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1. Introduction

It is a well-known and celebrated result that the uniform distribution on a finite set can be charac-
terized as having maximal entropy. Jaynes used this idea as a foundation of statistical mechanics [1],
and the Maximum Entropy Principle has become a popular principle for statistical inference [2–8]. Of-
ten it is used as a method to get prior distributions. On a finite set, for any distributions P we have
H(P ) = H(U) − D(P‖U) where H is the Shannon entropy, D is information divergence, and U is
the uniform distribution. Thus, maximizing H(P ) is equivalent to minimizing D(P‖U). Minimization
of information divergence can be justified by the conditional limit theorem by Csiszár [9, Theorem 4].
So if we have a good reason to use the uniform distribution as prior distribution we automatically get a
justification of the Maximum Entropy Principle. The conditional limit theorem cannot justify the use of
the uniform distribution itself, so we need something else. Here we shall focus on symmetry.

Example 1. A die has six sides that can be permuted via rotations of the die. We note that not all
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permutations can be realized as rotations and not all rotations will give permutations. Let G be the
group of permutations that can be realized as rotations. We shall consider G as the symmetry group of
the die and observe that the uniform distribution on the six sides is the only distribution that is invariant
under the action of the symmetry group G.

Example 2. G = R/2πZ is a commutative group that can be identified with the group SO (2) of rota-
tions in 2 dimensions. This is the simplest example of a group that is compact but not finite.

For an object with symmetries the symmetry group defines a group action on the object, and any
group action on an object defines a symmetry group of the object. A special case of a group action of
the group G is left translation of the elements in G. Instead of studying distributions on objects with
symmetries, in this paper we shall focus on distributions on the symmetry groups themselves. It is no
serious restriction because a distribution on the symmetry group of an object will induce a distribution
on the object itself.

Convergence of convolutions of probability measures were studied by Stromberg [10] who proved
weak convergence of convolutions of probability measures. An information theoretic approach was
introduced by Csiszár [11]. Classical methods involving characteristic functions have been used to give
conditions for uniform convergence of the densities of convolutions [12]. See [13] for a review of the
subject and further references.

Finally it is shown that convergence in information divergence corresponds to uniform convergence
of the rate distortion function and that weak convergence corresponds to pointwise convergence of the
rate distortion function. In this paper we shall mainly consider convolutions as Markov chains. This will
give us a tool, which allows us to prove convergence of iid. convolutions, and the rate of convergence is
proved to be exponential.

The rest of the paper is organized as follows. In Section 2. we establish a number of simple results on
distortion functions on compact set. These results will be used in Section 4.. In Section 3. we define the
uniform distribution on a compact group as the uniquely determined Haar probability measures. In Sec-
tion 4. it is shown that the uniform distribution is the maximum entropy distribution on a compact group
in the sense that it maximizes the rate distortion function at any positive distortion level. Convergence
of convolutions of a distribution to the uniform distribution is established in Section 5. using Markov
chain techniques, and the rate of convergence is discussed in Section 6.. The group SO (2) is used as
our running example. We finish with a short discussion.

2. Distortion on compact groups

Let G be a compact group where ∗ denotes the composition. The neutral element will be denoted e

and the inverse of the element g will be denoted g−1.
We shall start with some general comments on distortion functions on compact sets. Assume that

the group both plays the role as source alphabet and reproduction alphabet. A distortion function d :

G × G → R is given and we will assume that d (x, y) ≥ 0 with equality if and only if x = y. We will
also assume that the distortion function is continuous.

Example 3. As distortion function on SO (2) we use the squared Euclidean distance between the corre-



Entropy 2009, 11 224

Figure 1. Squared Euclidean distance between the rotation angles x and y.

sponding points on the unit circle, i.e.

d (x, y) = 4 sin2

(
x− y

2

)

= 2− 2 cos (x− y) .

This is illustrated in Figure 1.

The distortion function might be a metric but even if the distortion function is not a metric, the
relation between the distortion function and the topology is the same as if it was a metric. One way
of constructing a distortion function on a group is to use the squared Hilbert-Smidt norm in a unitary
representation of the group.

Theorem 4. If C is a compact set and d : C × C → R is a non-negative continuous distortion function
such that d (x, y) = 0 if and only if x = y, then the topology on C is generated by the distortion balls
{x ∈ C | d (x, y) < r} where y ∈ C and r > 0.

Proof. We have to prove that a subset B ⊆ C is open if and only if for any y ∈ B there exists a ball that
is a subset of B and contains y. Assume that B ⊂ C is open and that y ∈ B. Then {B compact. Hence,
the function x → d (x, y) has a minimum r on {B and r must be positive because r = d (x, y) = 0

would imply that x = y ∈ B. Therefore {x ∈ C | d (x, y) < r} ⊆ B.

Continuity of d implies that the balls {x ∈ C | d (x, y) < r} are open. If any point in B is contained
in an open ball, then B is a union of open set and open.

The following theorem may be considered as a kind of uniform continuity of the distortion function
or as a substitute for the triangular inequality when d is not a metric.

Lemma 5. If C is a compact set and d : C × C → R is a non-negative continuous distortion function
such that d (x, y) = 0 if and only if x = y, then there exists a continuous function f1 satisfying f1 (0) = 0

such that
|d (x, y)− d (z, y)| ≤ f1 (d (z, y)) for x, y, z ∈ C. (1)
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Proof. Assume that the theorem does not hold. Then there exists ε > 0 and a net (xλ, yλ, zλ)λ∈Λ such
that

d (xλ, yλ)− d (zλ, yλ) > ε

and d (zλ, yλ) → 0. A net in a compact set has a convergent subnet so without loss of generality we
may assume that the net (xλ, yλ, zλ)λ∈Λ converges to some triple (x∞, y∞, z∞) . By continuity of the
distortion function we get

d (x∞, y∞)− d (z∞, y∞) ≥ ε

and d (z∞, y∞) = 0, which implies z∞ = y∞ and we have a contradiction.

We note that if a distortion function satisfies (1) then it defines a topology in which the distortion balls
are open.

In order to define the weak topology on probability distributions we extend the distortion function
from C × C to M1

+ (C)×M1
+ (C) via

d (P, Q) = inf E [ d (X,Y )] ,

where X and Y are random variables with values in C and the infimum is taken all joint distributions
on (X,Y ) such that the marginal distribution of X is P and the marginal distribution of Y is Q. The
distortion function is continuous so (x, y) → d (x, y) has a maximum that we denote dmax.

Theorem 6. If G is a compact set and d : C × C → R is a non-negative continuous distortion function
such that d (x, y) = 0 if and only if x = y, then

|d (P,Q)− d (S,Q)| ≤ f2 (d (S, P )) for P, Q, S ∈ M1
+ (C)

for some continuous function f2 satisfying f2 (0) = 0.

Proof. According to Lemma 5 there exists a function f1 satisfying (1). We use that

E [|d (X, Y )− d (Z, Y )|] ≤ E [f1 (d (Z, X))]

= E [f1 (d (Z,X)) | d (Z,X) ≤ δ] · P (d (Z,X) ≤ δ)

+ E [f1 (d (Z, X)) | d (Z, X) > δ] · P (d (Z, X) > δ)

≤ f1 (δ) · 1 + f1 (dmax) · E [d (Z,X)]

δ

≤ f1 (δ) + f1 (dmax) · d (S, P )

δ
.

This hold for all δ > 0 and in particular for δ = (d (S, P ))1/2, which proves the theorem.

The theorem can be used to construct the weak topology on M1
+ (C) with

{
P ∈ M1

+ (C) | d (P, Q) < r
}

,

P ∈ M1
+ (C) , r > 0 as open balls that generate the topology. We note without proof that this definition

is equivalent with the quite different definition of weak topology that one will find in most textbooks.
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For a group G we assume that the distortion function is right invariant in the sense that for all x, y, z ∈
G a distortion function d satisfies

d (x ∗ z, y ∗ z) = d (x, y) .

A right invariant distortion function satisfies d (x, y) = d (x ∗ y−1, e), so right invariant continuous
distortion functions of a group can be constructed from non-negative functions with a minimum in e.

3. The Haar measure

We use ∗ to denote convolution of probability measures on G. For g ∈ G we shall use g ∗ P to
denote the g-translation of the measure P or, equivalently, the convolution with a measure concentrated
in g. The n-fold convolution of a distribution P with itself will be denoted P ∗n. For random variables
with values in G one can formulate an analog of the central limit theorem. We recall some facts about
probability measures on compact groups and their Haar measures.

Definition 7. Let G be a group. A measure P is said to be a left Haar measure if g ∗ P = P for any
g ∈ G. Similarly, P is said to be a right Haar measure if P ∗ g = P for any g ∈ G. A measure is said to
be a Haar measure if it is both a left Haar measure and a right Haar measure.

Example 8. The uniform distribution on SO (2) orR/2πZ has density 1/2π with respect to the Lebesgue
measure on [0; 2π[ . The function

f (x) = 1 +
∞∑

n=1

an cos (n (x + φn)) (2)

is a density on a probability distribution P on SO (2) if the Fourier coefficients an are sufficiently small
so that f is non-negative. A sufficient condition for f to be non-negative is that

∑∞
n=1 |an| ≤ 1.

Translation by y gives a distribution with density

f (x− y) = 1 +
∞∑

n=1

an cos (n (x− y + φn)) .

The distribution P is invariant if and only if f is 1 or, equivalently, all Fourier coefficients (an)n∈N are
0.

A measure P on G is said to have full support if the support of P is G, i.e. P (A) > 0 for any
non-empty open set A ⊆ G. The following theorem is well-known [14–16].

Theorem 9. Let U be a probability measure on the compact group G. Then the following four conditions
are equivalent.

• U is a left Haar measure.

• U is a right Haar measure.

• U has full support and is idempotent in the sense that U ∗ U = U.

• There exists a probability measure P on G with full support such that P ∗ U = U.
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• There exists a probability measure P on G with full support such that U ∗ P = U.

In particular a Haar probability measure is unique.

In [14–16] one can find the proof that any locally compact group has a Haar measure. The unique
Haar probability measure on a compact group will be called the uniform distribution and denoted U.

For probability measures P and Q the information divergence from P to Q is defined by

D (P‖Q) =

{ ∫
log dP

dQ
dP, if P ¿ Q;

∞, otherwise.

We shall often calculate the divergence from a distribution to the uniform distribution U, and introduce
the notation

D (P ) = D (P‖U) .

For a random variable X with values in G we will sometimes write D (X‖U) instead of D (P‖U) when
X has distribution P.

Example 10. The distribution P with density f given by (2) has

D (P ) =
1

2π

∫ 2π

0

f (x) log (f (x)) dx

≈ 1

2π

∫ 2π

0

f (x) (f (x)− 1) dx

=
1

2

∞∑
n=1

a2
n.

Let G be a compact group with uniform distribution U and let F be a closed subgroup of G. Then the
subgroup has a Haar probability measure UF and

D (UF ) = log ([G : F ]) (3)

where [G : F ] denotes the index of F in G. In particular D (UF ) is finite if and only if [G : F ] is finite.

4. The rate distortion theory

We will develop aspects of the rate distortion theory of a compact group G. Let P be a probability
measure on G. We observe that compactness of G implies that a covering of G by distortion balls of
radius δ > 0 contains a finite covering. If k is the number of balls in a finite covering then RP (δ) ≤
log (k) where RP is the rate distortion function of the probability measure P. In particular the rate
distortion function is upper bounded. The entropy of a probability distribution P is given by H (P ) =

RP (0). If the group is finite then the uniform distribution maximizes the Shannon entropy RP (0) but
if the group is not finite then in principle there is no entropy maximizer. As we shall see the uniform
distribution still plays the role of entropy maximizer in the sense that the uniform distribution maximize
the value RP (δ) of the rate distortion function for any positive distortion level δ > 0. The rate distortion
function RP can be studied using its convex conjugate R∗

P given by

R∗
P (β) = sup

δ
β · δ −RP (δ) .
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The rate distortion function is then recovered by the formula

RP (δ) = sup
β

β · δ −R∗
P (β) .

The techniques are pretty standard [17].

Theorem 11. The rate distortion function of the uniform distribution is given by

R∗
U (β) = log (Z (β))

where Z is the partition function defined by

Z (β) =

∫

G

exp (β · d (g, e)) dUg.

The rate distortion function of an arbitrary distribution P satisfies

RU −D (P‖U) ≤ RP ≤ RU . (4)

Proof. First we prove a Shannon type lower bound on the rate distortion function of an arbitrary distri-
bution P on the group. Let X be a random variable with values in G and distribution P , and let X̂ be a
random variable coupled with X such that the mean distortion E

[
d

(
X, X̂

)]
equals δ. Then

I
(
X; X̂

)
= D

(
X‖U | X̂

)
−D (X‖U) (5)

= D
(
X ∗ X̂−1‖U | X̂

)
−D (X‖U) (6)

≥ D
(
X ∗ X̂−1‖U

)
−D (X‖U) . (7)

Now, E
[
d

(
X, X̂

)]
= E

[
d

(
X ∗ X̂−1, e

)]
and

D
(
X ∗ X̂−1‖U

)
≥ D (Pβ‖U)

where Pβ is the distribution that minimizes divergence under the constraint E [d (Y, e)] = δ when Y has
distribution Pβ. The distribution Pβ is given by the density

dPβ

dU
(g) =

exp (β · d (g, e))

Z (β)
.

where β is determined by the condition δ = Z ′ (β) /Z (β) .

If P is uniform then a joint distribution is obtained by choosing X̂ uniformly distributed, and choos-
ing Y distributed according to Pβ and independent of X̂. Then X = Y ∗ X̂ is distributed according
to Pβ ∗ U = U, and we have equality in (7). Hence the lower bound (7) is achievable for the uniform
distribution, which prove the first part of the theorem, and the left inequality in (4).
The joint distribution on

(
X, X̂

)
that achieved the rate distortion function when X has a uniform dis-

tribution, defines a Markov kernel Ψ : X → X̂ that is invariant under translations in the group. For
any distribution P the joint distribution on

(
X, X̂

)
determined by P and Ψ gives an achievable pair of

distortion, and rate that is on the rate distortion curve of the uniform distribution. This proves the right
inequality in Equation (4).
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Figure 2. The rate distortion region of the uniform distribution on SO (2) is shaded. The
rate distortion function is the lower bounding curve. In the figure the rate is measured in
nats. The critical distortion dcrit equals 2, and the dashed line indicates dmax = 4.

Example 12. For the group SO (2) the rate distortion function can be parametrized using the modified
Bessel functions Ij, j ∈ N0. The partition function is given by

Z (β) =

∫

G

exp (β · d (g, e)) dUg

=
1

2π

∫ 2π

0

exp (β · (2− 2 cos x)) dx

= exp (2β) · 1

π

∫ π

0

exp (−2β · cos x) dx

= exp (2β) · I0 (−2β) .

Hence R∗
U (β) = log (Z (β)) = 2β + log (I0 (−2β)). The distortion δ corresponding to β is given by

δ = 2− 2
I1 (−2β)

I0 (−2β)

and the corresponding rate is

RU (δ) = β · δ − (2β + log (I0 (−2β)))

= −β · 2I1 (−2β)

I0 (−2β)
− log (I0 (−2β)) .

These joint values of distortion and rate can be plotted with β as parameter as illustrated in Figure 2.
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The minimal rate of the uniform distribution is achieved when X and X̂ are independent. In this
case the distortion is E

[
d

(
X, X̂

)]
=

∫
G

d (x, e) dPx. This distortion level will be called the critical
distortion and will be denoted dcrit. On the interval ]0; dcrit] the rate distortion function is decreasing and
the distortion rate function is the inverse R−1

P of the rate distortion function RP on this interval. The
distortion rate function satisfies:

Theorem 13. The distortion rate function of an arbitrary distribution P satisfies

R−1
U (δ)− f2 (d (P, U)) ≤ R−1

P (δ) ≤ R−1
U (δ) for δ ≤ dcrit (8)

for some increasing continuous function f2 satisfying f2 (0) = 0.

Proof. The right hand side follows because RU is decreasing in the interval [0; dcrit] . Let X be a random
variable with distribution P and let Y be a random variable coupled with X. Let Z be a random variable
coupled with X such that E [d (X,Z)] = d (P, U) . The couplings between X and Y , and between X

and Z can be extended to a joint distribution on X, Y and Z such that Y and Z are independent given
X. For this joint distribution we have

I (Z; Y ) ≤ I (X,Y )

and
|E [d (Z, Y )]− E [d (X,Y )]| ≤ f2 (d (P,U)) .

We have to prove that
E [d (X,Y )] ≥ R−1

U (I (X,Y ))− f2 (d (P, U))

but I (Z; Y ) ≤ I (X, Y ) so it is sufficient to prove that

E [d (X,Y )] ≥ R−1
U (I (Z, Y ))− f2 (d (P,U))

and this follows because E [d (Z, Y )] ≥ R−1
U (I (Z, Y )) .

5. Convergence of convolutions

We shall prove that under certain conditions the n-fold convolutions P ∗n converge to the uniform
distribution.

Example 14. The function

f (x) = 1 +
∞∑

n=1

an cos (n (x + φn))

is a density on a probability distribution P on G if the Fourier coefficients an are sufficiently small. If
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(an) and (bn) are Fourier coefficients of P and Q then the convolution has density

1

2π

∫ 2π

0

(
1 +

∞∑
n=1

an cos n (x− y + φn)

)(
1 +

∞∑
n=1

bn cos n (y + ψn)

)
dy

= 1 +
1

2π

∞∑
n=1

∫ 2π

0

anbn cos n (x− y + φn) cos n (y + ψn) dy

= 1 +
1

2π

∞∑
n=1

∫ 2π

0

anbn cos (n (x + φn + ψn)− ny) cos (ny) dy

= 1 +
1

2π

∞∑
n=1

∫ 2π

0

anbn

(
cos n (x + φn + ψn) cos (ny)

+ sin (n (x + φn + ψn)) sin (ny)

)
cos (ny) dy

= 1 +
∞∑

n=1

anbn cos (n (x + φn + ψn))

2π

∫ 2π

0

cos2 (ny) dy

= 1 +
∞∑

n=1

anbn cos (n (x + φn + ψn))

2
.

Therefore the n-fold convolution has density

1 +
∞∑

k=1

an
k cos (k (x + nφk))

2n−1
= 1 +

∞∑

k=1

(ak

2

)n

2 cos (k (x + nφk)) .

Therefore each of the Fourier coefficients is exponentially decreasing.

Clearly, if P is uniform on a proper subgroup then convergence to the uniform distribution on the
whole group does not hold. In several papers on this topic [13, 18, and references therein] it is claimed
and “proved” that if convergence does not hold then the support of P is contained in the coset of a proper
normal subgroup. The proofs therefore contain errors that seem to have been copied from paper to paper.
To avoid this problem and make this paper more self-contained we shall reformulate and reprove some
already known theorems.
In the theory of finite Markov chains is well-known that there exists an invariant probability measure.
Certain Markov chains exhibits periodic behavior where a certain distribution is repeated after a number
of transitions. All distributions in such a cycle will lie at a fixed distance from any (fixed) measure, where
the distance is given by information divergence or total variation (or any other Csiszár f -divergence).
It is also well-known that finite Markov chains without periodic behavior are convergent. In general a
Markov chain will converge to a “cyclic” behavior as stated in the following theorem [19].

Theorem 15. Let Φ be a transition operator on a state space A with an invariant probability measure
Qin. If D (S ‖ Q) < ∞ then there exists a probability measure P ∗ such that D (ΦnS ‖ ΦnQ) → 0 and
D (ΦnQ ‖ Qin) is constant.

We shall also use the following proposition that has a purely computational proof [20].

Proposition 16. Let Px, x ∈ X be distributions and let Q be a probability distribution on X. Then
∫

D (Px ‖ Q) dQx = D

(∫
PxdQx ‖ Q

)
+

∫
D

(
Px ‖

∫
Pt dQt

)
dQx.
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We denote the set of probability measures on G by M1
+ (G).

Theorem 17. Let P be a distribution on a compact group G and assume that the support of P is not
contained in any nontrivial coset of a subgroup of G. If D (S‖U) is finite then D (P ∗n ∗ S‖U) → 0 for
n →∞.

Proof. Let Ψ : G → M1
+ (G) denote the Markov kernel Ψ (g) = P ∗ g. Then P ∗n ∗ S = Ψn (P ∗ S) .

Thus there exists a probability measure Q on G such that D (Ψn (P ) ‖Ψn (Q)) → 0 for n → ∞ and
such that D (Ψn (Q)) is constant. We shall prove that Q = U.

First we note that

D (Q) = D (P ∗Q)

=

∫

G

(D (g ∗Q)−D (g ∗Q‖P ∗Q)) dPg

= D (Q)−
∫

G

D (g ∗Q‖P ∗Q) dPg .

Therefore g ∗ Q = P ∗ Q for P almost every g ∈ G. Thus there exists at least one g0 ∈ G such that
g0 ∗Q = P ∗Q. Then Q = P̃ ∗Q where P̃ = g−1

0 ∗ P.

Let Ψ̃ : G → M1
+ (G) denote the Markov kernel g → P̃ ∗ g. Put

Pn =
1

n

n∑
i=1

P̃ ∗i =
1

n

n∑
i=1

Ψ̃i−1
(
P̃

)
.

According to [19] this ergodic mean will converge to a distribution T such that Ψ̃ (T ) = T so that
T ∗ P̃ = T. Hence we also have that T ∗ T = T, i.e. T is idempotent and therefore supported by a
subgroup of G. We know that P̃ is not contained in any nontrivial subgroup of G so the support of T

must be G. We also get Q = T ∗Q, which together with Theorem 9 implies that Q = U.

By choosing S = P we get the following corollary.

Corollary 18. Let P be a probability measure on the compact group G with Haar probability measure
U . Assume that the support of P is not contained in any coset of a proper subgroup of G and D (P‖U)

is finite. Then D (P ∗n‖U) → 0 for n →∞.

Corollary 18 together with Theorem 11 implies the following result.

Corollary 19. Let P be a probability measure on the compact group G with Haar probability measure
U . Assume that the support of P is not contained in any coset of a proper subgroup of G and D (P‖U)

is finite. Then the rate distortion function of P ∗n converges uniformly to the rate distortion function of
the uniform distribution.

We also get weak versions of these results.

Corollary 20. Let P be a probability measure on the compact group G with Haar probability measure
U. Assume that the support of P is not contained in any coset of a proper subgroup of G. Then P ∗n

converges to U in the weak topology, i.e. d (P ∗n, U) → 0 for n →∞.
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Proof. If we take S = Pβ then D (Pβ) is finite and D (P ∗n ∗ Pβ‖U) → 0 for n →∞. We have

d (P ∗n ∗ Pβ, U) ≤ dmax ‖P ∗n ∗ Pβ − U‖
≤ dmax (2D (P ∗n ∗ Pβ‖U))1/2

implying that d (P ∗n ∗ Pβ, U) → 0 for n →∞. Now

|d (P ∗n, U)− d (P ∗n ∗ Pβ, U)| ≤ f2 (d (P ∗n ∗ Pβ, P ∗n))

≤ f2 (d (Pβ, e)) .

Therefore limn→∞ sup d (P ∗n, U) ≤ f2 (d (Pβ, e)) for all β, which implies that

lim
n→∞

sup d (P ∗n, U) = 0.

Corollary 21. Let P be a probability measure on the compact group G with Haar probability measure
U. Assume that the support of P is not contained in any coset of a proper subgroup of G and D (P‖U)

is finite. Then RP ∗n converges to RU pointwise on the interval ]0; dmax[ for n →∞.

Proof. Corollary 20 together with Theorem 13 implies uniform convergence of the distortion rate func-
tion for distortion less than dcrit. This implies pointwise convergence of the rate distortion function on
]0; dcrit[ because rate distortion functions are convex functions. The same argument works in the interval
]dcrit; dmax[ . Pointwise convergence in dcrit must also hold because of continuity.

6. Rate of convergence

Normally the rate of convergence will be exponential. If the density is lower bounded this is well-
known. We bring a simplified proof of this.

Lemma 22. Let P be a probability distribution on the compact group G with Haar probability measure
U. If dP/dU ≥ c > 0 and D (P ) is finite, then

D
(
P

n) ≤ (1− c)n−1 D (P ) .

Proof. First we write
P = (1− c) · S + c · U

where S denotes the probability measure

S =
P − cU

1− c
.

For any distribution Q on G we have

D (Q ∗ P ) = D ((1− c) ·Q ∗ S + c ·Q ∗ U)

≤ (1− c) ·D (Q ∗ S) + c ·D (Q ∗ U)

≤ (1− c) ·D (Q) + c ·D (U)

= (1− c) ·D (Q) .

Here we have used convexity of divergence.
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If a distribution P has support in a proper subgroup F then

D (P ) ≥ D (UF )

= log ([G : F ])

≥ log (2) = 1 bit.

Therefore D (P ) < 1 bit implies that P cannot be supported by a proper subgroup, but it implies more.

Proposition 23. If P is a distribution on the compact group G and D (P ) < 1 bit then d(P∗P )
dU

is lower
bounded by a positive constant.

Proof. The condition D (P ) < 1 bit implies that U
{

dP
dU

> 0
}

> 1/2. Hence there exists ε > 0 such that
U

{
dP
dU

> ε
}

> 1/2. We have

d (P ∗ P )

dU
(y) =

∫

G

dP

dU
(x) · dP

dU
(y − x) dUx

≥
∫

{ dP
dU

>ε}
ε · dP

dU
(y − x) dUx

≥ ε ·
∫

{ dP
dU

(x)>ε}∩{ dP
dU

(y−x)>ε}
ε dUx

= ε2 · U
({

dP

dU
(x) > ε

}
∩

{
dP

dU
(y − x) > ε

})
.

Using the inclusion-exclusion inequalities we get

U

({
dP

dU
(x) > ε

}
∩

{
dP

dU
(y − x) > ε

})

= U

{
dP

dU
(x) > ε

}
+ U

{
dP

dU
(y − x) > ε

}
− U

({
dP

dU
(x) > ε

}
∪

{
dP

dU
(y − x) > ε

})

≥ 2 · U
{

dP

dU
(x) > ε

}
− 1.

Hence
d (P ∗ P )

dU
(y) ≥ 2ε2

(
U

{
dP

dU
(x) > ε

}
− 1/2

)

for all y ∈ G.

Combining Theorem 17, Lemma 22, and Proposition 23 we get the following result.

Theorem 24. Let P be a probability measure on a compact group G with Haar probability measure U.

If the support of P is not contained in any coset of a proper subgroup of G and D (P‖U) is finite then
the rate of convergence of D (P ∗n‖U) to zero is exponential.

As a corollary we get the following result that was first proved by Kloss [21] for total variation.

Corollary 25. Let P be a probability measure on the compact group G with Haar probability measure
U. If the support of P is not contained in any coset of a proper subgroup of G and D (P‖U) is finite then
P ∗n converges to U in variation and the rate of convergence is exponential.
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Proof. This follows directly from Pinsker’s inequality [22, 23]

1

2
‖P ∗n − U‖2 ≤ D (P ∗n‖U) .

Corollary 26. Let P be a probability measure on the compact group G with Haar probability measure
U. If the support of P is not contained in any coset of a proper subgroup of G and D (P‖U) is finite,
then the density

dP ∗n

dU

converges to 1 point wise almost surely for n tending to infinity.

Proof. The variation norm can be written as

‖P ∗n − U‖ =

∫

G

∣∣∣∣
dP ∗n

dU
− 1

∣∣∣∣ dU.

Thus

U

(∣∣∣∣
dP ∗n

dU
− 1

∣∣∣∣ ≥ ε

)
≤ ‖P ∗n − U‖

ε
.

The result follows by the exponential rate of convergence of P ∗n to U in total variation combined with
the Borel-Cantelli Lemma.

7. Discussion

In this paper we have assumed the existence of the Haar measure by referring to the literature. With
the Haar measure we have then proved convergence of convolutions using Markov chain techniques. The
Markov chain approach can also be used to prove the existence of the Haar measure by simply referring
to the fact that a homogenous Markov chain on a compact set has an invariant distribution. The problem
about this approach is that the proof that a Markov chain on a compact set has an invariant distribution
is not easier than the proof of the existence of the Haar measure and is less known.

We have shown that the Haar probability measure maximizes the rate distortion function at any dis-
tortion level. The normal proofs of the existence of the Haar measure use a kind of covering argument
that is very close to the techniques found in rate distortion technique. There is a chance that one can get
an information theoretic proof of the existence of the Haar measure. It seems obvious to use concavity
arguments as one would do for Shannon entropy but, as proved by Ahlswede [24], the rate distortion
function at a given distortion level is not a concave function of the underlying distribution, so some more
refined technique is needed.

As noted in the introduction for any algebraic structure A the group Aut (A) can be considered as
symmetry group, it it has a compact subgroup for which the results of this paper applies. It would be
interesting to extend the information theoretic approach to the algebraic object A itself, but in general
there is no known equivalent to the Haar measure for other algebraic structures. Algebraic structures are
used extensively in channel coding theory and cryptography so although the theory may become more
involved extensions of the result presented in this paper are definitely worthwhile.
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