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Abstract: In order to demonstrate possible broader applications of information theory to 

the quantification of non-human communication systems, we apply calculations of 

information entropy to a simple chemical communication from the cotton plant 

(Gossypium hirsutum) to the wasp (Cardiochiles nigriceps) studied by DeMoraes et al. The 

purpose of this chemical communication from cotton plants to wasps is presumed to be to 

allow the predatory wasp to more easily obtain the location of its preferred prey—one of 

two types of parasitic herbivores feeding on the cotton plants. Specification of the plant-

eating herbivore feeding on it by the cotton plants allows preferential attraction of the 

wasps to those individual plants. We interpret the emission of nine chemicals by the plants 

as individual signal differences, (depending on the herbivore type), to be detected by the 

wasps as constituting a nine-signal one-way communication system across kingdoms (from 

the kingdom Plantae to the kingdom Animalia). We use fractional differences in the 

chemical abundances, (emitted as a result of the two herbivore types), to calculate the 

Shannon information entropic measures (marginal, joint, and mutual entropies, as well as 

the ambiguity, etc. of the transmitted message). We then compare these results with the 

subsequent behavior of the wasps, (calculating the equivocation in the message reception), 

for possible insights into the history and actual working of this one-way  

communication system.  
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1. Introduction 

 

In a paper by DeMoraes et al. [1] the cotton plant Gossypium hirsutum (among other plants) was 

found, by gas chromatography, to emit specific quantities of nine chemicals indicative of one or the 

other of two particular herbivorous insects that feed on it—the tobacco budworm (Heliothis virescens) 

or the maize earworm (Heliocoverpa zea). This multi-chemical communication was received by the 

predatory wasp, Cardiochiles nigriceps (popularly named the “red-tailed wasp”), that is known to 

prefer to prey (lay eggs) on H. virescens compared to H. zea. DeMoraes et al. [1] demonstrated that 

this “specific plant signaling” system of “information-rich signals” (quoted from their paper), being 

received by the wasps, allowed them to preferentially select which plants to expectantly land on, using 

only these chemical clues (since all evidence of the herbivores’ presence, including dead leaves, had 

been removed prior to releasing the wasps into the cotton garden). However, in their paper, they did 

not attempt to quantify the information that was actually transmitted to the wasps. We take this 

opportunity to demonstrate how such a communication system might be thus quantified, as well as 

point out some important aspects to be aware of when applying information theory to such biological 

signaling systems. 

 

2. Information Entropy Measures and the Zipf Statistic  

 

Information theory, as first formulated by Shannon ([2], see also [3]) can be applied to quantify the 

information transmission rates within any communication system as long as the signals are correctly 

classified (one of the main difficulties in the application to non-human biological communication 

systems). For instances where only changes within the same communication system of signals are to 

be measured, the signal classification, in most cases, merely needs to be consistent between the two (or 

more) data sets to allow preliminary comparisons of such changes in the information content. This 

assumes, of course, that the signaling system is not in some kind of compressed code (in which case 

the de-coding algorithms should be considered as part of the total information content of that 

communication system). In addition to broad application to human and computer communication 

systems (e.g., [4,5]), information theory has already found application to many animal communication 

systems (e.g., reviewed in McCowan et al. [6]; see also [7]), as well as chemical signaling systems 

such as DNA (e.g., [8]).  

In this paper we will employ the straightforward formulations of information entropy as given in the 

original work by Shannon [2,3,7]. We consider a two-part system, X, Y where i and j are the categories 

of X and Y, respectively, and p(i) and p(j) are the associated marginal probabilities. The probability 

that Y = j if X = i is the conditional probability p(j) and the probability that X = i if Y = j is the 

conditional probability Pj(i). The probability of the joint occurrence X = i while Y = j is then: p(i,j) = 

p(i)pi(j) = p(j)pj(i) which equals p(i)p(j) when X and Y are independent.  

The information entropy follows from the marginal probabilities for N (equals M in our case) signal 

types (representing the two plant message types, one for each herbivore type): 

H (X)   p(i)log2 p(i)
i1

N

       (1a) 
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H (Y )   p( j)log2 p( j)
j1

M

       (1b) 

We can refer to Equation (1a) and (1b), the marginal entropies, also as the “first-order entropies,” 

after [5-7], because it is a first-order approximation to the entropy of the system which does not take 

into account higher-order conditional probabilities (di-gram or tri-gram structure, etc. for example). 

For a uniform distribution of N different signal types we see that:  

H0 (X)   N 1 log2 N 1

j1

N

  log2 N      (2) 

which can be referred to as the “zero-order entropy”. Throughout this analysis the total number of 

signals is assumed to be sufficiently well sampled, and statistically ergodic, to allow the frequencies of 

occurrence of the signal units to approximate their actual probability distributions, (a caveat that must 

be taken into account in any information theoretic analysis).  

The next entropic measure allows us to take into account the information in two messages—usually 

in the comparison of a message sent with the message received for a two-say communication system. 

But in the problem considered here, we shall want to be able to distinguish between two chemical 

messages sent essentially at the same time. Based on the joint probability, p(i,j), the joint entropy is 

defined as:  

H (X,Y )   p(i, j)log2 p(i, j)
i, j1

N ,M

      (3) 

In our application we shall find that the joint entropy will be most relevant since the cotton garden 

may be expected to be emitting both sets of chemical signal distributions at once, which the wasp must 

distinguish between. Each set consists of the same nine chemical signals but in different ratios, as we 

shall see below. We note that, superficially, this should be a 1-bit decision process between two plant 

chemical emission types, since the order of the two chemicals, in this case, do not represent additional 

choices (and assuming no higher-order conditional probabilistic structure).  

We are interested in the measure that allows the two messages to be distinguished. If the two 

messages were completely independent of each other than, as mentioned, the joint entropy would have 

been equal to the sum of the marginal entropies: H(X,Y) = H(X) + H(Y). However, if this is not the 

case, the difference between the sum of the first-order (marginal) entropies of the two messages, H(X), 

H(Y), and the actual joint entropy, H(X,Y), will be a measure of how far from independence these two 

message data sets are. Therefore I(X,Y), the mutual entropy, is the measure of the overlapping 

information transmitted from the two messages, and is given by:  

I(X,Y )  H (X)  H (Y )  H (X,Y )      (4) 

This rate is usually the entropy of X (the transmitted message data set) plus the entropy of Y (the 

received—or in this case the second transmitted data set), minus what is often called the “uncertainty” 

in the joint occurrence of the combination of X  and Y . Again, if some correlation exists between the 

information in message sets H(X) and H(Y), then the conditional information entropies (Equations 5 

and 6, below) are non-zero. The conditional information components of the entropies of the two data 

sets are thus designated as: 
H (Y | X)  H (X,Y )  H (X)       (5) 

which, in a two-way communication system, is known as the “ambiguity” and: 
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H (X | Y )  H (X,Y ) H (Y )       (6) 

which, in a two-way communication system, is usually known as the “equivocation”. However, as 

already noted, in our case both values will represent ambiguities because both messages under 

consideration are transmitted. In other words, the ambiguity will be between the two types of 

messages, while the uncorrelated portion of the two messages is what will allow the unequivocal 

identification of the H. virescens plants by the wasps, (as we shall see below). In the case of the 

emitted chemical signals, both Equation 5 and Equation 6, then, represent values for ambiguity in the 

transmission. The equivocation (in reception of the messages) will be calculated later using the 

response of the wasps to the two transmitted messages. Before this, however, in the next section we 

shall examine the Zipf statistic for this communication system.  

 

3. The Zipf Statistic  

 

Before moving on to the calculation of the information theoretic measures, we want to take a more 

detailed look at the distribution of the probabilities of occurrence of the signals in this system by 

examining a plot known as “Zipf’s Law,” or the “Zipf statistic.” Zipf’s Law is simply another way of 

examining the distribution of the individual components of the first-order information entropy  

(Equation 3) by performing a linear regression on the (base 10) logarithm of the frequencies of 

occurrence of signals against the logarithm (base 10) of their rank. We use the term “rank” here to 

refer to the order from highest to lowest frequencies of occurrence (from 1st to 9th in this example). 

As is well know in linguistic circles, Zipf’s Law or the Zipf statistic results in a best fit slope of about 

–1 for most human languages (letters, words, phonemes, etc.; see [9-11]). A Zipf’s Law examination 

of the frequency-of-occurrence components has also previously been applied to various animal 

communication systems as well (see, e.g., [6,12], and references therein).  

As a first-order measure of potential informational structure or coding within a communication 

system, the Zipf statistic can act as a guide. A slope around –1 in the Zipf plot in human language 

systems implies polysemy and may be a requirement for symbolic communication systems [10]. Here 

it may simply be indicative of the nine-chemical communication system having a high repetition rate. 

(We note that the number of signal types needs to be similar to allow even redundant systems to be 

inter-compared using Zipf’s Law). In Figure 1 we show the Zipf plot for the chemical units listed in 

Table 1, where the log base-10 of all three lists of probabilities of occurrence, p(v), p(z), and p(v,z), 

have been regressed against the log base-10 of their rank order.  

An example of a non-human communication system with a Zipf slope close to –1 is frequency 

distribution of adult bottlenose dolphins whistle-signals (although this does not hold for the whistle 

distribution of juvenile dolphins) [6,7,11]. The shallower the slope, the less redundant the signaling 

systems—for example both infant human baby babbling as well as infant dolphin whistle “babbling” 

have slopes around –0.8 [6,7,11]. A steeper negative slope of the Zipf statistic indicates more 

redundancy. Adolescent humans—already in the beginning processes of learning a specific language—

may be expected to repeat a smaller vocabulary of sounds/words more often as they transition from a 

more random (but large number of) babbling sounds to specific words, thereby causing the negative 

Zipf slopes to steepen. However, a Zipf slope as steep as –2, indicated in the chemical communication 

system under consideration, is not generally encountered in either common human languages nor the 
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complex animal vocal communication systems studied to date (e.g., bottlenose dolphins, squirrel 

monkeys, humpback whales [12,14]).  

 

Figure 1. Zipf statistic. This is the log-10 of the frequency-of-occurrence of the nine 

chemical signals in Table 1 regressed against the log-10 of the rank (order from most to 

least frequent). R is the goodness of fit. Diamonds (green) are for the fractional chemical 

emissions from H. virescens infested plants, squares (blue) are for H. zea infested plants, 

and circles (red) are for both types of infestations taken together. Slopes for H. virescens, 

H. zea, and both together (joint occurrence) are –2.06, –2.65, and –1.58, respectively, 

indicating a not unexpectedly high level of repetition possible for this communication 

system. The highest, (i.e. steepest negative) slope was for the cotton plants infested with H. 

zea, as expected from the dominance of one particular chemical in this case (see Table 1).  

 

 
 

One could suppose that “syntax-like” structure might exist in a chemical communication system 

(simple conditional probabilities between chemical units can be found even in DNA, for example [8]). 

But sequences of different chemical signals would have to be received in a time series of observations 

to ascertain if this is the case. As far as information entropic measures, repetition appears as higher-

order conditional probabilistic relationships between signals just as complex syntactical rule structure 

indicates complex rule structure in human languages. Repetition might, therefore, be referred to as the 

“null” conditional probabilistic structure of a communication system. However, as pointed out, it 

represents no real additional grammatical structure within the communication system—for this one 
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must exclude i = j = k, etc. in the summations deriving the entropic values (e.g., ([7], Equation 6). 

Real syntax-like structure thus requires conditional probabilistic relationships between signals of 

different types. For chemical communication systems such a higher-order structure (again, apart from 

repetition) would imply combinations and sequences of chemical unit differences that could produce 

new signal meanings when occurring in certain sequential orders. Sequences of individual chemicals, 

were measured in the experiment under discussion [1] but only at low time resolution (ratios of 

chemical were read out every three hours for a 48-hour period). The more complex the rules, the more 

ordered the signaling data set—such rules being a valuable tool for error recovery of messages [14,15]. 

So natural communication systems that improve the fitness or survival of a species might be expected 

to evolve such complex rule structure, at least to the capacity that a given species can produce and 

assimilate such complexity. 

 

4. Information in the Chemical Signals  

 

4.1. Information in the Transmitted Message  

 

The most complex system (in terms of highest information entropy) will be the system in which the 

wasps are perceiving all nine chemicals as the basic units of the communication system. The least 

complicated system would be one in which the wasps are perceiving only one of the chemicals (or 

perceiving groups of chemicals as only one signal). For now we shall assume that all nine chemicals 

are detected by the wasps, to begin with, and make the reasonable assumption that detectability of each 

chemicals is proportional to their abundance (i.e., wasps have no more intrinsic sensitivity to one 

chemical than to another).  

Here we are interested in the ability of the red-tailed wasp—using only the chemical signals emitted 

by the cotton plants—to distinguish between plants that were infested by the tobacco budworm (H. 

virescens) from plants that were infested by the maize earworm (H. zea). We wish to calculate a 

change in information content (chemical information emitted from the cotton plants) that would allow 

such a choice to be made by the wasps—who, as stated, prefer H. virescens to H. zea. The choice of 

the wasps was determined by their landing on a given plant. We note that only a quantitative change in 

the amount of the same nine chemical signaling units will be applied in our example here so that 

artifacts on the information entropy calculation, occasioned by the method of signal classification 

itself, are essentially absent. We recognize that the individual chemical amounts used here 

(nanograms) are not likely the precise units used by the wasps to “interpret” the message. Nevertheless 

it is reasonable to assume, as mentioned, that the amount of a given chemical present is proportional to 

the detectability of that chemical by a given species, which will give the same probabilities. (We also 

assume that both the minimum threshold for detectability of the chemicals by the wasps has been 

reached by the least abundant chemical and, on the other hand, that saturation of the wasps detection 

system by overabundance of a given chemical has not occurred.) For this precedent we might take an 

analogy from human language phonemes which are largely meaningless in isolation (as opposed to 

words) but nevertheless can give a correct idea of human language complexity when quantified using 

information theoretic measures (e.g., [5,13]).  
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In the experiment of DeMoraes et al. [1] red-tailed wasps were, indeed, preferentially attracted to 

the cotton plants with the H. virescens infestation a statistically significant number of times over those 

infested with H. zea. All insects and dead leaves had been removed at the time of release of the wasps, 

as mentioned, so the wasps had only chemical signals with which to make a choice (i.e., no visual 

clues). Therefore any deviation from a random choice regarding which plants to land on may be 

assumed to be made by the wasps based solely on their detection of any quantitative differences in the 

chemical indicators (see [1], who make this argument, for details).  

DeMoraes et al. [1] applied a gas chromatograph to measure nanogram traces of these nine specific 

chemicals, and these measurements are shown in Table 1. Using the nanogram amounts of the nine 

signaling chemicals emitted in each of the two feeding herbivore cases, we can calculate the 

frequencies of occurrence of each chemical divided by the total chemical quantity for that herbivore-

specific case (H. virescens or H. zea). The joint entropy is calculated using the total amount of a given 

chemical (from both types of plant emissions) divided by the total amount of chemicals emitted by all 

plants. In other words, for the distribution of individual chemical molecules within the wasp’s 

environment—near either an H. virescens or an H. zea infested plant—these abundances represent the 

likelihood that the wasp will detect them given an equally weighted perception, by nanogram amount, 

of each of these nine chemicals. For the chemicals shown in Table 1, the probabilities for H. virescens 
are given as p(i) , and the probabilities for H. zea are given as p(j).  

The joint probabilities, p(i,j), are, as mentioned, the sum of the nanogram amounts of a specific 

chemical given off by both cotton plants divided by the total nanogram amount of all chemicals 

emitted from both plant types. Thus we have the simultaneous occurrences of each chemical (joint 

probabilities) in the final column, each component of which is used in the calculation of their entropy 

and summed to get the final joint entropy of the system. We note that the total nanogram abundance of 

chemicals given out by the cotton plants that were infested with H. virescens is about 2.92 times the 

total nanogram amount give off by the cotton plants infested with H. zea, as we can see by summing 

the totals of the ng-labeled columns. (DeMoraes et al., note that over a 48-hour period 16 samples of 

the nine chemicals were taken, each time resulting in the same ratios of H. virescens compared to H. 

zea. However, a correction for this difference does not produce a significant change. We have applied 

this correction to the H. zea abundances and it reduces the joint probability by only 0.1 bits.) The 

information theoretic measures should still, then, be valid as long as we can indeed assume that one 

chemical does not totally dominate the detectability of the others by saturating the environment being 

sampled by the wasps. DeMoraes et al. [1] state, “No significant difference was observed in the total 

volatile amount released by the two plant-herbivore complexes,” so we can assume this applies to the 

total chemical mass given off during each of the wasp release experiments.  

Proceeding on these assumptions, we use the probabilities derived in Table 1, (for N = 9) to 

calculate the information entropies for H. virescens ( letting X = v) and H. zea (letting Y = z). The 

zero-order entropy, H0, is the same for both messages (data sets), since we use the same nine chemical 

signaling types in both cases. The first-order entropies, H(v) and H(z), the joint entropy, H(v,z), the 

conditional information entropies, H(z|v) and H(v|z), and the total uncorrelated information entropy, 

I(v,z), are all calculated.  
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Table 1. Percentage occurrences of chemical signaling units (abundances from [1]).  

Chemical Signals H. virescens (ng) p(i)  H. zea (ng) p( j)  p(i, j)  

(Z)-3-Hexen-1-ol 13,738 0.0389 215 0.0018 0.0294 

 -Pinene 53,310 0.1509 748 0.0062 0.1140 

(Z)-3-Hexenyl acetate 111,350 0.3151 6,922 0.0572 0.2493 
(E)- -Ocimene 120,257 0.3403 5,919 0.0489 0.2660 

(E)-4-8-Dimethyl-1,3,7-

nonatriene 
35,612 0.1008 88,000 0.7274 0.2606 

 -Caryophyllene 5,591 0.0158 546 0.0045 0.0129 

(E)-  -farnesene 9,177 0.0260 247 0.0020 0.0199 

(E,E)-  -farnesene 1,273 0.0036 9,073 0.0750 0.0218 

(E,E)-4,8,12-trimethyl-

1,3,7-tridecatetnaene 
3,075 0.0087 9,317 0.0770 0.0261 

 

Using Equations 1–6 and Table 1, we have: H0(v) = H0(z) = 3.17 bits, H(v) = 2.30 bits, H(z) = 1.46 

bits, H(v,z) = 2.47 bits, H(z|v) = 0.17 bits, H(v|z) = 1.01 bits, and I(v,z) = 1.29 bits. Note again that 

H(z|v) and H(v|z) are both ambiguities in the transmission from the H. virescens and H. zea infested 

plants, respectively, while the reception of the message—as measured by the reaction of the wasps to 

the chemical signals (which we discuss below)—represents the equivocation in this  

communication system.  

In our measures above, the zero-order entropy, of course, is the highest bit rate possible for a 

communication system with nine signal types (assuming, as it does, a uniform distribution of the 

signals). Subsequent constraints (conditional probabilistic relationships) on that system will reduce the 

degrees of freedom of these nine signal types, since higher-order entropies take into account “rules” of 

constraint. If the signals from the two messages were completely independent, then we would have 

I(v,z) = H(v) + H(z) – H(v,z) = 0, and the mutual information (overlap of information between the two 

message systems) would be zero, but we find that the degree of mutual dependence (from Equation 4) 

is I(v,z)=1.29 bits. However, it is the non-overlapping (unambiguously transmitted) part of the 

information that allows a decision to be made by the wasps. This is the non-overlapping information in 

H(v) and H(z) which is the joint information, H(v,z) = 2.47 bits. If no information had overlapped, the 

joint information would have been, of course, H(v) + H(z) = 3.76 bits since p(v) and p(z) would have 

been independent. In information theory H(v) + H(z) ≥ H(v,z) but note that, in the individual rows in 

Table 1, this is not the case. However, the columns for all three must be summed to characterize the 

joint information of the whole system and here the inequality holds.  

We also see that H(v) has a larger value than H(z); this is because there is a dominant probability of 

occurrence in the chemical signals emitted from the H. zea–infested plants (the chemical  

(E)-4-8-dimethyl-1,3,7-nonatriene), which lowers the “choices” of other chemical signals being 

emitted in this case—that is, this chemical-set has a reduced uncertainty as to which chemical will be 

emitted. Since the wasps can be expected, then, to make a decision based upon non-overlapping 

information only, in this system, a plant-landing decision must be made by the information left from 
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the total system when the ambiguities are removed. The unambiguous information transmitted, using 

this nine-chemical communication system from the cotton plants to the wasps, is thus 2.47 bits.  

 

4.2. Information in the Received Message  

 

On the assumption that the sole purpose of the wasps is to pick out the plants that have (had) the 

herbivore H. virescens on them, (that is, that there is no evolutionary benefits in imprecise landing 

determinations), we can quantify the equivocation in the reception of the chemical message by looking 

at the wasps behavioral success in achieving their goal. It was observed that wasps landed on H. 

virescens plants from 70% to 75% of the time [1], so we can use Equation 3 to calculate the joint 

information required to reach this success rate. For the case of p(z) = 0.25 and p(v) = 0.75, we obtain 

H(v,z) = H(0.75,0.25) = 0.81 bits, and in the case of p(z) = 0.30 and p(v) = 0.70, we obtain 

H(0.70,0.30) = 0.88 bits of information. This, then, is the range of the information actually acted upon 

by the wasps, as quantified by their landing behavior.  

From our previous calculations we saw that 2.47 bits of unambiguous information was transmitted 

from the cotton plants (assuming all nine chemicals come into play, as assumption we re-examine 

below), even though only 1.00 bit of information would be required to make a choice between two 

types of plants to land upon. Yet apparently an average (0.81 bits and 0.88 bits) of only about 0.85 bits 

of information were unequivocally acted upon by the wasps as measured from their actual landing 

behavioral success. If we assume that the unambiguously transmitted information was 2.47 bits, and 

the unequivocal information received was 0.85 bits, then, applying Equation 6 above we have: H(X|Y) 

= H(X,Y) – H(Y) = 2.47 – 0.85 = 1.62 bits as the equivocation in the information apparently received 

or understood by the wasps (Equation 6 is the equivocation this time). Thus the wasps apparently 

would be unequivocally receiving the chemical messages with only about a 34% efficiency. However, 

there are alternative possibilities that might be experimentally tested as we discuss in the  

next section.  

 

5. Interpretation of Results 

 

As already noted, we are not dealing here with a typical two-way communication system. Rather we 

are dealing with a two-message system (made up of nine signals each) where the overlap (conditional 

probabilities) of each message may be considered to be “noise” to the other. It is the independent 

portions of each message, then, that guides the wasps to a correct decision. The subsequent behavior of 

the wasps can then be compared to the information transmitted. In other words, we are dealing solely 

with the non-ambiguous portion of the chemical messages sent by the cotton plant rather than the usual 

transmission and reception concept utilized in a two-way communication system (where equivocation 

rather measures reception fidelity of the same message). The unambiguous information transmitted to 

the wasps we found to be 2.47 bits, but the average information received (or at least acted upon) by the 

wasps, as determined by their landing responses, was only 0.85 bits (on average). Knowing (or 

assuming) the goal or purpose of the transmission was to determine which plants to land upon, we can 

compare this with how well the wasps might have performed given the unambiguous bits transmitted.  
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Clearly, even though the cotton plants have developed a chemical “vocabulary” of nine signal 

types, this communication system is not being fully utilized since there are 1.62 bits of equivocation. 

One could posit that this communication system may still be evolving and so has not reached a high 

level of efficiency yet. So one may be measuring a current limit on the wasps’ ability to detect and 

process chemical information that is not yet altogether familiar (i.e., the communication system has not 

yet evolved to be very efficient).  

Another possibility could be that there are (or could have been in the past) more herbivore types 

feeding on this cotton plant, and they may therefore have retained the capacity to encode for more 

herbivore types. For this nine-chemical communication system, measured to transmit  

unambiguously 2.47 bits, 22.47 = 5.5 choices implies a “vocabulary” large enough to specify five types 

of herbivores. (We note that other trace chemicals may also have been present in the experiment but 

were not apparently detected [1].) 

Alternatively, nine separate chemicals may simply be present because this is a residual of natural 

chemical pathways inherent in the plants’ ability to manufacture chemicals. In this case not all nine 

chemicals may be needed, implying that the wasps may be receiving a fewer number of chemical 

types, but receiving them more efficiently. (They may also received all the chemicals at once but 

perceive them as “vectors”—that is, as a two-signal systems made up of groups of chemicals.) To 

illustrate, let’s take only the top chemical signal abundance for H. zea infested plants—which is  

(E)-4-8-dimethyl-1,3,7-nonatriene—as the only necessary chemical to be detected by the wasps. 

Following the previous procedure for the calculation of fractional probabilities, we obtain p(i) = 

0.2881 and p(j) = 0.7119, giving H(v) = 0.35 bits and H(z) = 0.52 bits. If we assume, for now, that the 

abundance probabilities are independent in this case, then the joint entropy is the sum of the marginal 

entropies, and we obtain H(v,z) = 0.87 bits. This result is a lot closer to the average 0.85 bits of 

information derived solely from the quantified landing behavior of the wasps themselves. Under this 

interpretation, then, only one chemical may be of importance to the wasps in determining where to 

land. Thus, one may be able to use the quantification of information to advance further experiments 

that might determine the number and types of chemicals that are of actual importance to the wasps in 

this communication system.  

 

6. Summary and Conclusions  

 

Measurements have been made of the information entropy of many human languages as well as 

computer languages, DNA, ant chemical units [16], bee dance [17], and many vocal animal 

communication systems—including the more complex communication systems of species such as 

bottlenose dolphins, squirrel monkeys, and humpback whales. Information theory has even been 

applied before to a simple communication system across phyla—between a vertebrate (a goby fish) 

and two species of crustaceans (both shrimp; [18]). But, to our knowledge, this may be the first attempt 

to quantify a communication system between the plant and animal kingdoms. From the Zipf’s law 

analysis we can say that this chemical communication system appears to be more highly redundant 

than human languages as well as the complex animal communication systems studied to date. 

Analyzing the data gathered by DeMoraes et al. [1], we found that the wasps’ reception of the plant 

“communiqué”—as evidenced by their success in finding the desired plants—indicates that the wasps 
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may be inefficient “readers” of the chemical signals (i.e., evolutionarily new at this behavior) or, 

alternatively, only “processing” a few or even only one of the chemical signals, thereby making their 

landing selections inefficient. On the other hand, the cotton plants may have evolved to signal for more 

herbivore types. For example, it is known that cotton has many predatory herbivores—[19] lists 

seventeen separate infestation types. So it may not be surprising that the cotton plants might have a 

chemical vocabulary of at least nine signal types that could theoretically, in “di-gram” combinations, 

allow up to 36 signal types in a two-combinatorial signaling system. The communication system 

studied here could have evolved to save the wasps energy in finding the right plant to land on. 

However, the advantage to the cotton plant is less clear as the wasp does not destroy the herbivore 

immediately (using the herbivorous host for egg laying) so that the herbivores remain feeding on the 

cotton plant for some time after the chemical signaling.  

In conclusion, information theoretic analysis of non-human (and even non-animal) communication 

systems may be able to provide insights into the efficiency of transmission, reception, and perhaps 

even the evolutionary development of diverse types of signaling systems—even those across the 

botanical and biological kingdoms—thereby providing insights that might otherwise be inaccessible.  
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