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many incorporated intended actions. The theory characterizes entangled decision making,
non-commutativity of subsequent decisions, and intention interference. The self-consistent
procedure of decision making, in the frame of the quantum decision theory, takes into account
both the available objective information as well as subjective contextual effects. This quantum
approach avoids any paradox typical of classical decision theory. Conditional maximization
of entropy, equivalent to the minimization of an information functional, makes it possible to
connect the quantum and classical decision theories, showing that the latter is the limit of the

former under vanishing interference terms.
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1. Basic Ideas and Historical Retrospective

This section serves as an introduction to the problem, describing the historical retrospective, related
studies, and basic ideas of the quantum approach to decision making. First of all, in order that the reader
would not be lost in details, we need to stress the main goal of the approach.

Principal Goal: The principal goal of the quantum approach to decision making is to develop a
unified theory that, from one side, could formalize the process of taking decisions by human decision
makers in terms of quantum language and, from another side, would suggest a scheme of thinking

quantum systems that could be employed for creating artificial intelligence.

Generally, decision theory is concerned with identifying what are the optimal decisions and how to
reach them. Traditionally, it is a part of discrete mathematics. Most of decision theory is normative
and prescriptive, and assumes that people are fully-informed and rational. These assumptions have been
questioned early on with the evidence provided by the Allais paradox [1] and many other behavioral
paradoxes [2], showing that humans often seem to deviate from the prescription of rational decision
theory due to cognitive and emotion biases. The theories of bounded rationality [3], of behavioral
economics and of behavioral finance have attempted to account for these deviations. As reviewed by
Machina [4], alternative models of preferences over objectively or subjectively uncertain prospects have
attempted to accommodate these systematic departures from the expected utility model, while retaining
as much of its analytical power as possible. In particular, non-additive nonlinear probability models
have been developed to account for the deviations from objective to subjective probabilities observed in
human agents [5-10]. However, many paradoxes remain unexplained or are sometimes rationalized on
an ad hoc basis, which does not provide much predictive power.

Another approach to decision theory can be proposed, being part of the mathematical theory of Hilbert
spaces [11] and employing the mathematical techniques that are used in quantum theory. (see, e.g.,
the special issue [12] and references therein). However, no self-consistent quantum theory of decision
making has been developed, which would have predictive power.

Recently, we introduced a general framework, called the Quantum Decision Theory (QDT), in
which decisions involve composite intended actions which, as we explain below, provides a unifying
explanation of many paradoxes of classical decision theory in a quantitative predictive manner [13].
Such an approach can be thought of as the mathematically simplest and most natural extension of
objective probabilities into nonlinear subjective probabilities. The proposed formalism allows one to
explain quantitatively different anomalous phenomena, e.g., the disjunction and conjunction effects. The
disjunction effect is the failure of humans to obey the sure-thing principle of classical probability theory.
The conjunction effect is a logical fallacy that occurs when people assume that specific conditions are
more probable than a single general one. The QDT unearths a deep relationship between the conjunction
fallacy and the disjunction effect, the former being sufficient for the latter to exist.

QDT uses the same underlying mathematical structure as the one developed to establish a rigorous
formulation of quantum mechanics [14]. Based on the mathematical theory of separable Hilbert spaces
on the continuous field of complex numbers, quantum mechanics showed how to reconcile and combine
the continuous wave description with the fact that waves are organized in discrete energy packets,
called quanta, which behave in a manner similar to particles. Analogously, in the QDT framework,
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the qualifier quantum emphasizes the fact that a decision is a discrete selection from a large set of
entangled options. The key idea of QDT is to provide the simplest generalization of the classical
probability theory underlying decision theory, so as to account for the complex dynamics of the many
nonlocal hidden variables that may be involved in the cognitive and decision making processes of the
brain. The mathematical theory of complex separable Hilbert spaces provides the simplest direct way
to avoid dealing with the unknown hidden variables, and at the same time reflecting the complexity of
nature [15]. In decision making, unknown states of nature, emotions, and subconscious processes play
the role of hidden variables.

Before presenting the QDT approach, it is useful to briefly summarize previous studies of decision
making and of the associated cognitive processes of the brain which, superficially, could be considered
as related to the QDT approach. This exposition will allow us to underline the originality and uniqueness
of the approach. We do not touch here purely physiological aspects of the problem, which are studied in
medicine and physiological cognitive sciences. Concerning the functional aspects of the brain, we focus
our efforts towards its formal mathematical modeling.

One class of approaches is based on the theory of neural networks and of dynamical
systems (see, e.g., [16-19]). These bottom-up approaches suffer from the obvious difficulties
of modeling the emergence of upper mental faculties from a microscopic constructive
neuron-based description.

Two main classes of theories invoke the qualifier “quantum”. In the first class, one finds investigations
which attempt to represent the brain as a quantum or quantum-like object [20-22], for which several
mechanisms have been suggested [23—29]. The existence of genuine quantum effects and the operation of
any of these mechanisms in the brain remain however controversial and have been criticized by Tegmark
as being unrealistic [30]. Another approach in this first class appeals to the mind-matter duality, treating
mind and matter as complementary aspects and considering consciousness as a separate fundamental
entity [31-34]. This allows one, without insisting on the quantum nature of the brain processes, if any, to
ascribe quantum properties solely to the consciousness itself, as has been advocated by Stapp [35, 36].
Actually, the basic idea that mental processes are similar to quantum-mechanical phenomena goes back
to the founder of the old quantum mechanics, Niels Bohr. One of the first publications on this analogy
is his paper [37]. Later on, he returned many times to the similarity between quantum mechanics and
the function of the brain, for instance in [38—40]. This analogy proposes that mental processes could
be modeled by a quantum-mechanical wave function, whose evolution would be characterized by a
dynamical equation, like the Schrédinger equation.

The second class of theories does not necessarily assume quantum properties of the brain or that
consciousness is a separate entity with quantum characteristics. Rather, these approaches use quantum
techniques, as a convenient language to generalize classical probability theory. An example is provided
by the quantum games [41-50]. With the development of quantum game theory, it has been shown
that many quantum games can be reformulated as classical games by allowing for a more complex
game structure [51-54]. But, in the majority of cases, it is more efficient to play quantum game
versions, as less information needs to be exchanged. Another example is the Shor algorithm [55],
which is purely quantum-mechanical but is solving the classical factoring problem. This shows that

there is no contradiction in using quantum techniques to describe classical problems. Here “classical”
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is contrasted with “quantum”, in the sense consecrated by decades of discussions on the interpretation
of quantum mechanics. In fact, some people go as far as stating that quantum mechanics is nothing but
an effective theory describing very complicated classical systems [56—58]. Interpretations of this type
have been made, e.g., by de Broglie and Bohm. An extensive literature in this direction can be found in
de Broglie [59] and Bohm [60]. In any case, whether we deal really with a genuinely quantum system
or with an extremely complex classical system, the language of quantum theory can be a convenient
effective tool for describing such systems [15]. In the case of decision making performed by real people,
the subconscious activity and the underlying emotions, which are difficult to quantify, play the role of
the hidden variables appearing in quantum theory.

The QDT belongs to this second class of theories, i.e., we use the construction of complex separable
Hilbert spaces as a mathematical language that is convenient for characterizing the complicated
processes in the mind, which are associated with decision making. This approach encompasses in a
natural way several delicate features of decision making, such as its probabilistic nature, the existence of
entangled decisions, the possible non-commutativity of decisions, and the interference between several
different decisions. These terms and associated concepts are made operationally clear in the sequel.

As a bonus, the QDT provides natural algorithms which could be used in the future for quantum
information processing, the operation of quantum computers, and in creating artificial intelligence.

The classical approaches to decision making are based on utility theory [61, 62]. Decision making
in the presence of uncertainty about the states of nature is formalized in the statistical decision
theory [63-73]. Some problems, occurring in the interpretation of the classical utility theory and
its application to real human decision processes have been discussed in numerous
literature (e.g., [4, 68, 74, 75]).

Quantum approach to decision making, suggested in Reference [13], is principally different from
the classical utility theory. In this approach, the action probability is defined as is done in quantum
mechanics, using the mathematical theory of complex separable Hilbert spaces. This proposition can
be justified by invoking the following analogy. The probabilistic features of quantum theory can be
interpreted as being due to the existence of the so-called nonlocal hidden variables. The dynamical laws
of these nonlocal hidden variables could be not merely extremely cumbersome, but even not known at
all, similarly to the unspecified states of nature in decision theory. The formalism of quantum theory is
then formulated in such a way as to avoid dealing with unknown hidden variables, but at the same time,
to reflect the complexity of nature [15]. In decision making, the role of hidden variables is played by
unknown states of nature, by emotions, and by subconscious processes, for which quantitative measures
are not readily available.

In the following sections, we develop the detailed description of the suggested program, explicitly
constructing the action probability in quantum-mechanical terms. The probability of an action is
intrinsically subjective, as it must characterize intended actions by human beings. For brevity, an
intended action can be called an intention or just an action. And, in compliance with the terminology
used in the theories of decision-making, a composite set of intended actions, consisting of several
sub-actions, is called a prospect. An important feature of the quantum approach is that, in general, it
deals not with separate intended actions, but with composite prospects, including many incorporated
intentions. Only then it becomes possible, within the frame of one general theory, to describe a variety
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of interesting unusual phenomena that have been reported to characterize the decision making
properties of real human beings.

The pivotal point of the approach, formalized in QDT, is that mathematically it is based on the von
Neumann theory of quantum measurements [14]. The formal relation of the von Neumann measurement
theory to quantum information processing has been considered by [76]. QDT generalizes the quantum
measurement theory to be applicable not merely to simple actions, but also to composite prospects,
which is of paramount importance for the appearance of decision interference. The principal difference
of QDT from the measurement theory is the existence of a specific strategic state characterizing each
particular decision maker.

A brief account of the axiomatics of QDT has been published in the recent letter [13]. The principal
scheme of functioning of a thinking quantum system, imitating the process of decision making, has
been advanced [77]. The applicability of the suggested quantum approach for analyzing the phenomena
of dynamic inconsistency has been illustrated [78]. The aim of the present survey is to provide a
detailed explanation of the theory and to demonstrate that it can be successfully applied to real-life
problems of decision making. We also show that the method of conditional entropy maximization,
which is equivalent to the minimization of an information functional, yields an explicit relation
between the quantum decision theory and the classical decision theory based on the standard notion of
expected utility.

2. Mathematical Foundation of Quantum Decision Theory

In order to formulate in precise mathematical terms the scheme of information processing and
decision making in quantum decision theory, it is necessary to introduce several definitions. To better
understand these definitions, we shall give some very simple examples, although much more complicated
cases can be invented. The entity concerned with the decision making task can be a single human, a
group of humans, a society, a computer, or any other system that is able or enables to make decisions.
Throughout the paper, for the operations with intended actions, we shall use the notations that are
accepted in the literature on decision theory [62—73] and for the physical states, we shall employ the
Dirac notations widely used in quantum theory [79].

Definition 1. Action ring

The process of taking decisions implies that one is deliberating between several admissible actions
with different outcomes, in order to decide which of the intended actions to choose. Therefore, the first
element arising in decision theory is an intended action A.

An intended action which, for brevity, can be called an intention or an action, is a particular thought
about doing something. Examples of intentions could be as follows: “I would like to marry” or “I would
like to be rich” or “I would like to establish a firm”. There can be a variety of intentions, which we
assume to be enumerated by an index ¢+ = 1,2,3,..., N, where the total number N of actions can be
finite or infinite.
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The whole family of all these actions forms the action set
A={A;:i=1,2,...,N}. (1)

The elements of this set are assumed to be endowed with two binary operations, addition and
multiplication, so that, if A and B pertain to A, then AB and A + B also pertain to .A. The addition
is associative, such that A + (B + C') = (A + B) + C, and reversible, in the sense that A + B = C
implies A = C' — B. The multiplication is distributive, A(B + C') = AB + BC'. The multiplication is
not necessarily commutative, so that, generally, AB is not the same as BA.

Among the elements of the action set (1), there is an identity action 1, for which A1 = 1A = A. The
identity action 1 is not to “do nothing”, since inaction is actually an action. This is well recognized
for instance in the field of risk management. Consider for instance the famous quotes: “The man
who achieves makes many mistakes, but he never makes the biggest mistake of all—doing nothing”
(Benjamin Franklin), or “Life is inherently risky. There is only one big risk you should avoid at all
costs, and that is the risk of doing nothing” (Denis Waitley). This also resonates with the standard
recommendations in risk management: “If you do not actively attack risks, they will attack you” or “Risk
prevention is cheaper than reconstruction.” Thus, “not acting” is not the identity action. We interpret
the identity action 1 as the action of keeping running the present action an individual is involved in.
For instance, if action A is “to marry someone”, the action 1A is to marry someone and to confirm this
action. The action A1 can be interpreted as first “being open to decide an action” and then to “decide to
marry someone”.

And there exists an impossible action 0, for which A0 = 0A = 0. Two actions are called disjoint,
when their joint action is impossible, giving AB = BA = 0. The action set (1), with the described
structure, is termed the action ring.

We recall that, in mathematics, a ring is an algebraic structure consisting of a set together with
two binary operations (usually called addition and multiplication), where each operation combines two
elements to form a third element (closure property). This closure property here embodies the fact that
choosing between alternative actions or combining several actions still correspond to actions.

In the algebra of the elements of the action ring, the meaning of the operations of addition and
multiplication is the same as is routinely used in the literature [62—73]. The sum A + B means that either
the action A or action B is intended to be realized. And the product of actions A B implies that both these
actions are to be accomplished together. Instead of writing the sum A; + A, + - - -, it is often convenient
to use the shorter summation symbol | J; A; = A; + Ay + - - -, which is also the standard abbreviation.
Similarly, for a long product A; As - - -, it is convenient to use the shorter notation (); A; = A1 Ay - - -. The

use of these standard notations can lead to no confusion.
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Definition 2. Action modes

An action is simple, when it cannot be decomposed into the sum of other actions. An action is
composite, when it can be represented as a sum of several other actions. If an action is represented

as a Ssum
M;

Ai - U Aiu 5 (2)

p=1
whose terms are mutually incompatible, then these terms are named the action modes. Here, M; denotes
the number of modes in action A;. The modes correspond to different possible ways of realizing an
action. According to the meaning emphasized above, the summation symbol in Equation (2) implies that
one of the actions is intended to be realized.

Action representations, or action modes, are concrete implementations of an intended action. For
instance, the intention “to marry” can have as representations the following variants: “to marry A” or “to
marry B”, and so on. The intention “to be rich” can have as representations “to be rich by working hard”
or “to be rich by becoming a bandit”. The intention “to establish a firm” can have as representations
“to establish a firm producing cars” or “to establish a firm publishing books” and so on. We number all
representations of an ¢-intended action by the index 1 = 1,2, 3,.... Note that intention representations
may include not only positive intention variants “to do something” but also negative variants such as “not
to do something”. For example, Hamlet’s hesitation “to be or not to be” is the intended action consisting

of two representations, one positive and the other negative.

Definition 3. Elementary prospects

Generally, decision taking is not necessarily associated with a choice of just one action among several
simple given actions, but it involves a choice between several complex actions. The simplest such
complex action is defined as follows. Let the multi-index n = {v, 14, ...,y } be a set of indices
enumerating several chosen modes, under the condition that each action is represented only by one

of its modes. The elementary prospect is the conjunction

N

en =) Au, 3)

i=1

of the chosen modes, one for each of the actions from the action ring (1). The total set of all elementary

prospects will be denoted as {e, }.

Definition 4. Composite prospects

A prospect is composite, when it cannot be represented as an elementary prospect (3). Generally, a

composite prospect is a conjunction
7Tj = ﬂ Ajn (4)
n

of several composite actions of form (2), where each of the factors A, pertains to the action ring (1).
While expression (4) has the similar form as (3), the difference is that the actions A;, in (4) are composite
while the actions A;,, in (3) are elementary action modes.
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A prospect is a set of several intended actions or several intention representations. In reality, a decision
maker is always motivated by a variety of intentions, which are mutually interconnected. Even the

realization of a single intention always involves taking into account many other related intended actions.
Definition 5. Prospect lattice
All possible prospects, among which one needs to make a choice, form a set
ﬁz{ﬂ'jij:]_,z,...,NL}. (5)

The set is assumed to be equipped with the binary relations >, <, =, >, <, so that each two prospects T;
and 7; in L are related as either m; > =;, or m; = m;, or m; > 7;, or m; < 7;, or m; < ;. For a while,
it is sufficient to assume that such an ordering exists. Then, the ordered set (5) is called a lattice. The

explicit ordering procedure associated with decision making will be given below.

Definition 6. Mode space

To each action mode A;,,, there corresponds the mode state | A;,,), which is a complex function A — C,
and its Hermitian conjugate (A;,|. Here we employ the Dirac notation [79]. We assume that a scalar
product is defined, such that the mode states, pertaining to the same action, are orthonormalized:

<A’L/L‘A’Ll/> = 5#1} . (6)
The mode space is the closed linear envelope
M; =Span{|A4;,) : p=1,2,..., M}, (7

spanning all mode states. By this definition, the mode space, corresponding to an i-action A;, is a Hilbert
space of dimensionality ;. The elements of the mode space will be called the intention states.

Definition 7. Mind space

To each elementary prospect e,,, there corresponds the basic state |e,), which is a complex function

AN — C, and its Hermitian conjugate (e, |. The structure of a basic state is

N
|€n> = |A1V1Agy2 e ANVN> = ® |AZI/1> . (8)
i=1

The scalar product is assumed to be defined, such that the basic states are orthonormalized:

N
(emlen) = H Opivy = O - ©)
i=1
The mind space is the closed linear envelope
N
M = Span{|en)} = QM , (10)
i=1

spanning all basic states (8). Hence, the mind space is a Hilbert space of dimensionality

N

i=1
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The vectors of the mind space represent all possible actions and prospects considered by
a decision maker.

The family of the basic states forms the mind basis {|e,, >} in the mind space. Different states
belonging to the mind basis are assumed to be disjoint, in the sense of being orthogonal. Since the
modulus of each state has no special meaning, these states are also normalized to one. This is formalized

as the orthonormality of the basis.

Definition 8. Prospect states

To each prospect 7;, there corresponds a state |7;) € M that is a member of the mind space (10).
Hence, the prospect state can be represented as an expansion over the basic states

1T = ajnlen) - (11)
The expansion coefficients in Equation (11) are assumed to be defined by the decision maker, so that
|la;n|? gives the weight of the state |e,, > into the general prospect.

The prospects are enumerated with the index j = 1,2,.... The total set {|7; >} of all prospect
states |m; >, corresponding to all admissible prospects, forms a subset of the space of mind. The set
{|m; >} C M can be called the prospect-state set.

The prospect states are not required to be mutually orthogonal and normalized to one, so that the
scalar product

<7Ti|7rj> = Z a;knajn
n

is not necessarily a Kronecker delta. The normalization condition will be formulated for the prospect
probabilities to be defined below.

The fact that different prospect states are not necessarily orthogonal assumes that the related
prospects are not necessarily incompatible. The incompatibility is supposed only for the elementary
prospects (3), whose states form the basis in the mind space (10) and are orthogonal to each other,
according to Equation (9). But an arbitrarily defined composite prospect, generally, is not required to be
orthogonal to all other considered prospects. In particular, this can be so, but, in general, we do not need
this property.

The prospect states are not normalized to one, since, imposing such a condition would over define
these states. The normalization condition will be imposed below on the prospect probabilities. Generally,
imposing two normalization conditions could make them inconsistent with each other. So, we need just
one normalization condition for the prospect probabilities, which is necessary for the correct definition
of the related probability measure.

Being, generally, not orthonormalized, the prospect states do not form a basis in the mind space.

Definition 9. Strategic state

Among the states of the mind space, there exists a special fixed state |s) € M, playing the role
of a reference state, which is termed the strategic state. The strategic state of mind is a fixed vector
characterizing a particular decision maker, with his/her beliefs, habits, principals, etc., that is, describing
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each decision maker as a unique subject. Hence, each space of mind possesses a unique strategic state.
Different decision makers possess different strategic states.

Being in the mind space (10), this state can be represented as the decomposition
[5) = > _calen) - (12)

Being a unique state, characterizing each decision maker like its fingerprints, it can be normalized
to one:
(sls) =1. (13)

From Equations (12) and (13), it follows that
el =1

The existence of the strategic state, uniquely defining each particular decision maker, is the principal
point distinguishing an active thinking quantum system from a passive quantum system subject to
measurements from an external observer. For a passive quantum system, predictions of the outcome
of measurements are performed by summing (averaging) over all possible statistically equivalent states,
which can be referred to as a kind of “annealed” situation. In contrast, decisions and observations
associated with a thinking quantum system occur in the presence of this unique strategic state, which can
be thought of as a kind of fixed “quenched” state. As a consequence, the outcomes of the applications of

the quantum-mechanical formalism will thus be different for thinking versus passive quantum systems.

Definition 10. Prospect operators

Each prospect state |r;), together with its Hermitian conjugate (7;|, defines the prospect operator

A

P(mj) = [mj) (] - (14)
By this definition, the prospect operator is self-adjoint. The family of all prospect operators forms the

involutive bijective algebra that is analogous to the algebra of local observables in quantum theory. Since

the prospect states, in general, are neither mutually orthogonal nor normalized, the squared operator
Ao .
P(m;) = (mjlm;) P(m;)

contains the scalar product

(milmi) =D lans]?

n
which does not equal to one. This tells us that the prospect operators, generally, are not idempotent,
thus, they are not projection operators. It is only when the prospect is elementary that the related
prospect operator

~

P(e,) = [en)(en|

becomes idempotent and is a projection operator. But, in general, this is not so.
The properties of the prospect operators follow immediately from those of the prospect states and

definition (14). Recall that the prospect operators are analogous to the operators of local observables in



Entropy 2009, 11 1083

quantum theory. The latter operators are not required to be idempotent. So, the prospect operators are
also not required to be such. The intuition of why the prospect operators are not idempotent could be
justified by understanding that, in general, a prospect realized twice results in the consequences that are
not necessarily the same as a sole prospect realization. For instance, to marry twice is not the same as to

marry once.

Definition 11. Prospect probabilities

In quantum theory, the averages over the system state, for the operators from the algebra of local
observables, define the observable quantities. In the same way, the averages, over the strategic state, for
the prospect operators define the observable quantities, the prospect probabilities

p(m;) = (s|P(m))]s) . (15)
These are assumed to be normalized to one:

Nr,

> plm) =1, (16)

j=1
where the summation is over all prospects from the prospect lattice (5). By their definition, the
quantities (15) are non-negative, since Equation (15) reduces to the modulus of the transition
amplitude squared

p(m;) = [mils)]* -

The normalization in Equation (16) is necessary for the set {p(m;)} be the scalar probability measure. In
plane words, the fact that all prospects probabilities are summed to one implies that one of them is to be

certainly realized.

Definition 12. Utility factor

The diagonal form

~

po(m;) = 3 (s P(en) Pm;)Plen)s) (17)

plays the role of the expected utility in classical decision making, justifying its name as the utility factor.
In order to be generally defined and to be independent of the chosen units of measurement, the utility
factor (17) can be normalized as

Np,
> polmy) =1. (18)
j=1

The fact that the utility factor (17) is really equivalent to the classical expected utility follows from
noticing that

A

Plen)ls) = cnlen) ,

hence Equation (17) acquires the form
po(m;) = 3 leal*{enl P(mj)en) |

where < e,|P(m;)|e, > plays the role of a utility function, weighted with the probability |c, |?.
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Definition 13. Attraction factor

The nondiagonal term
q(mj) = D (s|P(em) P(m;) Plen)ls) (19)

m#n

corresponds to the quantum interference effect. Its appearance is typical of quantum mechanics. Such
nondiagonal terms do not occur in classical decision theory. This term can be called the interference
factor. Interpreting its meaning in decision making, we can associate its appearance as resulting from
the system deliberation between several alternatives, when deciding which of the latter is more attractive.

Thence, the name “attraction factor”. Using expansion (12) in Equation (19) yields

Q(Wj) = Z Cincn<€m|p(7rj)|en> )

m#n

which shows that the interference occurs between different elementary prospects in the process of
considering a composite prospect 7;. It is worth stressing that the interference factor is nonzero only

when the prospect 7; is composite. If it were elementary, say 7; = e, then, since

A

P(ek)|€n> - 5nk|en> 3
we would have

Q(ek’> = Z C;cnémndnk =0 s

m#n
and no interference would arise.

Between two prospects, the one which enjoys the larger attraction factor is more attractive.

Definition 14. Prospect ordering

In defining the prospect lattice (5), we have assumed that the prospects could be ordered. Now, after
introducing the scalar probability measure, we are in a position to give an explicit prescription for the
prospect ordering. We say that the prospect 7 is preferable to 75 if and only if

p(m) > p(ms) (1 > m3) . (20)
Two prospects are called indifferent if and only if

p(m) :p(7T2) (7Tl = 7T2) . (2D

And the prospect 7; is preferable or indifferent to 7, if and only if

p(m1) > p(ms) (m > 7). (22)

These binary relations provide us with an explicit prospect ordering making the prospect set (5) a lattice.
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Definition 15. Optimal prospect

Since all prospects in the lattice are ordered, it is straightforward to find among them that one enjoying

the largest probability. This defines the optimal prospect m, for which

p(m.) = supp(m;) . (23)
j

Finding the optimal prospect is the final goal of the decision-making process. Since the prospect
probabilities are non-negative, it is possible to find the minimal prospect in the lattice (5) with the
smallest probability. And the largest probability defines the optimal prospect 7,. Therefore the prospect

set (5) is a complete lattice.

Remark. Generally speaking, all states of the mind space can depend on time ¢t. We do not write
explicitly the time dependence, when this makes no difference for the considerations developed below.

When this is important, we shall denote the time dependence explicitly.
3. Entangled Prospect States

Prospect states can be of two qualitatively different types.

o A disentangled prospect state is a prospect state which is represented as the tensor product of the
intention states:
|f >= @il > . (24)

e An entangled prospect state is any prospect state that cannot be reduced to the tensor product form
of the disentangled prospect states (24).

We define the disentangled set as the collection of all admissible disentangled prospect states of
form (24):
D= {|f >= @il >, [ty >€ M} . (25)

In quantum theory, it is possible to construct various entangled and disentangled
states (see, e.g., [80, 81]). In order to explain how entangled states appear in the quantum theory
of decision making, let us illustrate the above definitions by an example of a prospect consisting of two
intended actions with two mode representations each. Let us consider the prospect of the following two
intentions: “to get married” and “to become rich”. And let us assume that the intention “to get married”
consists of two representations, “to marry A”, with the mode state |A >, and “to marry B”, with the
mode state |B >. And let the intention “to become rich” be formed by two representations, “to become
rich by working hard”, with the mode state | >, and “to become rich by being a gangster”, with the
mode state |G >. Thus, there are two intention states of the following type:

|77Z)1 >= CL1|A > +CL2|B >, |¢2 >= b1|W > —|—b2|G > . (26)
The general prospect state has the form

|7T >= CH|AW > +012|AG > +621|BW > +CQQ|BG >, (27)
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where the coefficients c;; belong to the field of complex numbers.
Depending on the values of the coefficients c;;, the prospect state (27) can be either disentangled
or entangled. If it is disentangled, it must be of the tensor product type (24), which for the present

case reads
|f >= ’wl > ®‘w2 >= CL1b1|AW > +CL1b2|AG > —|—a2b1]BW > +CL2()2‘BG > . (28)
Both states (27) and (28) include four basic states:

e “to marry A and to work hard”, |[AW >,

AG >,

e “to marry A and become a gangster”,

e “to marry B and to work hard”, |[BW >,

e “to marry B and become a gangster”, | BG >.

However, the structure of states (27) and (28) is different. The prospect state (27) is more general
and can be reduced to state (28) for special values of the coefficients c;;, but the opposite may not be

possible. For instance, the prospect state
612|AG > +021|BW >, (29)

which is a particular example of state (27) cannot be reduced to any of the states (28), provided that
both coefficients c;2 and cy; are non-zero. In quantum mechanics, this state would be called the
Einstein-Podolsky-Rosen state, one of the most famous examples of an entangled state [82]. Another

example is the prospect state
611|AW > +622|BG >, (30)

whose quantum-mechanical analog would be called the Bell state [83]. In the case where both ¢;; and
coo are non-zero, the Bell state cannot be reduced to any of the states (28) and is thus entangled.
In contrast with the above two examples, the prospect states

011|AW > +012‘AG >, 011|AW > +621|BW >,
Cm’AG > +022‘BG >, 021|BW > +CQQ|BG >,

are disentangled, since all of them can be reduced to the form (28).
Other examples of entangled prospect states are

011|AW > +C12‘AG > —|—021’BW >, CH’AW > —|—012’AG > +C22|BG >,
011|AW > +021|BW > +622|BG > Cm’AG > +021‘BW > +022|BG >,

where all coefficients are assumed to be non-zero.

Since the coefficients ¢;; = ¢;;(t) are, in general, functions of time, it may happen that a prospect state
at a particular time is entangled, but becomes disentangled at another time or, vice versa, a disentangled
prospect state can be transformed into an entangled state with changing time [84].

The state of a human being is governed by its physiological characteristics and the available
information [85, 86]. These properties are continuously changing in time. Hence the strategic
state (12), specific of a person at a given time, may also display temporal evolution, according to different

homeostatic processes adjusting the individual to the changing environment [87].
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4. Procedure of Decision Making

The process of quantum decision making possesses several features that make it rather different from

the classical decision making. These main features are emphasized below.
4.1. Probabilistic Nature of Decision Making

Quantum decision making is described as an intrinsically probabilistic procedure. The first step
consists in evaluating, consciously and/or subconsciously, the probabilities of choosing different
prospects from the point of view of their usefulness and/or appeal to the choosing agent. The strategic
state of mind of an agent at some time ¢ is represented by the state |s >. Then, the probability of realizing
a prospect 7; with the prospect state |; >, under the given strategic state |s >, characterizing the agent’s
state of mind at that time, according to Definition 11, is the prospect probability p(r;). The prospect
probabilities, defined in (15), possess all the standard probability properties, with the normalization
condition (16).

The probabilities are defined in Equation (15) through the prospect states and the strategic state of
mind. The latter is normalized to one, according to Equation (13). By their definition, the probabilities
are summed to one, as in Equation (16). But the prospect states do not need to be normalized to one, as
is stressed in Definition 8. This means that different prospects can have, and usually do have, different
weights, corresponding to their different probabilities. In quantum physics, this situation would be
similar to defining the cross-section in a scattering experiment over a system containing elementary
particles and composite clusters (prospects) formed by these particles.

In the traditional theory of decision making, based on the utility function, the optimal decision
corresponds, by definition, to the maximal expected utility which is associated with the maximal
anticipated usefulness and profit resulting from the chosen action. In contrast, QDT recognizes that
the behavior of an individual is probabilistic, not deterministic. The prospect probability (15) quantifies
the probability that a given individual chooses the prospect 7;, under his/her strategic state of mind |s >
at a given time ¢. This translates in experiments into a prediction on the frequency of the decisions
taken by an ensemble of subjects under the same conditions. The observed frequencies of different
decisions taken by an ensemble of non-interacting subjects making a decision under the same conditions
serve as the observable measure of the subjective probability. It is, actually, well-known that subjective
probabilities can be calibrated by frequencies or fractions [88, 89].

This specification also implies that the same subject, prepared under the same conditions with the
same entangled strategic state of mind |s > at two different times, may choose two different prospects
among the same set of prospects, with different relative frequencies determined by the corresponding
prospect probabilities (15). Verifying this prediction is a delicate empirical question, because of the
possible impact of the “memory” of the past decisions on the next one. In order for the prediction to
hold, the two repetitions of the decision process should be independent. Otherwise, the strategic state
of mind in the second experiment keeps a memory of the previous choice, which biases the results.
This should not be confused with the fact that the projection of the strategic state of mind onto the
prospect state 7;, when the decision is made to realize this prospect, ensures that the individual will in
general keep his/her decision, whatever it is, when probed a second time sufficiently shortly after the
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first decision so that the strategic state of mind, realized just after the projection, has not had time yet to
evolve appreciably.

In QDT, the concept of an optimal decision is replaced by a probabilistic decision, when the prospect,
which makes p(r;) given by (15) maximal, is the one which corresponds best to the given strategic state
of mind of the decision maker. In that sense, the prospect that makes p(7;) maximal can be called optimal
with respect to the strategic state of mind. Using the mapping between the subjective probabilities and
the frequentist probabilities observed on ensemble of individuals, the prospect that makes p(r;) maximal,
will be chosen by more individuals that any other prospect, in the limit of large population sampling sizes.
However, other less probable prospects will also be chosen by some smaller subset of the population with
frequencies given by the corresponding quantum mechanical probabilities given above.

4.2.  Entangled Decision Making

As is explained above, a prospect state |7; > does not have in general the form of the product (24),
which means that it is entangled. Therefore, the prospect probability p(7;), generally, cannot be reduced
to a product:

p(Wj) # Hp(Ai) .

In other words, usually the decision making process is naturally entangled.

Consider the example of the specific prospect state (27) associated with the two intentions “to get
married” and “to become rich”. And suppose that A does not like gangsters, so that it is impossible to
marry A and at the same time being a gangster. This implies that the prospect AG cannot be realized,
hence c;5 = 0. Assume that B dreams of becoming rich as fast as possible, and a gangster spouse is
much more luring for B than a dull person working hard, which implies that c5; = 0. In this situation,
the prospect state (27) reduces to the entangled Bell state ¢11| AW > +c9| BG >. A decision performed
under these conditions, resulting in an entangled state, is entangled.

4.3.  Non-commutativity of Decisions and History Dependence

There exist numerous real-life examples when decision makers fail to follow their plans and change
their mind simply because they experience different outcomes on which their intended plans were
based. This change of plans after experiencing particular outcomes is the effect known as dynamic
inconsistency [90-92]. In our language [78], this can be considered as a consequence of the
non-commutativity of subsequent decisions, resulting from interference and entanglement between
intention representations. After studying the effect of interference, we shall give in what follows a

rigorous mathematical formulation of the non-commutativity of decisions.
5. Interference of Intended Actions

Interference is the effect that is typical of all those phenomena which are described by wave equations.
Following the Bohr’s idea [37—40] of describing mental processes in terms of quantum mechanics, one
is immediately confronted with the interference effect, since the physical states in quantum mechanics
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are characterized by wave functions. The possible occurrence of interference in the problems of decision
making has been discussed before on different grounds (see, e.g., [93]). However, no general theory has
been suggested, which would explain why and when such a kind of effect would appear, how to predict
it, and how to give a quantitative analysis of it that can be compared with empirical observations. In our
approach, interference in decision making arises only when one takes a decision involving composite
intentions. The corresponding mathematical treatment of these interferences within QDT is presented in
the following subsections.

5.1.  Illustration of Interference in Decision Making

As an illustration, let us consider the following situation of two intended actions, “to get a friend”” and
“to become rich”. Let the former intention have two mode representations “to get a friend A” and “to
get a friend B”. And let the second intention also have two representations, “to become rich by working
hard” and “to become rich by being a gangster”. The corresponding strategic mind state is given by
Equation (12), with the evident notation for the basic states |e,, > and the coefficients ¢, represented by

the identities

c11 = caw C12 = Cac €21 = Cw Co2 = CRG - (31)

Suppose that one does not wish to choose between these two friends in an exclusive manner, but one
hesitates of being a friend to A as well as B, with the appropriate weights. This means that one considers
the intended actions A and B, while the way of life, either to work hard or to become a gangster, has not
yet been decided.

The corresponding composite prospects

a=AW+G), g = B(W +G) (32)
are characterized by the prospect states
|7TA > = CL1|AW > +CL2|AG >, |7TB > = bllBW > —|—bg|BG > . (33)

Let us stress that the weights correspond to the intended actions, among which the choice is yet to be
made. And one should not confuse the intended actions with the actions that have already been realized.
One can perfectly deliberate between keeping this or that friend, in the same way, as one would think
about marrying A or B in another example above. This means that the choice has not yet been made. And
before it is made, there exist deliberations involving stronger or weaker intentions to both possibilities.
Of course, one cannot marry both (at least in most Christian communities). But before marriage, there
can exist the dilemma between choosing this or that individual.
Calculating the scalar products

< 7TA|S > = (ITCH + CL;Clg , < Tmg|s > = bTCQl + b;CQQ , (34)
we find the prospect probabilities.

p(ma) = |aiery + diews|” p(mp) = |bicar + bicas|” . (35)
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Recall that the prospects are characterized by vectors pertaining to the space of mind M, which are
not necessarily normalized to one or orthogonal to each other. The main constraint is that the total set of
prospect states {|m; >} be such that the related probabilities

p(my) = | < mjls > |

be normalized to one, according to the normalization condition (16).

The probabilities (35) can be rewritten in another form by introducing the partial probabilities
p(AW) = |aren|?, p(AG) = |agcrn]?
p(BW) = |bica >, p(BG) = |bacas]? (36)
and the interference terms
q(ma) = 2Re (ajcr1a9c],) q(mp) = 2Re (bca1bacsy) - 37)
Then the probabilities (35) become
p(ma) = p(AW) + p(AG) +q(ma) . p(mp) = p(BW) + p(BG) + q(75) - (38)

Let us define the uncertainty angles

A(ma) = arg (ajcnianciy) . A(mp) = arg (bieabacs,) (39)
and the uncertainty factors
p(ma) = cosA(ma),  p(mp) = cosAlmg) . (40)
Using these, the interference terms (37) take the form
q(ma) = 20(ma) \[p(AW)P(AG) ., q(mB) = 2¢(7p) \/p(BW)p(BG) . 41

The interference terms characterize the existence of deliberations between the decisions of choosing a
friend and, at the same time, a type of work.

This example illustrates the observation that the phenomenon of decision interference appears when
one considers a composite prospect with several intention representations assumed to be realized
simultaneously. Treating a composite prospect as a combination of several sub-prospects, we could
consider the global decision as a collection of sub-decisions. Then the arising interference would
occur between these sub-decisions. From the mathematical point of view, it appears more convenient
to combine several sub-decisions into one global decision and to analyze the interference of different
intentions. Thus, we can state that interference in decision making appears only when one decides about
a composite prospect.

For the above example of decision making in the case of two intentions, “to get a friend” and “to be
rich”, the appearance of the interference can be understood as follows. In real life, it is too problematic,
and practically impossible, to become a very close friend to several persons simultaneously, since conflict
of interests often arises between the friends. For instance, doing a friendly action to one friend may upset
or even harm another friend. Any decision making, involving mutual correlations between two persons,
necessarily requires taking into account their, sometimes conflicting, interests. This is, actually, one of
the origins of the interference in decision making. Another powerful origin of intention interference is

the existence of emotions, as will be discussed in the following sections.
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5.2.  Conditions for Interference Appearance

The situations for which intention interferences is impossible can be classified into two cases,
which are examined below. From this classification, we conclude that the necessary conditions for the
appearance of intention interferences are that the dimensionality of mind should be not lower than two

and that there should be some uncertainty in the considered prospect.

One-dimensional mind

Suppose there are several intended actions { 4;}, enumerated by the index i = 1, 2, . . ., whose number
can be arbitrary. But each intention possesses only a single representation | A; >. Hence, the dimension
of “mind” as defined in Definition 7, is dimM = 1. Only a single basic vector exists, which forms the
strategic state

|s >=|A1Ay... > = ®; |A; > . (42)

In this one-dimensional mind, all prospect states are disentangled, being of the type
T >=c|A1Ay... > (le] =1). (43)
Therefore, only one probability exists:
p=|<mls>=1. (44)

Thus, despite the possible large number of arbitrary intentions, they do not interfere, since each of
them has just one representation. There can be no intention interference in one-dimensional mind.

Absence of uncertainty

Another important condition for the appearance of intention interference is the existence of
uncertainty. To understand this statement, let us consider a given mind with a large dimensionality

dimM > 1, characterized by a strategic state |s >. Let us analyze a certain prospect with the state
|m >=c|s > (le] =1), (45)

with an arbitrary strategic state |s >. Then again, the corresponding prospect probability is the same as
in Equation (44), and no interference can arise.

Thus, the necessary conditions for the appearance of interference are the existence of uncertainty and
the dimensionality of mind not lower than 2.

5.3. Interference Alternation
The interference terms, forming the attraction factor (19), enjoy a very important property that can be

called the theorem of interference alternation.

Theorem 1: The process of decision making, associated with the prospect probabilities (15)
and occurring under the normalization conditions (16) and (18), is characterized by the alternating

interference terms, such that the sum of all attraction factors vanishes:

> 4(m) =0. (46)
J
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Proof: The proof follows directly from Definitions 13, 15, and 19, taking into account the
normalization conditions (16) and (18).

In order to illustrate in more detail the meaning of the above theorem, let us consider a particular case
of two intentions, one composing a set { A;} of M; representation modes, and another one forming a set
{X;} of M5 modes. The total family of intended actions is therefore

{AZ,XJ‘Z:1,2,,M1, j:1,2,...,M2}.

The basis in the mind space is the set {|A;X; >}. The strategic state of mind can be written as an
expansion over this basis,
|S >= Zcij|Ain >, a7

]

with the coefficients satisfying the standard normalization
> leylP=1.
tj

Let us assume that we are mainly interested in the representation set { A; }, while the representations
from the set { X} are treated as secondary. A prospect that is formed of a fixed intention representation
A;, and which can be realized under the occurrence of any of the representations X, corresponds to the
prospect state

AX >=> a;|AX; >, (48)
J

where X = UJ; X;. The probability of realizing the considered prospect is

according to Definition 11.

Following the above formalism of describing the intention interferences, we use the notation
(A X;) = |ayjcyl? (50)
for the joint probability of A; and X;; and we denote the partial interference terms as
¢ik(A;X) = 2Re (a;‘jcijc;‘kaik) . (51)
Then, the probability of A; X, given by Equation (48), becomes

p(AX) =D p(AiX;) + Y gin(AX) . (52)
J J<k
The interference terms appear due to the existence of uncertainty. Therefore, we may define the

uncertainty factor

(pjk(AZX) = COS Ajk<A,LX) s (53)

where the uncertainty angle is
Ajk(AzX) = arg(ozfjcijcfkozik) .
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Then, the interference term (51) takes the form

4ir(AiX) = 2¢,,(A; X) \/p(Ain) P(A; Xy) . (54)
The attraction factor (19) here is nothing but the sum of the interference terms:

q(A;X) = Z gk (A:X) . (55)

j<k
This allows us to rewrite probability (52) as

p(AiX) =) p(AiX;) + qAX) . (56)

J

The joint and conditional probabilities are related in the standard way
P(AiX;) = p(Ai| X;)p(X;) - (57)
We assume that the family of intended actions is such that at least one of the representations from the
set { A;} has to be certainly realized, which means that

> p(AiX)=1, (58)

)

and that at least one of the representations from the set { X} also necessarily happens, that is,
> p(X;)=1. (59)
J

Along with these conditions, we keep in mind that at least one of the representations from the set {A;}
must be realized for each given X;, which implies that

S op(AilX;) =1. (60)

)

Then we immediately come to the equality

which is just a particular case of the general condition (46).

This equality shows that, if at least one of the terms is non-zero, some of the interference terms
are necessarily negative and some are necessarily positive. Therefore, some of the probabilities are
depressed, while others are enhanced. This alternation of the interference terms will be shown below to
be a pivotal feature providing a clear explanation of the disjunction effect. It is worth emphasizing that
the violation of the sure-thing principle, resulting in the disjunction effect, will be shown not to be due
simply to the existence of interferences as such, but, more precisely, to the interference alternation.

For instance, the depression of some probabilities can be associated with uncertainty aversion, which
makes less probable an action under uncertain conditions. In contrast, the probability of other intentions,
containing less or no uncertainty, will be enhanced by positive interference terms. This interference
alternation is of crucial importance for the correct description of decision making, without which the

known paradoxes cannot be explained.
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5.4. Lessis More

The title of this subsection is taken from a poem of the nineteenth century English poet Robert
Browning [94].

In the present context, this expression means that sometimes excessive information is not merely
difficult to get, but can even be harmful, resulting in wrong decisions. It often happens that decisions,
based on smaller amount of information, are better than those based on larger amount of information.
This may happen because, with increasing the amount of information, the choice between alternatives
can become more complicated as a result of which uncertainty grows. Increasing complexity often
increases uncertainty.

To describe the “less is more” phenomenon in mathematical language, let us consider a prospect 77,

that is optimal under a fixed information set X}, with the probability

p () = po (mp) + ¢ () - (61)

Suppose, we increase the amount of information by going to the information set Xy, such that X; €
X}+1, and obtain the related optimal prospect 7, ;, with the probability

p (WZH) =DPo (WZH) +q (WZ+1) . (62)

Assume that the utilities of these two prospects are the same,

po (miin) = po () (63)

while the uncertainty in the decision making process increases, so that the attraction factor decreases,

¢ (Tin) < a(m) . (64)

Then, the relation between the prospect probabilities
p(m) = p (i) = a () —q (i) > 0 (65)

tells us that the decision process leading to choosing prospect m;; is clearer than for prospect 7,
because the larger value of the corresponding probability makes the signal stronger for the decision
maker, resulting in a larger frequency of choices 7;.. As the information set is increased, in the presence
of many alternatives, the preferred prospect becomes less clearly defined as the top choice. As a
consequence, a lack of efficiency, a growing indeterminacy and ultimately the freezing of the decision
process can ensue.

When dealing with complex nonlinear problems, excessive information can lead to incorrect
conclusions because of the extreme sensitivity of nonlinear problems to minor details. As simple
examples, when excessive information can be harmful, we may mention the following typical cases
from physics.

Example 1. How to describe the state of air in a room? The unreasonable decision would be to
analyze the motion of all molecules in the room, specifying all their interactions, positions and velocities.

Such a decision would lead to not merely extremely overcomplicated calculations, but even can result in
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incorrect conclusions. The reasonable decision is to characterize the state of the air by defining the room
temperature, volume, and atmospheric pressure.

Example 2. How to characterize the water flow in a river? A silly decision would be to consider the
motion of all water molecules in the river describing their locations, velocities, interactions, and so on.

Contrary to this, a clever decision is to use the hydrodynamic equations.

Example 3. How to describe a large social system? Again, the unreasonable decision would be
to collect all possible information on each member of the society. Then, being overloaded by senseless
information, one would be lost in secondary details, being unable to make any clever conclusion. Instead
of this, it is often (though may be not always) sufficient to consider the society composed of typical (or

“representative’) agents.
6. Disjunction Effect

The disjunction effect was first specified by Savage [62] as a violation of the “sure-thing principle”,
which can be formulated as follows: If the alternative A is preferred to the alternative B, when an event
X4 occurs, and it is also preferred to B, when an event X5 occurs, then A should be preferred to B,

when it is not known which of the events, either X, or X, has occurred.
6.1. Sure-Thing Principle

Let us now show how the sure-thing principle arises in classical probability theory.

Let us consider a field of events {A, B, X;|[j = 1,2,...} equipped with the classical probability
measures [95]. We denote the classical probability of an event A by the capital letter P(A) in order to
distinguish it from the probability p(A) defined in the previous sections by means of quantum rules. We
shall denote, as usual, the conditional probability of A under the knowledge of X by P(A|X) and the
joint probability of A and X, by P(AX). We assume that at least one of the events X; from the set { X }

certainly happens and that the X; are mutually exclusive and exhaustive, which implies that
Y P(X;)=1. (66)
J

The probability of A, when X is not specified, that is, when at least one of X; happens, is denoted by
P(AX), where X = U; X;. The same notations are applied to 5. Following the common wisdom, we
understand the statement “A is preferred to B” as meaning that P(AX) > P(BX). Then the following
theorem is valid.

Theorem 2: Ifforall j = 1,2, ..., one has
P(AlX;) > P(B|Xj)) , (67)

then
P(AX) > P(BX) . (68)
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Proof: 1t is straightforward that, under X = Uj X, one has

P(AX) =>_ P(AX;) = > P(AIX;)P(X;) (69)
and
P(BX) = Z P(BX;) = Z P(B|X;)P(X;) . (70)

From Equations (69) and (70), under assumption (67), inequality (68) follows immediately.

The above proposition is a theorem of classical probability theory. Savage [62] proposed to use it as
a normative statement on how human beings make consistent decisions under uncertainty. As such, it
i1s no more a theorem but a testable assumption about human behavior. In other words, empirical tests
showing that humans fail to obey the sure-thing principle must be interpreted as a failure of humans to
abide to all the rules of classical probability theory.

6.2. Disjunction-Effect Examples

Thus, according to standard classical probability theory which is held by most statisticians as the
only rigorous mathematical description of risks, and therefore as the normative guideline describing
rational human decision making, the sure-thing principle should be always verified in empirical tests
involving real human beings. However, numerous violations of this principle have been investigated
empirically [62, 96-99]. In order to be more specific, let us briefly outline some examples of the violation
of the sure-thing principle, referred to as the disjunction effect.

(1) To gamble or not to gamble?

A typical setup for illustrating the disjunction effect is a two-step gamble [96]. Suppose that a group
of people accepted a gamble, in which the player can either win (X;) or lose (X5). After one gamble,
they are invited to gamble a second time, being free to either accept the second gamble (A) or to refuse
it (B). Experiments by Tversky and Shafir [96] showed that the majority of people accept the second
gamble when they know the result of the first one, in any case, whether they won or lost in the previous
gamble. In the language of conditional probability theory, this translates into the fact that people act as if
P(A|X;) is larger than P(B|X;) and P(A|X?) is larger than P(B|X>) as in Equation (67). At the same
time, it turns out that the majority refuses to gamble the second time when the outcome of the first gamble
is not known. The second empirical fact implies that people act as if P(BX) overweighs P(AX),
in blatant contradiction with inequality (68), which should hold according to the theorem resulting
from (67). Thus, a majority accepted the second gamble after having won or lost in the first gamble,
but only a minority accepted the second gamble when the outcome of the first gamble was unknown to

them. This provides an unambiguous violation of the Savage sure-thing principle.

(i1) To buy or not to buy?

Another example, studied by Tversky and Shafir [96], had to do with a group of students who reported
their preferences about buying a non-refundable vacation, following a tough university test. They could
pass the exam (X7) or fail (X3). The students had to decide whether they would go on vacation (A)
or abstain (). It turned out that the majority of students purchased the vacation when they passed

the exam as well as when they had failed, so that condition (67) was valid. However, only a minority
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of participants purchased the vacation when they did not know the results of the examination. Hence,
inequality (68) was violated, demonstrating again the disjunction effect.

(ii1) To sell or not to sell?

The stock market example, analyzed by Shafir and Tversky [100], is a particularly telling one,
involving a deliberation taking into account a future event, and not a past one as in the two previous cases.
Suppose we consider the USA presidential election, when either a Republican wins (X;) or a Democrat
wins (X53). On the eve of the election, market players can either sell certain stocks from their portfolio
(A) or hold them (B). It is known that a majority of people would be inclined to sell their stocks, if they
would know who wins, regardless of whether the Republican or Democrat candidate wins the upcoming
election. This is because people expect the market to fall after the elections. Hence, condition (67) is
again valid. At the same time, a great many people do not sell their stocks before knowing who really
won the election, thus contradicting the sure-thing principle and the inequality (68). Thus, investors
could have sold their stocks before the election at a higher price but, obeying the disjunction effect,
they were waiting until after the election, thereby selling at a lower price after stocks have fallen. Many
market analysts believe that this is precisely what happened after the 1988 presidential election, when
George Bush defeated Michael Dukakis.

There are plenty of other more or less complicated examples of the disjunction
effect [62, 96-98, 100-102]. The common necessary conditions for the disjunction effect to arise
are as follows. First, there should be several events, each characterized by several alternatives, as in the
two-step gambles. Second, there should necessarily exist some uncertainty, whether with respect to the
past, as in the examples (i) and (ii), or with respect to the future, as in the example (iii).

Several ways of interpreting the disjunction effect have been analyzed. Here, we do not discuss the
interpretations based on the existence of some biases, such as the gender bias, or the bias invoking the
notion of decision complexity, which have already been convincingly ruled out [97, 103]. We describe
the reason-based explanation which appears to enjoy a wide-spread following and discuss its limits

before turning to the view point offered by QDT.
6.3. Reason-Based Analysis

The dominant approach for explaining the disjunction effect is the reason-based analysis of decision
making [96, 97, 100, 102, 104]. This approach explains choice in terms of the balance between reasoning
for and against the various alternatives. The basic intuition is that when outcomes are known, a decision
maker may easily come up with a definitive reason for choosing an option. However, in the case of
uncertainty, when the outcomes are not known, people may lack a clear reason for choosing an option
and consequently they abstain and make an irrational choice.

From our perspective, the weakness of the reason-based analysis is that the notion of “reason” is too
vague and subjective. Reasons are not only impossible to quantify, but it is difficult, if possible at all,
to give a qualitative definition of what they are. Consider example (i) “to gamble or not to gamble?”
Suppose you have already won at the first step. Then, you can rationalize that gambling a second time
is not very risky: if you now loose, this loss will be balanced by the first win on which you were not
counting anyway, so that you may actually treat it differently from the rest of your wealth, according
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to the so-called “mental accounting” effect; and if you win again, your profit will be doubled. Thus,
you have a “reason” to justify the attractiveness of the second gamble. But, it seems equally justified
to consider the alternative “reason”: if you have won once, winning the second time may seem less
probable (the so-called gambler’s fallacy), and if you loose, you will keep nothing of your previous gain.
This line of reasoning justifies to keep what you already got and to forgo the second gamble.

Suppose now you have lost in the first gamble and know it. A first reasoning would be that the second
gamble offers a possibility of getting out of the loss, which provides a reason for accepting the second
gamble. However, you may also think that the win is not guaranteed, and your situation could actually
worsen, if you loose again. Therefore, this makes it more reasonable not to risk so much and to refrain
from the new gamble.

Consider now the situation where you are kept ignorant of whether you have won or lost in the first
gamble. Then, you may think that there is no reason and therefore no motivation for accepting the second
gamble, which is the standard reason-based explanation. But, one could argue that it would be even more
logical if you would think as follows: Okay, I do not know what has happened in the first gamble. So,
why should I care about it? Why don’t I try again my luck? Certainly, there is a clear reason for gambling
that could propagate the drive to gamble a second time.

This discussion is not pretending to demonstrate anything other than that the reason-based explanation
is purely ad-hoc, with no real explanatory power; it can be considered in a sense as a reformulation of the
disjunction fallacy. It is possible to multiply the number of examples demonstrating the existence of quite
“reasonable” justifications for doing something as well as a reason for just doing the opposite. It seems to
us that the notion of “reason” is not well defined and one can always invent in this way a justification for
anything. Thus, we propose that the disjunction effect has no direct relation to reasoning. In the following
section, we suggest another explanation of this effect based on QDT, specifically the interference between
the two uncertain outcomes resulting from an aversion to uncertainty (uncertainty-aversion principle),

which provides a quantitative testable prediction.
6.4. Quantitative Analysis Within Quantum Decision Theory

The disjunction effect, described above, finds a natural explanation in the frame of the Quantum
Decision Theory, as is shown below.

Application to Disjunction-Effect Examples

The possibility of connecting the violation of the sure-thing principle with the occurrence of
interference has been mentioned in several articles (see, e.g., [93]). But all these attempts were ad hoc
assumptions not based on a self-consistent theory. Our explanation of the disjunction effect differs from
these attempts in several aspects. First, we consider the disjunction effect as just one of several possible
effects in the frame of the general theory. The explanation is based on the theorem of interference
alternation, which has never been mentioned, but without which no explanation can be complete and
self-consistent. We stress the importance of the uncertainty-aversion principle. Also, we offer a
quantitative estimate for the effect, which is principally new.

Let us discuss the two first examples illustrating the disjunction effect, in which the prospect consists
of two intentions with two representations each. One intention “to decide about an action” has the



Entropy 2009, 11 1099

representations “to act” (A) and “not to act” (B). The second intention “to know the results” (or “to have
information”) has also two representations. One (X) can be termed “to learn about the win” (gamble
won, exam passed), the other (X,) can be called “to learn about the loss” (gamble lost, exam failed). With
the numbers of these representations M; = 2 and M, = 2, the dimension of mind, given in Definition 7,
is dimM = MM, = 4.

For the considered cases, the general set of Equations (56) reduces to two equations
P(AX) = p(AXy) + p(AX3) + q(AX)

p(BX) = p(BX1) + p(BXs) + ¢(BX) , (71)

in which again X = {J; X and the interference terms are the attraction factors

4(AX) = 2p(AX) \/p(AX)) p(AX,) ,

¢(BX) = 20(BX) \/p(BX)) p(BXa) . (72)

Of course, Equations (71) and (72) could be postulated, but then it would not be clear where they come
from. In QDT, these equations appear naturally. Here ¢(AX) and ¢(BX) are the uncertainty factors
defined in (53). The normalizations (58) and (59) become

p(AX) +p(BX)=1,  p(X1)+p(Xs)=1. (73)
The normalization condition (60) gives
p(AlXy) +p(B]X1) =1, p(A|Xz) +p(B|Xs) =1, (74)

The uncertainty factors can be rewritten as

plax)= —249 ___ - ppxy - 48D (75)
24/p(AX1)p(AXo) 2/p(BX1)p(BX>)
with the interference terms being
q(AX) = p(AX) = p(AXy) — p(AXy) . q(BX) =p(BX) —p(BXy) —p(BX3).  (76)
The principal point is the condition of interference alternation (46), which now reads
q(AX)+q(BX)=0. (77)

Without this condition (77), the system of equations for the probabilities would be incomplete, and the
disjunction effect could not be explained.

In the goal of explaining the disjunction effect, it is not sufficient to merely state that some type of
interference is present. It is necessary to determine (quantitatively if possible) why the probability of
acting is suppressed, while that of remaining passive is enhanced. Our aim is to evaluate the expected
size and signs of the interference terms ¢(AX) (for acting under uncertainty) and ¢(BX) (for remaining
inactive under uncertainty). Obviously, it is an illusion to search for a universal value that everybody will

use. Different experiments with different people have indeed demonstrated a significant heterogeneity
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among people, so that, in the language of QDT, this means that the values of the interference terms
can fluctuate from individual to individual. A general statement should here refer to the behavior of
a sufficiently large ensemble of people, allowing us to map the observed frequentist distribution of
decisions to the predicted QDT probabilities.

Attraction Factors as Interference Terms

The interference terms (72) can be rewritten as

G(AX) = 20(AX) \/p(A1X))p(X1)p(A[X2)p(Xa) |

¢(BX) = 20(BX) \/p(B|X)p(X1)p(B| X)p(Xs) - (78)

The interference-alternation theorem (Theorem 1), which leads to Equation (77), implies that
[g(AX)| = [¢(BX)], (79)

and
sign[p(AX)] = —sign[p(BX)] . (80)

Hence, in the case where p(A|X;) > p(B|X;), which is characteristic of the examples illustrating the
disjunction effect, one must have the uncertainty factors which exhibit the opposite property, |p(AX)| <
p(BX)
absolute values of the interference terms. The next step is to determine the sign of ¢(AX) (and thus of
©(BX)) from (80) and their typical amplitudes |po(AX )| and |p(BX)|.

, SO as to compensate the former inequality to ensure the validity of the equality (79) for the

Signs of Uncertainty Factors

A fundamental well-documented characteristic of human beings is their aversion to uncertainty, i.e.,
the preference for known risks over unknown risks [105]. As a consequence, the propensity/utility
(and therefore the probability) to act under larger uncertainty is smaller than under smaller uncertainty.
Mechanically, this implies that it is possible to specify the sign of the uncertainty factors, yielding

sign[p(AX)] = —sign[p(BX)] <0, (81)

since A (respectively B) refers to acting (respectively, to remain inactive).

Amplitudes of Uncertainty Factors

As a consequence of Equation (81) and also of their mathematical definition (53), the uncertainty
factors vary in the intervals

~1<p(AX) <0,  0<pBX)<1. (82)
Without any other information, the simplest prior is to assume a uniform distribution of the uncertainty

factors in each interval, so that their expected values are respectively

1

P(AX) =~ -, @(BX>=§- (83)

N | —
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Choosing in that way the average values of the uncertainty factors is equivalent to using a representative
agent, while the general approach is fully taking into account a pre-existing heterogeneity. That is, the
values (83) should be treated as estimates for the expected uncertainty factors, corresponding to these

factors averaged with the uniform distribution over the large number of agents.
Interference-Quarter Law

To complete the calculation of ¢(AX) and of ¢(BX) given by Equations (78), we also assume
the non-informative uniform prior for all probabilities appearing below the square-roots, so that their
expected values are all 1/2 since they vary between 0 and 1. Using these in Equation (78) results in the
interference-quarter law

g(AX) =-0.25, g(BX)=0.25, (84)

valid for the four-dimensional mind composed of two intentions with two representations each.
As a consequence, the probabilities for acting or for remaining inactive under uncertainty, given by
Equations (71), can be evaluated as

p(AX) = p(AXy) + p(AX>3) — 0.25,

p(BX) = p(BX1) +p(BX2) +0.25 . (85)

The influence of intention interference, in the presence of uncertainty, on the decision making process at
the basis of the disjunction effect can thus be estimated a priori. The sign of the effect is controlled by
the aversion to uncertainty exhibited by people (uncertainty-aversion principle). The amplitude of the
effect can be estimated, as shown above, from simple priors applied to the mathematical structure of the
QDT formulation.

Uncertainty-Aversion Principle

The above calculation implies that the disjunction effect can be interpreted as essentially an emotional
reaction associated with the aversion to uncertainty. An analogy can make the point: it is widely
recognized that uncertainty frightens living beings, whether humans or animals. It is also well
documented that fear paralyzes, as in the cartoon of the “rabbit syndrome,” when a rabbit stays immobile
in front of an approaching boa instead of running away. There are many circumstantial evidences that
uncertainty may frighten people as a boa frightens rabbits. Being afraid of uncertainty, a majority of
human beings may be hindered to act. In the presence of uncertainty, they do not want to act, so that they
refuse the second gamble, as in example (i), or forgo the purchase of a vacation, as in example (ii), or
refrain from selling stocks, as in example (iii). Our analysis suggests that it is the aversion to uncertainty
that paralyzes people and causes the disjunction effect.

It has been reported that, if people, when confronting uncertainty paralyzing them against acting, are
presented with a detailed explanation of the possible outcomes, they then may change their mind and
decide to act, thus reducing the disjunction effect [96, 97]. Thus, by encouraging people to think by
providing them additional explanations, it is possible to influence their minds. In such a case, reasoning
plays the role of a kind of therapeutic treatment decreasing the aversion to uncertainty. This line of

reasoning suggests that it should be possible to decrease the aversion to uncertainty by other means,
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perhaps by distracting them or by taking food, drink or drug injections. This provides the possibility to
test for the dependence of the strength of the disjunction effect with respect to various parameters which
may modulate the aversion response of individuals to uncertainty.

We should stress that our explanation departs fundamentally from the standard reason-based
rationalization of the disjunction effect summarized above. Rather than using what we perceive is an hoc
explanation, we anchor the disjunction effect on the very fundamental characteristic of living beings, that
of the aversion to uncertainty. This allows us to construct a robust and parsimonious explanation. But this
explanation arises only within QDT, because the latter allows us to account for the complex emotional,
often subconscious, feelings as well as many unknown states of nature that underlie decision making.
Such unknown states, analogous to hidden variables in quantum mechanics, are taken into account by
the formalism of QDT through the interference alternation effect, capturing mental processes by means
of quantum-theory techniques.

It is appropriate here to remind once more that it was Bohr who advocated throughout all his life the
idea that mental processes do bear close analogies with quantum processes (see, e.g., [37-40]). Since
interference is one of the most striking characteristic features of quantum processes, the analogy suggests
that it should also arise in mental processes as well. The existence of interference in decision making
disturbs the classical additivity of probabilities. Indeed, we take as an evidence of this the nonadditivity
of probabilities in psychology which has been repeatedly observed [106—108], although it has not been
connected with interference.

Numerical Analysis of Disjunction Effect

In the frame of QDT, it is possible, not merely to connect the existence of the disjunction effect with
interference, but to give quantitative predictions. Below, this is illustrated by the numerical explanation
of the examples described above.

(1) To gamble or not to gamble?

Let us turn to the example of gambling. The statistics reported by Tversky and Shafir [96] are

p(A|X1) =0.69 , p(A|X3) =0.59 , p(AX) =0.36 .
Then Equations (73) and (74) give
p(B|X;) =0.31, p(B|X32) =041, p(BX) =0.64 .

Recall that the disjunction effect here is the violation of the sure-thing principle, so that, although
p(A|X;) > p(B|X;) for j = 1,2, one observes nevertheless that p(AX) < p(BX). In the
experiment reported by Tversky and Shafir [96], the probabilities for winning or for losing were identical:
p(X1) = p(X2) = 0.5. Then, using relation (57), we obtain

p(AX;) =0.345 , p(AX5) =0.295 , p(BX;) =0.155 p(BXs3) = 0.205 .
For the interference terms, we find

g(AX)=-028, q(BX)=0.28. (86)
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The uncertainty factors (75) are therefore
©(AX) = —-0.439, ©(BX)=0.785.

They are of opposite sign, in agreement with condition (80). The probability p(AX) of gambling under
uncertainty is suppressed by the negative interference term g(AX) < 0. Reciprocally, the probability
p(BX) of not gambling under uncertainty is enhanced by the positive interference term ¢(BX) > 0.
This results in the disjunction effect, when p(AX) < p(BX).

It is important to stress that the observed amplitudes in (86) are close to the interference-quarter law
(84). Actually, within the experimental accuracy with a statistical error about 20%, the found interference
terms cannot be distinguished from the value 0.25. Thus, even not knowing the results of the considered
experiment, we are able to quantitatively predict the strength of the disjunction effect.

(i1) To buy or not to buy?
For the second example of the disjunction effect, the data, taken from [96], read

p(A|X7) =0.54 p(A|X3) = 0.57, p(AX)=0.32.
Following the same procedure as above, we get
p(B|X1) = 0.46 , p(B|X3) =043, p(BX) =0.68 .
Given again that the two alternative outcomes are equiprobable, p(X;) = p(X3) = 0.5, we find
p(AX;) =0.270 p(AX,) =0.285 p(BX;) =0.230, p(BX3) =0.215 .
For the interference terms, we obtain
q(AX) =—-0.235, q(BX) =0.235 . (87)
The uncertainty factors are
e(AX) = —0.424 , p(BX)=10.528.

Again, the values obtained in (87) are close to our predicted interference-quarter law (84). More
precisely, these values are actually undistinguished from 0.25 within the statistical error 20%, typical
of the discussed experiments.

Because of the uncertainty aversion, the probability p(AX ) of purchasing a vacation is suppressed by
the negative interference term ¢(AX) < 0. At the same time, the probability p(BX) of not buying a
vacation under uncertainty is enhanced by the positive interference term ¢(B.X) > 0. This alternation of
interferences causes the disjunction effect resulting in p(AX) < p(BX). It is necessary to stress it again
that without this interference alternation no explanation of the disjunction effect is possible in principle.

In the same way, our approach can be applied to any other situation related to the disjunction effect
associated with the violation of the sure-thing principle. We now turn to another deviation from rational
decision making, known under the name of the conjunction fallacy.
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7. Conjunction Fallacy

The conjunction fallacy constitutes another example revealing that intuitive estimates of probability
by human beings do not conform to the standard probability calculus. This effect was first
studied by Tversky and Kahneman [109, 110] and then discussed in many other works (see,
e.g., [101, 111-114]). Despite an extensive debate and numerous attempts to interpret this effect, there
seems to be no consensus on the origin of the conjunction fallacy [114].

Here, we show that this effect finds a natural explanation in QDT. It is worth emphasizing that we do
not invent a special scheme for this particular effect, but we show that it is a natural consequence of the
general theory we have developed. In order to claim to explain the conjunction fallacy in terms of an
interference effect in a quantum description of probabilities, it is necessary to derive the quantitative
values of the interference terms, amplitudes and signs, as we have done above for the examples
illustrating the disjunction effect. This has never been done before. Our QDT provides the necessary
ingredients, in terms of the uncertainty-aversion principle, the theorem on interference alternations, and
the interference-quarter law. Only the establishment of these general laws can provide an explanation
of the conjunction fallacy, that can be taken as a positive step towards validating QDT, according to the
general methodology of validating theories [115]. Finally, in our comparison with available experimental
data, we analyze a series of experiments and demonstrate that all their data substantiate the validity of
the general laws of the theory.

7.1.  Conjunction Rule

Let us first briefly recall the conjunction rule of standard probability theory. Let us consider an event
A that can occur together with another one among several other events X, where j = 1,2,.... The
probability of an event, estimated within classical probability theory, is again denoted with the capital
letter P(A), to distinguish it from the probability p(A) in our quantum approach. According to standard
probability theory [95], one has
P(AX) =) P(AXj). (88)
J

Since all terms in the sum (88) are positive, the conjunction rule tells us that
P(AX) > P(AX;)  (¥j). (89)

That is, the probability for the occurrence of the conjunction of two events is never larger than the

probability for the occurrence of a separate event.
7.2.  Conjunction Error

Counterintuitively, humans rather systematically violate the conjunction rule (89), commonly making
statements such that
p(AX) < p(AX;) , (90)

for some j, which is termed the conjunction fallacy (Tversky and Kahneman [109, 110]). The difference

£(AX;) = p(AX;) — p(AX) 1)
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is called the conjunction error, which is positive under conditions in which the conjunction fallacy
is observed.

A typical situation is when people judge about a person, who can possess a characteristic A and also
some other characteristics X;. This, e.g., can be “possessing a trait” or “not having the trait”, since not
having a trait is also a characteristic. The often-cited example of Tversky and Kahneman [109] is as
follows: “Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a
student, she was deeply concerned with issues of discrimination and social justice, and also participated
in anti-nuclear demonstrations. Which is more likely? (i) Linda is a bank teller; (ii) Linda is a bank
teller and is active in the feminist movement.” Most people answer (ii) which is an example of the
conjunction fallacy (90).

Numerous other examples of the fallacy are described in the literature [101, 110-114]. It is important
to stress that this fallacy has been reliably and repeatedly documented, that it cannot be explained by the
ambiguity of the word “likely” used in the formulation of the question, and that it appears to involve a
failure to coordinate the logical structure of events in the presence of chance [114]. The conjunction
fallacy cannot be explained by prospect theory [116] and also remains when different bracketing
effects [117—121] are taken into account.

7.3.  Conjunction Interference

Within QDT, the conjunction fallacy finds a simple and natural explanation. Let us consider a typical
situation of the fallacy, when one judges a person who may have a characteristic A, treated as primary,
and who may also possess, or not possess, another characteristic, labeled as secondary. Generally, the
person could also be an object, a fact, or anything else, which could combine several features. Translating
this situation to the mathematical language of QDT, we see that it involves two intentions. One intention,
with just one representation, is “to decide whether the object has the feature A.” The second intention
“to decide about the secondary feature” has two representations, when one decides whether “the object
has the special characteristic” (X) or “the object does not have this characteristic” (X5).

For these definitions, and following the general scheme, we have
P(AX) = p(AXy) + p(AX3) + q(AX) = p(A[X1)p(X1) + p(A|X2)p(X2) + q(AX) . (92)

This is a typical situation where a decision is taken under uncertainty. The uncertainty-aversion principle
requires that the interference term ¢(AX') should be negative (¢(AX) < 0). Indeed, this reflects that the
probability for a human to act under larger uncertainty is smaller than under smaller uncertainty, in line
with definition (75) and condition (81).

Taking the perspective of the representation X, definition (91) together with Equations (92) imply

that the conjunction error reads

e(AX1) = |q(AX)] — p(AXy) . (93)
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The condition for the conjunction fallacy to occur is that the error (93) be positive, which requires that

the interference term be sufficiently large, such that the conjunction-fallacy condition
4(AX)] > p(AX3) (94)

be satisfied.

The QDT thus predicts that a person will make a decision exhibiting the conjunction fallacy when
(i) uncertainty is present and (ii) the interference term, which is negative by the uncertainty-aversion
principle, has a sufficiently large amplitude, according to condition (94).

7.4.  Comparison with Experiments

For a quantitative analysis, we take the data from Shafir et al. [101], who present one of the
most carefully accomplished and thoroughly discussed set of experiments. Shafir et al. questioned
large groups of students in the following way. The students were provided with booklets each
containing a brief description of a person. It was stated that the described person could have a primary
characteristic (A) and could have additionally a second characteristic (X;), or could be free of this
second characteristic (X5).

In total, there were 28 experiments separated into two groups according to the conjunctive category
of the studied characteristics. In 14 cases, the features A and X; were compatible with each other, and
in the other 14 cases, they were incompatible. The characteristics were treated as compatible, when they
were felt as closely related according to some traditional wisdom, for instance, “woman teacher” (A) and
“feminist” (X7). Another example of compatible features is “chess player” (A) and “professor” (X7).
Those characteristics that were not related by direct logical connections were considered as incompatible,
such as “bird watcher” (A) and “truck driver” (X;) or “bicycle racer” (A) and “nurse” (X ).

In each of the 28 experiments, the students were asked to evaluate both the typicality and the
probability of A and AX;. Since normal people usually understand “typicality” just as a synonym of
probability, and vice versa, the prediction on typicality were equivalent to estimates of probabilities. This
amounts to considering only how the students estimated the probability p(AX), with X = X; 4+ X5, that
the considered person possesses the stated primary feature and the probability p(AX;) that the person
has both characteristics A and X.

An important quality of the experiments by Shafir et al. [101] lies in the large number of tests
which were performed. Indeed, a given particular experiment is prone to exhibit a significant amount of
variability, randomness or “noise”. Not only the interrogated subjects exhibited significant idiosyncratic
differences, with diverse abilities, logic, and experience, but, in addition, the questions were quite
heterogeneous. Even the separation of characteristics into two categories of compatible and incompatible
pairs is to a great extent arbitrary. Consequently, no one particular case provides a sufficiently clear-cut
conclusion on the existence or absence of the conjunction effect. It is only by realizing a large number of
interrogations, with a variety of different questions, and by then averaging the results, that it is possible
to make justified conclusions on whether or not the conjunction fallacy exists. The set of experiments
performed by Shafir et al. [101] well satisfies these requirements.

For the set of compatible pairs of characteristics, it turned out that the average probabilities were
p(AX) = 0.537 and p(AX;) = 0.567, with statistical errors of 20%. Hence, within this accuracy,
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p(AX) and p(AX;) coincide and no conjunction fallacy arises for compatible characteristics. From the
view point of QDT, this is easily interpreted as due to the lack of uncertainty: since the features A and
X are similar to each other, one almost certainly yielding the other, there is no uncertainty in deciding,
hence, no interference, and, consequently, no conjunction fallacy.

However, for the case of incompatible pairs of characteristics, the situation was found to be drastically
different. To analyze the related set of experiments, we follow the general scheme of the previous
subsection, using the same notations. We have the prospect with two intentions, one intention is to
evaluate a primary feature (A) of the object, and another intention is to decide whether, at the same time,
the object possesses a secondary feature (X;) or does not possess it (X;). Taking the data for p(.X;)
and p(AX;) from Shafir er al. [101], we calculate ¢(AX) for each case separately and then average
the results. In the calculations, we take into account that the considered pairs of characteristics are
incompatible with each other. The simplest and most natural mathematical embodiment of the property
of “incompatibility” is to take the probabilities of possessing A, under the condition of either having or
not having X, as equal, that is, p(A|X ;) = 0.5. For such a case of incompatible pairs of characteristics,
Equation (92) reduces to

1
p(AX) = 5 + q(AX) . (95)

The results, documenting the existence of the interference terms underlying the conjunction fallacy, are
presented in Table 1, which gives the abbreviated names for the object characteristics, whose detailed
description can be found in Shafir ez al. [101].

Table 1. Conjunction fallacy and related interference terms caused by the decision under
uncertainty. The average interference term is in good agreement with the interference-quarter
law. The empirical data are taken from Shafir ez al. [101].

characteristics | p(AX) | p(AX;) | ¢(AX)
A bank teller 0.241 0.401 | -0.259
X, feminist
A | bird watcher | 0.173 0.274 | -0.327
X1 | truck driver
A | bicycleracer | 0.160 0.226 | -0.340

X, nurse

A | drumplayer | 0.266 | 0.367 | -0.234
X4 professor

A boxer 0.202 | 0.269 | -0.298
X4 chef

A | volleyboller | 0.194 | 0.282 | -0.306
X4 engineer

A librarian 0.152 0.377 | -0.348
X, | aerobic trainer
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Table 1 Cont.

A hair dresser 0.188 | 0.252 | -0.312
X4 writer

A floriculturist 0.310 | 0.471 | -0.190
X, state worker

A bus driver 0.172 | 0.314 | -0.328
X4 painter

A knitter 0.315 | 0.580 | -0.185
X4 correspondent

A | construction worker | 0.131 | 0.249 | -0.369
X7 | labor-union president

A flute player 0.180 | 0.339 | -0.320
X car mechanic
A student 0.392 | 0.439 | -0.108
X fashion-monger
average 0.220 | 0.346 | -0.280

The average values of the different reported probabilities are
p(AX) =0.22, p(X1) =0.692 , p(X2) = 0.308 ,

p(AX1) = 0346,  p(AX,) = 0.154. (96)

One can observe that the interference terms fluctuate around a mean of —0.28, with a standard deviation
of +0.06, that is
g(AX)=—-0.28 £ 0.06 . 97)

There is a clear evidence of the conjunction fallacy, with the conjunction error (91)
being e(AX;) = 0.126.

QDT interprets the conjunction effect as due to the uncertainty underlying the decision, which leads
to the appearance of the intention interferences. The interference of intentions is caused by the hesitation
whether, under the given primary feature (A), the object possesses the secondary feature (X;) or does
not have it (X3). The term G(AX) is negative, reflecting the effect of deciding under uncertainty
(according to the uncertainty-aversion principle). Quantitatively, we observe that the amplitude |[g(AX)|

is in agreement with the QDT interference-quarter law.
7.5.  Combined Conjunction and Disjunction Effects

The QDT predicts that setups in which the conjunction fallacy occurs should also be accompanied by
the disjunction effect. To see this, let us extend slightly the previous decision problem by allowing for
two representations of the first intention. Concretely, this means that the intention, related to the decision
about the primary characteristic, has two representations: (i) “decide about the object or person having
or not the primary considered feature” (A), and (ii) “decide to abstain from deciding about this feature”

(B). This frames the problem in the context analyzed in the previous section. The conjunction fallacy
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occurs when one considers incompatible characteristics [101, 110], such that the probabilities of deciding
of having a conjunction (AXj;) or of not guessing about it (B.X) are close to each other, so that one
can set

p(A[X;) =p(BIX;)  (V)). (98)

The theorem on interference alternation (Theorem 1) implies that the interference term for being passive

under uncertainty is positive and we have
¢(BX)=—q(AX)>0. (99)

Now, the probability p(BX) of deciding not to guess under uncertainty is governed by an equation
similar to Equation (92). Combining this equation with (99), we obtain

p(BX) = p(AX) +2|q(AX)], (100)

which shows that, despite equality (98), the probability of being passive is larger than the probability of
acting under uncertainty. This is nothing but a particular case of the disjunction effect.

This example shows that the conjunction fallacy is actually a sufficient condition for the occurrence
of the disjunction effect, both resulting from the existence of interferences between probabilities under
uncertainty. The reverse does not hold: the disjunction effect does not necessarily yield the conjunction
fallacy, because the latter requires not only the existence of interferences, but also that their amplitude
should be sufficiently large according to the conjunction-fallacy condition (94).

To our knowledge, experiments or situations when the disjunction and conjunction effects are
observed simultaneously have not been investigated. The specific prediction coming from the QDT,
that the disjunction effect should be observable as soon as the conjunction effect is present, provides a
good test of QDT.

8. Non-commutativity of Decisions

It has been mentioned that subsequent decisions, in general, do not commute with each other and that
the non-commutativity is intimately connected with the presence of interferences between intentions. As
is demonstrated in the previous sections, the phenomenon of intention interference is a key and general
phenomenon at the basis of the disjunction effect and conjunction fallacy. Within QDT, we expect it
to be generically present in human decision making. We are now in a position to present a rigorous
proof that the phenomenon of intention interference is also a crucial ingredient for understanding the
non-commutativity of successive decisions.

8.1. Mathematical Formulation of Non-commutativity

To describe in precise mathematical terms the property of non-commutativity, let us consider the
case of two intentions. We denote one intention as A. And let the other intention X = (J, X;, with
i =1,2,3,...} be composed of several representations X;, such that the intention A can be certainly
realized under one of the intentions X; from the family X, that is,

> p(Xi|d)=1. (101)
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Assume that the joint probabilities are related to the conditional probabilities in the standard way,
such that

p(AX;) = p(AlX)p(Xi) ,  p(X;A) = p(Xi|A)p(AX) . (102)
For two intended actions A and X; the following statement holds, demonstrating the non-commutativity
of these intended actions.

Theorem 3: For two intended actions, A and X = |J; X;, satisfying conditions (101) and (102), the
Jjoint probability p(AX) equals p(X A) if and only if there is no interference terms,

p(AX) =p(XA) < q(AX)=q(XA)=0. (103)

And, reciprocally, the intended actions A and X do not commute if and only if the interference factors

are nonzero,

p(AX) # p(XA), q(AX) #0. (104)

Proof: By the general rules of QDT, we have
p(XA) =3 p(XiA) + (X A) .
Employing equations (97) gives

p(XA) =3 p(Xi|A)p(AX) + q(X A) .

Using normalization (96) yields
p(XA) = p(AX) = q(XA) .

Interchanging here the actions A and X results in
P(XA) = p(AX) = q(AX) .

The latter two equations prove the theorem.

The non-commutativity of subsequent decisions is reminiscent of the non-commutativity of
subsequent measurements in quantum mechanics. However, there is a principal difference between
these phenomena. In decision theory, the prospect states and the strategic state of mind are the internal
states of the same decision maker. In contrast, in quantum mechanics, the measurement is accomplished
by an observer, or an apparatus, which are external to the measured physical system. The analogy
would be closer, if one could imagine a physical system that attempts to measure some parts of itself.
Since standard quantum mechanical measurements do not proceed like this, the mathematics of the
non-commutativity of subsequent decisions in decision theory and of subsequent measurements in

quantum theory are quite different.
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8.2.  Meaning of Simultaneous Intended Actions

As follows from the above theorem, when there are two intentions, say A and B, the joint probability
p(AB) is generally different from p(BA). Two intentions do not commute with each other, when at least
one of them is composite, consisting of several interfering representations, or modes. The intentions
commute, only when there is no mode interference. For example, when the mind is one-dimensional or
if there is no uncertainty.

Since the order of intended actions is important, when writing p(AB), one has to keep in mind that
the intention B is to be realized earlier than A. Even when talking about simultaneous intentions, it
is implied that the order AB means the possible realization of B infinitesimally earlier than that of A.
To be more precise, let us mark the intention A, associated with time ¢, as A;. Respectively, B; is the
intention B, associated with time ¢. Then the joint probability of these two intentions, taken in the order
A, B, is defined as

p(ABy) = t/l_i}rg() p(ApBy) . (105)

Because of the non-commutativity of two intentions, the corresponding decisions also do not
commute. Two subsequent decisions, even taken immediately one after another, and under the same
circumstances, in general, may lead to different outcomes just as a result of the order of their realization.

9. Entropy and Information Functional

Quantum decision theory is developed above as a self-consistent mathematical theory. But it
remains to be shown how this general theory could be reduced to classical decision theory as a
particular case. It is thus necessary to explain how QDT is connected to classical decision theory
based on the notion of expected utility. For this purpose, we need to spell out the relation between
the utility factor (17) and the classical expected utility. This can be done by invoking conditional
entropy maximization, which is equivalent to the minimization of an information functional. The
method of conditional entropy maximization is widely used in statistical physics yielding Gibbs
ensembles [122]. The method of information minimization is in the basis of the approach to constructing
representative ensembles [123, 124], using which it is possible to obtain self-consistent description of
all, even quite complex, phenomena of statistical physics.

The utility factors po(7;) in QDT play the role of classical probabilities. Then the entropy can be
defined through these utility factors in the standard way as for any probabilities:

S =— Zpo(ﬂj) Inpo(7;) , (106)
j
where the summation is over all prospects 7; pertaining to the given prospect lattice £ (see Definition
5). The normalization condition (18) is valid.
In classical decision theory, one deals with expected utilities defined for the related lotteries [61].
For each prospect 7;, it is possible [78] to put into correspondence a lottery L ;. Therefore, the expected
utility for a lottery L; can be denoted as depending on the prospect 7; corresponding to this lottery. So,
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we can write U(m;) for an expected utility of a prospect 7; related to the lottery L;. For concreteness,
we assume that the expected utility is defined so that it is non-negative:

U(ﬂ'j) >0 (7Tj € E) , (107)

which is always possible to achieve.

In addition to the normalization condition (18), we have to impose another condition related to the
choice of expected utilities. To this end, we shall use the notion of the likelihood ratio, known in testing
statistical theories [125]. In classical decision theory, that lottery is classified as optimal, which provides
the maximal expected utility. Treating the expected utility as a likelihood function, we can introduce the

likelihood ratio
U(m;)

. 108
sup; U(m;) (108)

A(m;)=—1In
This likelihood ratio is non-negative, having minimum at zero. The expected likelihood is given by

A= Zpo(wj)/\(wj) : (109)

With entropy (106), under condition (18) and relation (109), the information functional is given by

the expression

Ilpo(m)] =D po(m;) Inpo(m;) + A | D po(m;) = 1| +p | D po(m)Almy) — A, (110)
J J J
where ) and p are Lagrange multipliers. This functional is minimized with respect to py(7;), when
ol 621
dpo(;) dpo(m;)

The corresponding variation derivatives yield

oI [po(m)]
Sro(r) Inpo(m;) + 14+ X+ pA(r;) ,
Ilpo(m)] 1

po(m;)?  po(m;)) >0 (112)

From the first of equations (111), using (108), and denoting
”w
7= [sup UW] | (113)
J
which, under normalization (18), becomes

Z=3 [U(m)" . (114)

we obtain the utility factor
molm) = 7 U (115)
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Note that, as long as 1o > 0, [U(7;)]" also defines a utility function which results in the same ordering as
the initial function U (7;). Hence, expression (115) gives an explicit relation between the utility factor in
QDT and the expected utility of classical decision theory. From this relation, we see that QDT reduces
to classical decision theory when the interference terms vanish so that po(7;) = p(7;). The condition
p = 1 in expression (115) is not necessary since [U(m;)]" and U (7;) are two utility functions that result
in the same preference ordering. It is natural that the specific value of the Lagrange multiplier x should
be irrelevant in the correspondence between QDT to classical utility theory since p just quantifies the
degree to which the likelihood can vary around some a priori expected likelihood.

10. Conclusions

We have presented a quantum theory of decision making. By its nature, it can, of course, be
realized by a quantum object, say, by a quantum computer or another quantum system. This theory
provides a guide for creating thinking quantum systems [77]. It can be used as a scheme for quantum
information processing and for creating artificial intelligence based on quantum laws. This, however, is
not compulsory. And the developed theory can also be applied to non-quantum objects with an equal
success. It just turns out that the language of quantum theory is a very convenient tool for describing the
process of decision making performed by any decision maker, whether quantum or not. In this language,
it is straightforward to characterize entangled decisions, non-commutativity of subsequent decisions,
and intention interference. These features, although being quantum in their description, at the same
time, have natural and transparent interpretations in the simple everyday language and are applicable to
the events of real life. To stress the applicability of the approach to the decision making of human beings,
we have provided a number of simple illustrative examples.

We have demonstrated the applicability of the approach to the cases when the Savage sure-thing
principle is violated, resulting in the disjunction effect. Interference of intentions, arising in decision
making under uncertainty, possesses specific features caused by aversion to uncertainty. The theorem on
interference alternation that we have derived connects the aversion to uncertainty to the appearance of
negative interference terms suppressing the probability of actions. At the same time, the probability of
the decision maker not to act is enhanced by positive interference terms. This alternating nature of the
intention interference under uncertainty explains the occurrence of the disjunction effect.

The theory has led naturally to a calculational method of the interference terms, based on
considerations using robust assessment of probabilities, which makes it possible to predict their
influence in a quantitative way. The estimates are in good agreement with experimental data for the
disjunction effect.

The conjunction fallacy is also explained by the presence of the interference terms. A series of
experiments are analyzed and shown to be in excellent agreement with the a priori evaluation of
interference effects. The conjunction fallacy is also shown to be a sufficient condition for the disjunction
effect, and novel experiments testing the combined interplay between the two effects are suggested.

We have emphasized that the intention interference results in the non-commutativity of subsequent
decisions, which follows from the theorem on non-commutativity of intended actions.

The approach of entropy maximization, or information-functional minimization, is employed for

deriving a relation between the quantum and classical decision theories.
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The specific features of the Quantum Decision Theory, distinguishing it from other approaches known
in the literature on decision making and information processing, can be summarized as follows.

(1) QDT is a general mathematical approach that is applicable to arbitrary situations. We do not try to
adjust the QDT to fit particular cases; the same theory is used throughout the paper to treat quite different
effects.

(2) Each decision maker is characterized by its own strategic state. This strategic state of mind is,
generally, not a trivial wave function, but rather a composite vector, incorporating a great number of
intended competing actions.

(3) QDT allows us to characterize not a single unusual, quantum-like, property of the decision making
process, but several of these characteristics, including entangled decisions, non-commutative decisions,

and the interference between intentions.

(4) The literature emphasizes that aversion with respect to uncertainty is an important feeling
regulating decision making. This general and ubiquitous feeling is formulated under the
uncertainty-aversion principle, connecting it to the signs of the alternating interference terms.

(5) The theorem on interference alternation is proved, which shows that the interference between
several intentions, arising under uncertainty, consists of several terms alternating in sign, some being
positive and some being negative. These terms are the source of the different paradoxes and logical
fallacies presented by humans making decisions in uncertain contexts.

(6) Uncertainty aversion and interference alternation, combined together, are the key factors that
suppress the probability of acting and, at the same time, enhance the probability of remaining passive, in
the case of uncertainty.

(7) The principal point is that it is not simply the interference between intentions as such, but
specifically the interference alternation, together with the uncertainty aversion, which are responsible
for the violation of the Savage’s sure-thing principle at the origin of the disjunction effect.

(8) The conjunction fallacy is another effect that is caused by the interference of intentions, together
with the uncertainty-aversion principle. Without the latter, the conjunction effect cannot be explained.

(9) The conjunction fallacy is shown to be a sufficient condition for the disjunction effect to occur,
exhibiting a deep link between the two effects.

(10) The general “interference-quarter law” is formulated, which provides a quantitative prediction
for the amplitude of the interference terms, and thus of the quantitative level by which the sure-thing
principle is violated.

(11) Detailed quantitative comparisons with experiments documenting the disjunction effect and the

conjunction fallacy confirm the validity of the derived laws.

(12) Subsequent decisions are shown, in general, to be not commutative with each other, by proving
a theorem on non-commutativity of decisions.

(13) The minimization of an information functional, which is equivalent to the conditional
maximization of entropy, makes it possible to connect the quantum probability with expected utility.
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(14) The relation between the quantum and classical decision theories is established, showing that the

latter is the limit of the former under vanishing interference terms.
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