structure is suppressed, must specify each substructure at this scale and
how the substructures are to be assembled. This invariably will be more lengthy than a description using
the algorithm that specified the overall pattern.

Referring to Figure 3, at the scale level where d1 ≤ d ≤ d0, Hd > Hd0. The entropy remains about
the same until the scale reduces below that of d1, the next level of nesting. The algorithmic description
at the scale d2 < d1 must include more detailed specifications and assembly instructions. At the smallest
scale, the algorithmic entropy reaches a maximum.

Figure 3 captures how the algorithmic entropy decreases as the scale is increased. The stepped bold
line shows an ideal system where the nested systems at each level of scale are identical. As more pattern
is recognised at increasing scales, allowing shorter algorithmic descriptions to be found, the algorithmic
entropy decreases. The dashed line in Figure 3 shows how variations in replicates at a given scale smooth
out the steps in the ideal case, leading to a lower decrease of algorithmic entropy with scale. However,
where no organization at all exists the algorithmic entropy is the same at all levels of scale as shown by
the dotted horizontal line, Hmax in Figure 3. Chaitin [52] quantifies the degree of organization (Dorg) of
structure X by:

Dorg = Hmax(X)−Hd0(X).

The degree of organization, corresponds to Kolmogorov’s “deficiency in randomness’. This is a measure
of how far a system is from equilibrium. While systems with high Dorg, have lower entropy, they do not
have the same flexibility to adapt as systems with variation and lower Dorg. It would appear that nesting
can increase organization and thereby decrease entropy faster than the entropy cost of the variation.
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Indeed, this may be an inevitable consequence of selection processes acting on structures. Interestingly,
as software variation occurs at lower levels of scale, it would appear to be algorithmically more efficient
to generate variation through software (e.g. variation in DNA) rather than directly.

9. Conclusion

This review show that the concept of algorithmic entropy, despite some awkward features, is consis-
tent with conventional understandings of entropy. The approach provides particularly useful insights into
reversibility, the cost of maintaining a system off equilibrium, and how order might emerge in natural
systems. Because the approach highlights how order is often nested within order algorithmic entropy
provides a tool for focussing on the order at any level of scale, While it is too difficult to provide a
detailed algorithmic entropy measure of most real systems, the approach may be useful in understanding
incremental changes and as well provide broad descriptions of system behaviour.
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