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Abstract: In this paper, we briefly discuss a field theory approach of classical statistical
mechanics. We show how an essentially entropic functional accounts for fundamental sym-
metries related to quantum mechanical properties which hold out in the classical limit of the
quantum description. Within this framework, energetic and entropic properties are treated at
equal level. Based on a series of examples on electrolytes, we illustrate how this framework
gives simple interpretations where entropic fluctuations of anions and cations compete with
the energetic properties related to the interaction potential.
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1. Introduction

Ever since the work of Gibbs, well before quantum mechanics, one knows that it is impossible to
define a purely classical statistical mechanics. More precisely, we now find that even in the classical
limit, we cannot ignore those elements which escape this description. For instance, at equilibrium, there
exists a minimum length to differentiate and therefore count different states in the phase space. This is
the role of the de Broglie length and, more generally, we find quantities involving the Planck constant.
Moreover, in classical statistical mechanics, we have to account for a symmetry related to the principle
of indistinguishability as applied to identical particles which again finds its origin in quantum mechanics.
For a discussion on the classical limit see Hill [1].
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Adding elements of physics, inherent to the quantum world, to the classical description is a commonly
accepted process. From our view point, this process is far from being an intuitive approach. Let us
clarify. The deep-rooted classical description refers to entities which can be enumerated and localised as
precisely as needed. This is in contrast to what occurs in the quantum world.

Similarly, in the quantum world, refering to objects such as particles is not the only way to describe
the reality, and fields are frequently used for a more fundamental description. For a possibly unified
framework, it is of interest to derive a field theory (FT) approach to classical statistical mechanics.
Number of authors have elaborated a FT from the Gibbs partition function. Based on exact mathematical
transforms of the partition function, their approach leads, we think, to formalisms which are difficult to
apply and not specifically intuitive [2–26].

In a series of papers [27–32], we use an intuitive field theory approach in order to describe electrolytes
at interfaces. The peculiarity of this approach is the use of a field which has a straightforward physical
meaning. It represents the density of matter. This leads to a representation, in terms of fields, that is
quite different from the particle description. In this paper, we present a brief exposé on how the quantum
physical ingredients acquire a different semantic representation and treatment when considered from the
angle of fields. We shall discuss what becomes of the indistinguishability symmetry (IS) of particles by
describing this property in the context of various systems, such as electrolytes at interfaces. Studying
these charged systems, our purpose is to illustrate, how this basic and fundamental physical property
can, within a new specific framework, provide original insight and interpretations.

2. Classical statistical mechanics.

2.1. Standard statistical mechanics.

As noticed intuitively by Gibbs even the simple ideal gas is not trivial. For an ideal gas of N particles
at equilibrium, in a volume V , at temperature T , the canonical partition function is written

Q(N, V, T ) =
V N

N !Λ3N
, (1)

where the enumeration of states requires an elementary volume in the phase space related to Λ, the de
Broglie length. In this quantity we have the Planck constant characteristic of quantum effects. The other
ingredient, deriving from the quantum world, which appears in this classical description, is according to
the principle of indistinguishability, the factorial N term associated with indistinguishable particles. We
also show the grand canonical ensemble description, which we shall be needing further in the paper. The
grand partition function is

Ξ(V, µ, T ) =
∞∑

N=0

eβµNQ(N, V, T ) (2)

where β is the inverse temperature. The thermodynamic potential associated is the grand potential

− PV = −kBT ρ̂V (3)
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where ρ̂ = N̂/V is the average density. Hereafter hatted quantities represent averages. The grand
potential can also be written in terms of other thermodynamic quantities

− PV = U − TS − µN̂ (4)

=
3

2
kBTN̂ + kBTN̂

(
−5

2
+ ln ρ̂Λ3

)
− µN̂ (5)

= kBTV ρ̂

(
ln

ρ̂

ρ̄
− 1

)
(6)

where ρ̄ = eβµ/Λ3 is the activity.
Introduced in the context of the ideal gas, these basic quantum mechanical ingredients also apply to

the interacting systems. The partition function will then include the factorial term for indistinguishability
and the de Broglie length for systems at equilibrium. It is the physical content of these properties and
in particular the symmetry related to indistinguishability that we shall debate in the framework of a
FT. Indistinguishability is one possible origin of entropy: by permutation, many states correspond to
identical values of the system’s energy.

2.2. Field theory approach.

The approach we use is based directly on a FT type assumption and not on an elaboration of the Gibbs
partition function. As traditional in FT, we assume there is an intuitive construction of the Hamiltonian
functional from a physically relevant mean field equation. To find this equation, we can use the following
line. The fundamental choice of our FT is to take directly the density of matter ρ(r) as the elementary
real valued field variable. As the densities fluctuate, it is tempting to fix the chemical potential µ and
study the grand potential. We then have a functional integral according to

− βPV = ln Ξ = ln

[∫
Dρ e−βH[ρ]

]
. (7)

To find the Hamiltonian functional H we start from a relevant mean field approximation for the chemical
potential

ln(ρ(r)Λ3) +

∫
ρ(r′)v(|r− r′|)dr′ − βµ = 0. (8)

After integration of the mean field equation δH/δρ = 0, in terms of the field, we obtain

βH[ρ] =

∫
ρ(r) [ln(ρ(r)/ρ̄)− 1] dr +

∫
ρ(r)ρ(r′)v(|r− r′|) drdr′. (9)

This Hamiltonian functional is extremely simple. The first term is an integral representation of the grand
potential for the ideal gas eq. (6). We shall refer to this term as the entropic functional, although strictly
speaking there is more than the entropy, for instance the kinetic energy. The second term is a mean
field approximation of the potential energy. What is seemingly a simple analysis is misleading. As
stressed by Evans in [33], when comparing DFT and field theory approaches, the Hamiltonian is just an
element of the functional integral eq. (7) which at the end gives the partition function. Therefore, this
functional cannot be assimilated to the thermodynamic potential, as it is the case in a DFT approach.
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Consequently, it is wrong to associate the ideal gas with the first term of the Hamiltonian, in the same
way we would not attribute the factorial of the number of particles to the sole ideal gas. The problem
stems from the fact that for an ideal gas, in the absence of interactions, we are left to focus on the
property of indistinguishability and the different notions overlap. Truly, the role of the first term in
the Hamiltonian is to provide quantum mechanical properties for interacting systems just as well as for
ideal systems. In contrast to the arguments shown in [33], based on a phenomenological Hamiltonian,
the specificity of this FT is that we can demonstrate that the Hamiltonian is exact [27]. Though fields
have a number of degrees of freedom distinct from that of particles, our functional is constructed in
order to give the correct enumeration of states. In our functional, we have the elementary volume in
the phase space Λ3 and a functional, depending on the density field, which substitutes the property
of indistinguishability for particles. Significantly, in expansions, we observe that whenever there are
n iterations of the field at a given point, these fields are associated precisely with the corresponding
1/n! coefficient, as a consequence of the entropic functional. This property corresponds to the particle
indistinguishability in terms of fields [27]. In this paper, we do not want to enter in mathematical aspects
developped in [27]. However, it must be remarked that the existence of a renormalisation indicates that
the formalism used is more sophisticated than just the introduction of a logarithmic functional in the
Hamiltonian.

2.3. Breaking the Indistinguishability Symmetry.

Following Lin’s assertion that ”Symmetries are in principle ugly” [34], the interest of analysing a
system in terms of its symmetries, lies precisely in the description of systems where these symmetries are
broken. The most obvious way to break the IS of particles is clearly to consider distinguishible species,
such as mixtures. To illustrate our point, we take a peculiar mixture, i.e. electrolytes. Electrolytes
have at least two species, cations and anions, but their densities are not entirely free. We generally have
the overall electroneutrality condition as a consequence of the long range Coulomb potential although
locally the densities are free to fluctuate [35]. In this context, we can anticipate the following argument.
From the point of view of mixtures, we shall focus on the density fluctuations of each species ρ±(r),
cations and anions which have a bearing on combinatorics entropy. From the angle of Coulomb systems,
we analyse properties related to the charge density q(r) = ρ+(r)− ρ−(r), which is a linear combination
of the specie’s density fields. The charge field is directly related with the energy.

A particular feature of our FT formulation is that the entropic contribution (i.e. enumeration of states)
and the interaction potential are both treated as functionals of the density fields. Consequently, an inter-
esting feature of our FT formulation is that the entropic contribution due to the enumeration of states,
in relation to indistinguishability, and the contribution related to the interaction potential appear at the
same level in the Hamiltonian. Thus the fluctuations of entropy and fluctuations related to the interaction
have to be combined. We reckon that in the FT framework the calculation of the functional integral will
evidence strong correlations between these different properties thereby allowing original interpretations.
In the case of electrolytes, intuitively, when we alter the charge distribution, i.e. the Coulomb energy, we
also modify the relative number of the species i.e. their purely entropic combinatorics contribution.
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We examin hereafter simple point ions focusing on the competition between combinatorics entropy
and Coulomb energetic effects and we bypass excluded volume effects. We also start from the more
simple symmetric 1:1 electrolyte and generalise to the case of asymmetric in valence systems.

3. Entropic effects in electrolytes.

3.1. Role of the entropic functional in perturbation theory.

In the mean field approximation, using the full entropic functional, the response to a charged inter-
face corresponds to the non linear Gouy-Chapman theory [36]. Beyond mean field approximation, it is
interesting to analyse the role of the entropic functional when discussing fluctuations. We will need to
expand the entropic part of the Hamiltonian which for 1:1 Coulomb systems is

Hent =

∫
dr {ρ+(r) [ln(ρ+(r)/ρ̄+)− 1] + ρ−(r) [ln(ρ−(r)/ρ̄−)− 1]}, (10)

where ρ̄± = eβµ±/Λ3
± and in this context ρ̄ = ρ̄+ + ρ̄−. As above mentioned, there are separate terms

corresponding to each ion. However, for the study of Coulomb systems, the more natural variables are
the charge density q(r) and the total density s(r) = ρ+(r) + ρ−(r). Each of the two terms, originally
independent with respect to each ion, in the entropic functional, will mix the two ionic fields, as ρ±(r) =

(s(r) ± q(r))/2. As a consequence, the higher than quadratic terms, in the expansions, will include
products of δq and δs, the dimensionless excess fields. The expansion is a sum of local coupling terms.
The first terms are shown as follows

δHent = − ρ̄

2

∫
δq2(r)δs(r) dr +

ρ̄

12

∫
δq4(r) dr ... . (11)

We treat the quadratic terms separately because they include the interaction potential and they are diag-
onal in the q and s fields. For point ions, quadratic terms result in the well known Debye limiting law in
the bulk [37].

In the following, we examine hard planar neutral interfaces, i.e. an electrolyte confined to half space
and a uniform dielectric constant. We shall evidence that these a priori simple systems exhibit non trivial
electrostatic phenomena.

3.2. Entropic effects for inhomogeneous electrolytes.

Ionic depletion at a neutral interface
In [28], we have shown the existence of an ionic depletion profile of the total density s, at neutral

interface, although there is, logically, no profile for the charge density q at neutral interface. From a
standard perspective, this phenomenon can be rationalised as the cost of rupturing the ionic atmosphere
near the surface, leading to a depletion of both the ionic profiles. From the FT approach, we observe that
the theory predicts a profile of the quadratic fluctuations of the charge. Physically, some fluctuations are
frustrated at the vicinity of the interface due to the absence of ions in the other half space. The role of
the entropic functional is to imply that this coulombic effect on the charge fluctuations be coupled to the
total density field although the quantity is not directly related to the Coulomb interaction. We would like
to emphasise that the outcome is a consequence of the first term of eq. (11), which combines both the
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square of the charge density and the total density. The result obtained, at the first level in loop expan-
sion of the FT, is consistent with the pressure calculated at the same level of approximation. Hence, the
theory verifies the exact condition given by the contact theorem. We underline that this equation relates
the bulk pressure to the contact value of the density at the interface, and corresponds to the mechanical
equilibrium condition of the system. Although intuitively obvious, this equilibrium is not implied in
”popular” approaches like the Gouy-Chapman or the MSA (Mean Spherical Approximation) [38] theo-
ries. The two different interpretations i.e. the one concerning the ionic cloud which refers to an energetic
balance and the FT involving the entropy are not in contradiction. In both cases, the temperature plays
a central role. In the first case, we emphasise the thermal agitation controlling the extension of the ionic
atmosphere. In the FT, the temperature sets the scale for the entropic effects – the energetic effects being
present in the quadratic charge fluctuations.

The anomalous capacitance behaviour.
Another phenomenon which has been lately examined in detail, is the anomalous capacitance be-

haviour. Experimentally and in numerical simulations, scientists have shown systems where the electric
capacitance decreases at low reduced temperature [39–49]. This phenomenon is non intuitive as one
expects the electric response of the system to decrease with increasing thermal agitation as in Gouy-
Chapman and MSA theories. The phenomenon appears at low reduced temperature when the Coulomb
interaction becomes stronger. Within the FT, this behaviour can be comprehended when seen in terms of
the ionic depletion effect. The decrease in the density profiles naturally leads to a decrease in the electric
response, i.e. the electric capacitance. Note that in this case, the calculation of the capacitance involves
both terms in eq. (11). For point ions [29], we have a simple analytic expression of the capacitance. This
expression has been modified to account for the size of the ions [31]. The comparison with the numerical
simulations is positive and the simplicity of the expressions and of the relevant corrections indicate that
”we capture the significant physical effect”.

3.3. Entropic effects for multivalent electrolytes

Entropic effects are bound to play an important role in valence asymmetric systems, z+ : z− elec-
trolytes. The electroneutrality condition has modified the number balance of the ions and therefore the
combinatoric entropic balance between the species.

Anomalous capacitance for multivalent electrolytes.
In [32], we have considered capacitance curves for different valencies. The curves are scattered but

we come to the conclusion that one should first redefine the temperature T ∗ → T ∗
s = T ∗/(z+z−),

a scaling with the ionic strength. This transformation is evident in FT and can be associated with a
scaling of the charge density field Q = q/(z+z−). In so doing, 1:1 electrolyte quadratic terms in the
Hamiltonian are restored, and are the basis for our calculation. However, the ionic strength z+z− scaling
does not discriminate between a 2:2 and a 4:1 electrolyte. The FT introduces a distinct parameter zas =

(z+ − z−)/
√

z+z− which is truly characteristic of the valence asymmetry [30, 32]. The Hamiltonian is
then

βδH = − ρ̄

2

∫
δs(r)δQ2(r)dr +

ρ̄

12

∫
δQ4(r)dr− ρ̄zas

6

∫
δQ3(r)dr +

ρ̄z2
as

12

∫
δQ4(r)dr + ...(12)
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where, in comparison to eq. (11), we have extra terms depending on zas. The FT predictions, in relation
to this parameter, indicate an increase of the differential capacitance peak, clearly shown in numerical
simulations. To our knowledge, this behaviour has not been evidenced by any other theory. In the case
of multivalent ions, it is the last term of the entropic functional eq. (12) which plays a central role.

Potential of zero charge (PZC) for size and valence asymmetric systems.
In [50], Torrie et al. have shown the existence of a spontaneous polarisation of the neutral interface

due to the asymmetry in valence. Twenty years later, Henderson et al. [51] have generalised the study by
considering both asymmetry in size and/or in valence. The asymmetry in size is evident – smaller ions,
by reaching nearer the interface, induce a polarisation. Less evident is the polarisation due to valence
asymmetry. From a superficial analysis, we come to the conclusion that the charge profile is constant
and vanishing all the way accross the interface in the absence of charge at the interface. In contrast,
numerical simulations show that there is indeed a charge profile. In [51], the authors, searching for sim-
ple analytic approaches, were able to demonstrate the size effect. However, none of the standard liquid
state theories account for the valence effect [51, 52] except for the MPB approach used in [50] and more
recently in a version of the DFT [53]. These approaches are mathematically demanding. Conversely,
we find that FT predicts the polarisation due to multivalency with simple analytic expressions. Explicit
dependence on the zas asymmetry parameter allows generalisation for any valences. The charge profile
thus calculated is consistent with the exact condition given by the charge contact theorem [54]. Given
the crude point ion model, comparison with the numerical simulation results [30] shows an unexpected
convergence. Note that in the calculation of the PZC, it is the third term in the expansion of the entropic
functional eq. (12) which has been used.

In all the examples considered, we find simple analytic expressions which explain the physical be-
haviour as a function of few physical parameters. Using FT, the specific emphasis on the entropic func-
tional leads to a new understanding of the phenomena and our results indicate that we incorporate the
relevant physics. We should also point out that in the previous examples, different terms in the expansion
eq. (11) and (12) are used in the calculation. From the use of different terms, we come to the conclusion
that we require specifically the entropic functional given in our Hamiltonian. This functional also tells
us that there is an unavoidable coupling between the charge and the total density field. For multivalent
systems, we point out that there are few theoretical results. In FT, we have a systematic parametrisation
of these systems in terms of the zas asymmetry parameter. Finally, we also specify that the use of a point
ion model indicates that excluded volume effects are not relevant to the different problems considered.

4. Conclusion.

In this paper, we have given examples concerning electrolytes stressing the particular role of the
entropic functional in our FT approach. We emphasise, that ”switching” from the traditional particle
description to a field description, by means of the use of an intuitive field representing directly the
particle density distribution, is not a minor process. In the classical description, particles are localised
objects which we label, before possibly delabelling them. Fields are objects defined everywhere in space,
and they are indexed simply by the space coordinates. The degrees of freedom of particles and fields are
a priori incommensurate. The transcription of fundamental properties for particles in terms of fields is
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necessary in order to achieve the correct physical representation. This is why the entropic functional was
written. The framework presented leads, in our opinion, to an essentially new approach.

Bringing the purely combinatorics entropic aspects to the same level as the interaction potential level
clears the path to a different interpretation in terms of coupling and competition between combinatorics
entropy and energy. Apart from the simplicity and consistency of the results, which seem to indicate that
we draw on a meaningful description, we want to stress specific features of the FT approach.

In classical statistical mechanics, we are accustomed to describing localised particles and potentials
coupling these particles at different points in space. We associate the description with a labeling process.
In the end, this process is cancelled by introducing the factorial of the number of particles. This is not
a trivial issue. It introduces another correlation over the whole system, which adds to the point to point
correlation given by the interaction potential. In contrast, in the FT, the field is delocalised whilst the
entropic functional is local. The entropic effect of the IS appears, in expansions, as local coupling of the
field. As previously mentioned, these terms are powers of the field at a given point which have a physical
meaning. This process seems to us more natural than introducing a supplementary non local coupling
via the factorial permutations of the ensemble of particles.

Another interesting feature of the FT, is that we can simply perform linear combinations of the fluc-
tuating fields and not only on the average quantities. This is shown on the charge and total density fields
which are linear combinations of ionic species fields. At present, we cannot work out the equivalent of
such simple transformations in terms of particles. Our theory can be generalised to mixtures, where the
choice of adequate linear combinations of the fields would reflect specific properties of the interactions
between the species. This would put in evidence properties related to the IS and which is broken in
various ways in mixtures.
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