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Abstract:



We show that the configurational probability distribution of a classical gas always belongs to the q-exponential family. One of the consequences of this observation is that the thermodynamics of the configurational subsystem is uniquely determined up to a scaling function. As an example we consider a system of non-interacting harmonic oscillators. In this example, the scaling function can be determined from the requirement that in the limit of large systems the microcanonical temperature of the configurational subsystem should coincide with that of the canonical ensemble. The result suggests that Rényi’s entropy function is the relevant one rather than that of Tsallis.
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1. Introduction


Many-particle systems are usually studied in the canonical or grandcanonical ensemble. But for small systems the equivalence of ensembles breaks down and it becomes interesting to study the microcanonical ensemble. One of the intriguing questions in this context is whether phase transitions can occur in the way proposed by Dieter Gross in [1]. We will not consider this question here but use it as a motivation to study the thermodynamics of closed systems. The arguments of Gross are a mixture of statistical physics applied on microscopic models and of macroscopic thermodynamics. A more clean approach requires that the thermodynamic formalism is derived from the statistical theory rather than being used as a generally valid but unexplained addition.



The present paper exploits the characteristic of classical systems that the coordinates and the conjugated momenta can be considered as two mutually interacting subsystems. By considering a subsystem one avoids the difficulty that the probability distribution of the microcanonical ensemble is a singular measure (a Dirac delta function). By integrating out the momenta, which is always possible for a Hamiltonian which is quadratic in the momenta, the configurational probability distribution results. To our surprise, this distribution function belongs to the q-exponential family, the definition of which is given in Section 3. A related observation, made 15 years ago [2], is that the probability distribution of a finite system in interaction with a heat bath is non-extensive in the sense of Tsallis [3]. The implications of our observation are important. It places non-extensive thermostatistics at the heart of statistical physics. In addition, many properties of the configurational subsystem can now be studied in a systematic way.



The present paper makes use of the knowledge that the probability distributions of non-extensive thermostatistics automatically induce the standard thermodynamical formalism. This means in particular that the thermodynamic entropy and the temperature of the configurational subsystem are fixed in a unique manner up to a monotonic function, which is referred to as the scaling function.



In the next Section we discuss various choices of the microcanonical entropy function. Section 3 introduces the notion of a q-exponential family of probability distributions. In Section 4 the configurational probability distribution is calculated. It is shown to belong to the q-exponential family. Section 5 deals with thermodynamic relations. Section 6 treats a simple example and discusses the scaling function. Finally, a short discussion follows in Section 7.




2. Microcanonical entropies


The entropy [image: there is no content] which is most often used in the classical microcanonical ensemble is


[image: there is no content]



(1)




where [image: there is no content] is the N-particle density of states. The latter is given by


[image: there is no content]



(2)




Here, [image: there is no content] is the position of the j-th particle and [image: there is no content] is the conjugated momentum, [image: there is no content] is the Hamiltonian. The constant h is introduced for dimensional reasons. This definition goes back to Boltzmann’s idea of equal probability of the microcanonical states and the corresponding well-known formula [image: there is no content], where W is the number of microcanonical states. However, this choice of definition of entropy has some drawbacks. For instance, for the pendulum the entropy [image: there is no content] as a function of internal energy U is a piecewise convex function instead of a concave function [4]. The lack of concavity can be interpreted as a microcanonical instability [1, 5]. But there is no physical reason why the pendulum should be classified as being instable at all energies.



The shortcomings of Boltzmann’s entropy have been noticed long ago. A slightly different definition of entropy is [6, 7] (see also in [8] the reference to the work of A. Schlüter )


[image: there is no content]



(3)




where [image: there is no content] is the integral of [image: there is no content] and is given by


[image: there is no content]



(4)




Here, [image: there is no content] is Heaviside’s function. An immediate advantage of (3) is that the resulting expression for the temperature T, defined by the thermodynamical formula


[image: there is no content]



(5)




coincides with the notion of temperature as used by experimentalists. Indeed, one finds


kBT=[image: there is no content][image: there is no content].



(6)




For a harmonic oscillator the density of states [image: there is no content] is a constant. Hence, (6) implies [image: there is no content], as wanted. It is well-known that for classical monoatomic gases the r.h.s. of (6) coincides with twice the average kinetic energy per degree of freedom. This result is also derived below — see (28). Its significance is that the equipartition theorem, assigning [image: there is no content] to each degree of freedom, does hold for the kinetic energy also in the microcanonical ensemble. Quite often the average kinetic energy per degree of freedom is experimentally accessible and provides a unique way to measure accurately the temperature of the system.



But also (3) and (6) are subject to criticism. In small systems finite size corrections appear [8, 9] for a number of reasons. As argued in [9], the problem is not the equipartition of the kinetic energy over the various degrees of freedom, but the relation between temperature and kinetic energy.




3. Generalized exponential family


Recently, the notion of a generalized exponential family has been introduced both in the physics [10,11,12,13] and in the mathematics [14,15,16,17] literature. It is shown in the next Section that the configurational probability distributions of a classical real gas in the microcanonical ensemble always belong to the q-exponential family, which is a special case of the generalized exponential family. A first observation in this direction was made in [13].



Fix a number q. The probability distribution [image: there is no content] with parameter θ is said to belong to the q-exponential family if it can be written as


[image: there is no content]



(7)




where the q-deformed exponential [18, 19] is defined by


[image: there is no content]



(8)




The notation [image: there is no content] is used. In (7) it is important that [image: there is no content] and [image: there is no content] do not depend on the parameter θ and that the normalization constant [image: there is no content] does not depend on x. In the limit [image: there is no content] the q-exponential function reduces to the natural exponential function. The notion of the q-exponential family then reduces to the standard notion of an exponential family.



Distributions belonging to the q-exponential family share a number of properties which make it attractive to work with these distributions. See for instance [13]. These properties are well-known to physicists because the Boltzmann-Gibbs distribution


[image: there is no content]



(9)




belongs to the standard exponential family, which corresponds with the choice [image: there is no content]. In particular, when [image: there is no content] is the energy of a mechanical system, and [image: there is no content] belongs to the q-exponential family, then there is a unique way to fit the statistical model into the context of thermodynamics.




4. The configurational probability distribution


A classical model of N particles is determined by the Hamiltonian


[image: there is no content]



(10)




where [image: there is no content] is the position of the j-th particle and [image: there is no content] is the conjugated momentum. The microcanonical ensemble is then described by the singular probability density function


fU(q,p)=1[image: there is no content]δ(U−H(q,p)),



(11)




where [image: there is no content] is Dirac’s delta function. The normalization is so that


[image: there is no content]



(12)




The particles are enclosed in a box with volume V. For simplicity, we take only one conserved quantity into account, namely the total energy. Its value is fixed to U.



In the simplest case the Hamiltonian is of the form


H(q,p)=12m∑j=1N|[image: there is no content]|2+V(q),



(13)




where [image: there is no content] is the potential energy due to interaction among the particles and between the particles and the walls of the system. It is then possible to integrate out the momenta. This leads to the configurational probability distribution, which is given by


[image: there is no content]=1h[image: there is no content]∫R[image: there is no content]dp1⋯dpNfU(q,p).



(14)




The normalization is so that


[image: there is no content]



(15)




Let [image: there is no content] denote the volume of a sphere of radius 1 in dimension N. A short calculation gives


[image: there is no content]=1h[image: there is no content]1[image: there is no content]∫R[image: there is no content]dp1⋯dpNδ(U−H(q,p))=1h[image: there is no content]1[image: there is no content]ddU∫R[image: there is no content]dp1⋯dpNΘU−V(q)−12m∑j=1N|[image: there is no content]|2=1h[image: there is no content]1[image: there is no content](2m)3N/2B(3N)ddU[U−V(q)]+3N/2=12h[image: there is no content][image: there is no content][image: there is no content](2m)3N/2B(3N)U−V(q)+32N−1=cNexpq−α(θ)−θV(q),



(16)




with


[image: there is no content]



(17)




For convenience we assume here that [image: there is no content] is a strictly increasing function of U so that it can be inverted to obtain U as a function of θ. One concludes from (16) that the configurational density function [image: there is no content] of a classical gas in the microcanonical ensemble with parameter U always belongs to the q-exponential family with the constant q given by (17).




5. Dual identities


It is well-known that the q-exponential distribution optimizes the Tsallis entropy [20] and that together with the configurational energy [image: there is no content] it satisfies the thermodynamic duality relations [10]. As shown below, these identities imply the statement that the ratio [image: there is no content] equals the average kinetic energy.



Of course, also any monotonically increasing function of the Tsallis entropy will be optimized by the same probability distributions. In particular, Rényi’s alpha-entropy [21, 22], given by


Iα(f)=11−αlncN∫R[image: there is no content]dq1⋯dqNf(q)cNα,



(18)




is such an equivalent entropy function (note that this expression slightly differs from the standard one; its justification is found in [23]). For that reason we will write the configurational entropy [image: there is no content] as an unknown monotonic function of a quantity [image: there is no content], where the latter is obtained by maximizing the entropy function [image: there is no content].



An appropriate way of writing Tsallis’ entropy [image: there is no content] is [13] (assume [image: there is no content] for convenience)


I(f)=−cN∫R[image: there is no content]dq1⋯dqNF1cNf(q)



(19)




with


F(u)=∫0udvlnq(v)=u1−q12−qu1−q−1.



(20)




Using (16, 17) one obtains


[image: there is no content]≡I(fUconf)=−11−q∫R[image: there is no content]dq1⋯dqNfUconf(q)12−q1cNfUconf(q)1−q−1=12−q1+α(θ)+θ[image: there is no content]=11−q−θ2−q[image: there is no content],



(21)




with [image: there is no content]=U−[image: there is no content].



The corresponding Massieu function is then given by


Φ˜(θ)=[image: there is no content]−θ[image: there is no content]=11−q−θU2−q−1−q2−qθ[image: there is no content].



(22)




Using the dual identities [10, 13]


dΦ˜dθ=−[image: there is no content]andd[image: there is no content]d[image: there is no content]=θ



(23)




one obtains


[image: there is no content]=U+(1−q)θd[image: there is no content]dθ+θdUdθ



(24)




and


(1−q)θ=−[image: there is no content]dθdU+θdUd[image: there is no content].



(25)




Since both identities imply the same result we continue with one of them. The latter can be written as


d[image: there is no content]dU=ω′(U)[image: there is no content][image: there is no content]−11−q.



(26)




Use this result to calculate


ddUω(U)[image: there is no content]=ω′(U)[image: there is no content]+ω(U)1−d[image: there is no content]dU=2−q1−qω(U)=[image: there is no content]2ω(U).



(27)




By integrating this expression one obtains the average kinetic energy


[image: there is no content]=[image: there is no content]2[image: there is no content][image: there is no content].



(28)




This expression gives the relation between the average kinetic energy and the total energy U via the density of states [image: there is no content] and its integral [image: there is no content]. The integration constant must be taken so that [image: there is no content] when [image: there is no content] (implying that the kinetic energy vanishes in the ground state).




6. Example


Consider a set of [image: there is no content] harmonic oscillators. The potential energy equals


V(q)=12m∑j=1[image: there is no content]ωj2qj2.



(29)




One calculates


[image: there is no content]=1h[image: there is no content]∫R[image: there is no content]dp1⋯dp[image: there is no content]∫R[image: there is no content]dq1⋯dq[image: there is no content]×ΘU−12m∑jpj2−12m∑jωj2qj2=1(3N)!∏j=1[image: there is no content][image: there is no content]4πUh[image: there is no content].



(30)




From (17) and (30) now follows


1θ=(1−q)Γ(3N/2)Γ(3N)1∏j=1[image: there is no content][image: there is no content]4πh[image: there is no content]U3N−11−q.



(31)




Using Stirling’s approximation one obtains


[image: there is no content]



(32)




so that, assuming that all [image: there is no content] are equal to some ω,


1θ∼e4πhωU[image: there is no content]2.



(33)




On the other hand, the inverse temperature β of the canonical ensemble with [image: there is no content] degrees of freedom satisfies


1β=U[image: there is no content].



(34)




The requirement that the canonical temperature coincides with the microcanonical temperature as obtained from (5) now determines the monotonic function which relates the thermodynamic [image: there is no content] to the quantity [image: there is no content]. From this requirement follows that


[image: there is no content]=3Nln2[image: there is no content]+A,



(35)




for some constant A. On the other hand, (33) implies that


[image: there is no content]∼−1ehω4π2(3N)2[image: there is no content]+constant.



(36)




Therefore the relation between [image: there is no content] and [image: there is no content] is logarithmic. More precisely, [image: there is no content]=ξ([image: there is no content]), with [image: there is no content] of the form [image: there is no content], with constants B and C. This suggests that Rényi’s entropy function is the right one to start with. Indeed, let [image: there is no content]. The relation between Rényi’s [image: there is no content] and [image: there is no content], as given by (19), is [image: there is no content] with


[image: there is no content]



(37)




Take the constant in (36) equal to [image: there is no content]. Then one obtains


[image: there is no content]≡ξ[image: there is no content]≃[image: there is no content]2−1ln[image: there is no content]6N+constant.



(38)




This yields


d[image: there is no content]d[image: there is no content]=[image: there is no content]2−11[image: there is no content]=3N−2U,



(39)




which is an acceptable relation for the inverse temperature β, because it predicts that the total energy U is an extensive quantity.




7. Discussion


The main purpose of the present paper is to point out that the configurational probability distribution of a classical gas always belongs to the q-exponential family. The non-extensivity parameter q is given by


[image: there is no content]



(40)




where N is the number of particles. The latter expression has appeared quite often in the literature, see for instance [2, 24, 25]. Reference [2] considers a finite system in contact with a finite heat bath. Making some assumptions this leads to a Tsallis canonical distribution, which can be written as a q-exponential family. Next the assumption is made that the heat bath consists of harmonic oscillators. This assumption is fulfilled in the present case because the heat bath consists of the kinetic degrees of freedom. Ref. [24] deals with the ideal gas in the Tsallis canonical ensemble. Ref. [25] studies homogeneous Hamiltonian systems in the same ensemble.



The main consequence of our observation is that the subsystem of configurational degrees of freedom can be described using standard thermodynamics involving the entropy [image: there is no content] of the configurational subsystem. The thermodynamic relation


kBβ=d[image: there is no content]d[image: there is no content]



(41)




then defines the microcanonical inverse temperature β. The same thermodynamic relation can be used to rederive a known result, which states that the average kinetic energy [image: there is no content] of a classical gas in the microcanonical ensemble can be obtained from the density of states [image: there is no content] and its integral [image: there is no content] — see (28).



Note that the probability distributions determine the entropy function up to a monotonically increasing function [image: there is no content]. This is so because the same entropy function is maximized for all values of the parameters. To cope with the non-uniqueness we used the notations [image: there is no content] instead of S and θ instead of β for the entropy, respectively the inverse temperature, because the function ξ which relates [image: there is no content] to the thermodynamic S is not known a priori. However, in the limit of a large system ([image: there is no content]) the non-extensivity parameter goes to 1 and the configurational probability distribution approximates a Boltzmann-Gibbs distribution. It is then obvious that [image: there is no content] should be chosen in such a way that the inverse temperature θ becomes the inverse temperature β of the canonical ensemble.



For the example of [image: there is no content] non-interacting harmonic oscillators we calculate all quantities explicitly and obtain an explicit expression for the scaling function [image: there is no content]. It turns out that the relevant entropy function, which equals the thermodynamic entropy when evaluated in equilibrium, is not that of Tsallis but rather that of Rényi. From the point of view of Jaynes’ maximum entropy principle both are of course equivalent. But in the context of thermodynamics only one of the two can yield correct values for the temperature. Note that the preference for the Rényi entropy is based here on one simple example. Further investigations are needed to establish this result in a more abstract setting.



In conclusion, we did not solve the problem of fixing the right expression for the microcanonical entropy S. But a good candidate for the configurational contribution [image: there is no content] is the value of Rényi’s entropy function evaluated at the equilibrium value of the configurational probability distribution.
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