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Abstract: This paper describes the basic ideas behind a novel prediction error parameter
identification algorithm exhibiting high robustness with respect to outlying data. Given the
low sensitivity to outliers, these can be more easily identified by analysing the residuals of the
fit. The devised cost function is inspired by the definition of entropy, although the method in
itself does not exploit the stochastic meaning of entropy in its usual sense. After describing the
most common alternative approaches for robust identification, the novel method is presented
together with numerical examples for validation.
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1. Introduction

In spite of their practical importance in many fields of science and technology, apparently there is
no universal and well-accepted definition of outlying data. This may have resulted from the wide range
of fields (statistics, data mining, signal processing, time-series analysis, system identification, telecom-
munications, etc.) dealing with outliers from different perspectives. Broadly speaking, we can think of
outliers as data values that appear to be inconsistent with the rest of the set. In model identification for
automatic control applications as well as in the other fields of science and technology, outlying data may
have a dramatic impact on parameter estimation. This paper describes the basic ideas behind a novel pre-
diction error parameter identification algorithm for static models exhibiting high robustness with respect
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to outlying data. Given the low sensitivity to outliers, these can be more easily identified by analysing
the residuals of the fit. The proposed algorithm is based on the minimization of a particular cost function
of the model prediction error residuals. The devised cost function is inspired by the definition of Gibbs’
entropy and shares the same mathematical properties of the entropy associated to a set of probability
values p;, although the method in itself does not exploit the stochastic or information theoretic meaning
of entropy in its usual sense (hence the name entropy-like). Contrary to alternative robust parameter
identification methods (as the Least Median of Squares (LMS)), if the model is sufficiently regular with
respect to the parameter vector 6, the derivatives of the proposed penalty function with respect to € can
be analytically computed allowing to exploit gradient and Hessian matrix information in the numerical
minimization routine. Robustness to outliers is obtained as a consequence of the fact that the used cost
function rewards unevenly distributed residuals rather than some kind of weighted mean square error
(MSE). In particular, the minimization of the devised entropy-like function rewards the presence of a
majority of low relative errors and a minority of large ones.

After reporting on the state of the art on robust parameter identification in Section 2., the proposed
method is outlined and discussed in Section 3. The basic algorithm properties and associated problems
are addressed in Section 4. and numerical results are provided in Section 5. Conclusions and future
research directions are finally addressed in Section 6.

2. Robust Parameter Identification: A Brief Summary of the State of the Art
Consider a static system
yi:f($i17$i2a'-~7$imyer)+€i . i:172a"'7N (1)

being 0, € R™*! the unknown parameter vector, y; € R the response variable, x;1, Zjo, . . . , Tim the
explanatory variables and ¢; the error term. Index 7 runs on the number of observations N that is as-
sumed to be strictly larger than m. The error term ¢; is assumed to be a normally distributed random
variable with zero mean. Denoting with Zn = {(y;, i1, Ti2, - . -, Tim) 1 © = 1,2,..., N} the set of the
available observations, a regression estimator 7' is an algorithm associating to Zy an estimate 0 of 6,
namely T'(Zy) = 6. Prediction error estimators 7' are designed based on the properties of the regression
residuals

i = Yi — Yi ()
where ¢; are the predicted responses §; = f(Zi1, %2, - -, Tim, 9) The most popular prediction error
estimators are the Least Squares (LS) and weighted LS estimators defined respectively as

N
éLS = argmin rf = argmin (r’r 3)
f 2; tin (r'r)
Owrs = arg mein (r"I'r) “4)
where r € RV*! is the residual vector r = (ry,7s,...,7x)7 and T € RY*N a symmetric positive

definite (or eventually semidefinite) matrix of weights. Given the symmetric nature of I', there is no

substantial loss of generality in assuming it to be diagonal, i.e., there exists an orthogonal N x /N matrix
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Q such that QT QT =diag(y1,79, - - ., 7w ), so that the WLS estimator results in

N
Ow s = arg mBin DR &)
=1

where r = Q) r. If the weight matrix I' in the WLS estimator is chosen to be the covariance of the zero
mean normally distributed error term € = (,¢9,...,ex)7, namely I' = E[e e’], the corresponding
estimator (some times called the Markov Estimator) coincides with the Maximum Likelihood (ML)
estimator defined as

éML = arg mgxp(ZN ’ 9) (6)

where p(Zy | @) is the probability of the data set Zy given 0.
If, moreover, the error terms ¢; are assumed to be independent and identically distributed (i.i.d.) the
above ML estimator minimizes the sample version of the entropy associated to p(-), namely

N

OML—argmén;—logp(eila). (7
The properties of the celebrated Maximum Likelihood, Least Squares and Weighted Least Squares esti-
mators are very well known and will not be discussed here. Yet it should be stressed that these methods
are also very well known to be highly sensitive to outliers [1, 2], i.e., to elements of Z that do not com-
ply with the model (1). Intuitively the lack of robustness of all ML related methods should not surprise:
if Zy is contaminated by wrong data (i.e., data that should not be in Zy), maximizing the likelihood of
Zn conditioned to @ means maximizing the probability that the data set does contain wrong data.

The issue of designing robust (with respect to outliers) parameter estimators has been explored in
many fields of science following often different approaches. In order to motivate and compare the so-
lution proposed in this paper with the state of the art, some of the alternative known approaches are
briefly summarized: based on the observation that the ML estimator minimizes the sample version of the
entropy associated to the i.i.d. model errors ¢;, in [3, 4] a minimum entropy (ME) estimator is proposed.
The main idea consists in estimating the probability density function of residuals p(r;(€)) with a kernel
based method (using radial basis functions, by example) and then computing the parameter vector esti-
mate 6,5, as the argument minimizing the entropy associated to p. The idea behind this approach is that
minimizing the estimated entropy of the residuals will force them to have a minimum dispersion. This
approach, although computationally demanding, is indeed appealing and has also been pursued within
system identification in [5].

A different perspective to the problem can be found in the rich statistics literature on the subject. A
milestone reference is the book by Peter J. Huber [2] describing (among the rest) the use of M-estimators
(where the M is reminiscent of Maximum Likelihood). M-estimators can be thought of as generalizations
of the LS estimator (3) where the square of residuals is replaced by an alternative penalty function p(-)
with a unique zero in the origin and such that p(z) = p(—z), namely

N
0, = arg memz p(ri(0)). (8)
i=1
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Indeed Laplace or L; regression is a special case of equation (8) corresponding to p(-) = | - |, i.e.,
the absolute value of residuals. Unfortunately, L; regression (as LS, i.e., L, regression) turns out to
be quite sensitive to outliers [1] and is computationally complex even for models that are linear in 6.
M-estimators (as the other parameter estimators) are more easily analysed in the special case that the

model (1) is linear in the parameters, namely:
yi:xi101+$i292+~'+xim‘9m+5i : i:1,2,...,N (9)

or in vector notation
y =GO +¢ (10)

beingy € RV*1 ¢ ¢ RVX! G € RV*™ and § € R™*1.
With reference to the model (9) and to the M-estimator (8), if p(-) is differentiable, the computation

of 6, can be computed solving a system of m equations as
N
Op(ri(0
meij:():jzl,...,m. (11)
— 00,

Denoting with 1) the derivative of p with respect to the generic component of 6, the above m equations
are usually reported as

Zw(nw» z; =0 (12)

where the index j is omitted for the sake of brevity. Most often the design of M-estimators is performed
by selecting the #(+) function in equation (12) rather than p(-) itself. In this case the corresponding M-
estimator is classified as W-type. Robustness to outliers is then sought for by selecting the ¢ (-) function
so that it saturates to a constant positive value when its argument (i.e., the residual) is larger than a certain
threshold. Eventually the #(-) function can be selected so that it even goes to zero for sufficiently large
residuals, in this case () is said to be redescending. Examples of popular redescending (-) functions
include Hampel’s three-part function

¢ if |t|<a
a sign(t) if a<l|t|]<b
ampel(t) = c—It| - . 13
Viarmpel () aCT‘Z'ﬂgn(t) if b<|t|<c (3)
0 if |t| >c

for parameters 0 < a < b < ¢, Tukey’s biweight 1)(¢) function for some positive k:

2
t (1 — (L 2) it |t <k
Q/}Tukey(t) = (k) . | | o ) (14)
0 if |t| >k
or Andrew’s sine wave (for some positive w):
sin(wt) if [t < Z
ndrew t) = . ot 15
Yanareu(?) {0 if |t > ()
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The most popular non redescending design for () is perhaps Huber’s ¢)(t) function for some positive
k:
t if [t| <k

16
ksign(t) if [t| >k (16)

Uiuper (t) = min{ k, max {t, -k} } = {
corresponding to Winsorized Least Squares. Indeed the )(-) function associated to the LS estimator is
simply ¢(t) = t and the one associated to L regression is ¢ (t) = sign(t).

A possible measure of the robustness of an estimator is given by the finite sample breakdown
point [1]: assume that an estimator 7' associates the estimate @T to a given data set Zy, namely
Or = T(Zy). Denote with Z§; the set obtained by replacing ¢ data points in Z with arbitrary values and
with b(c, T, N) = sup .
that can be induced in the estimate by such contamination of the data set. The finite sample breakdown
point bdp(T', N) of T over N is defined as

T(Zn)—=T(Z)| (|| - || denotes an arbitrary norm in R™) the maximum bias

bdp(T, N) = min {% (e, T, N) — +oo} 17)

and it measures the least fraction of contamination that can arbitrarily bias the estimate. The asymp-
totic breakdown point is obtained as the limit of bdp(T, N) for N tending to infinity and it is usually
expressed as a percentage. It is well known that in LS regression problems even a single data point can
arbitrarily affect the estimate. Denoting with 7} ¢ the LS-estimator, its finite sample breakdown point
results in bdp(Trs, N) = 1/N and its asymptotic breakdown point is 0%. Unfortunately M-estimators
are also reported [1] to have 0% asymptotic breakdown point in spite of exhibiting good finite sample
performance in practical applications. Some W-type )M -estimators may not be scale equivariant. Scale
equivariance is a property according to which if the data values y; should be all scaled by a constant c,
ie., y; — cy; V 7, the corresponding estimate 6 would scale the same way, i.e., 6 — 6. Of course
this is a very important property for linear in the parameters models. To ensure proper scaling behavior
of M-estimates that should not be scale equivariant, one can normalize the residuals with an estimate &
of the standard deviation of the data. Namely, the normalized W-type M -estimate equations would take

iw(%) 2 =0 (18)
=1

where the 0 needs to be estimated as well. Of course this increases the complexity of the overall problem.

the form:

A possible robust estimate of the standard deviation [2] can be taken to be
o = kMAD (19)

for some positive constant k£ being MAD the Median Absolute Deviation defined as:

p = med{r;} (20)
MAD = med{|r; — p|}. (21)
where med{ry, } is the median of the set {r, : h = 1,2,..., N}. The constant k can be chosen to achieve

consistency with the standard deviation of a known probability distribution: by example, should the r;

values be distributed normally with standard deviation o, the constant k£ would need to be approximately
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equal to 1.4826 for ¢ to be a consistent estimate of 0. For a more detailed discussion about estimating
the scale of residuals refer to [2] (Chapter 5).

A common feature to all M-estimators is the structure described by equation (8) of the objective
function to be minimized: notably, according to this structure, each residual contributes to the objective
function independently from the others. Of course residuals are related to each other through the common
“generating” model, yet according to the very definition (8) of M-estimators, the contribution to the
objective function of the i-th residual does not depend on the other residuals. In a very loose sense,
one could say that the above presented M -estimators are somehow “local” in nature as they strive for
robustness trying to give a finite (or zero, for redescending M -estimators) weight to single residuals that
exceed a threshold. Each residual contributes to the objective function based on its only value regardless
the overall distribution.

An alternative approach is to minimize a “global” measure of the scatter of all residuals. Indeed the
novel robust (or resistant) estimators presented in [1] have a different structure with respect to “local”
(in the above sense) M -estimators: these are the Least Median of Squares (LMS) and Least Trimmed
Squares (LTS) estimators. Both estimators appear to have excellent robustness properties: by their very
definition they are computed minimizing objective functions that measure the overall distribution of

residuals. In particular the LMS (not be confused with the Least Mean Square value) is defined [1] as:

éLMS = arg mein med; {7’12} ) (22)

This estimator is shown [1] to achieve the maximum breakdown point possible (i.e., 50%) although its
computation is numerically nontrivial and its performance in terms of asymptotic efficiency is poor. The
LMS estimator has also an appealing geometrical interpretation that can be more easily described in
the scalar case p = 1, i.e., when @ is a scalar and the data model is the line y = 6 x: in this case, the
LMS estimate 0 rus of 6 corresponds to the center line (é r.msx) of the thinnest (measured in the vertical
direction, i.e., y-axis) stripe containing [N/2] + 1 of the data points being [N/2] the integer part of N/2.
This geometrical interpretation can be extended to the general case of linear in the parameters models
as in equation (9). The LMS estimator can be also interpreted as a special case of a Least Quantile of
Squares (LQS) estimator [1] (pp. 124—125): this is a class of estimators including as a special case also
the L., or minmax estimator defined as:

0, =arg mén max {rf} ) (23)

A second robust estimator (having the same breakdown point of the LMS) presented and analysed
in [1] is the Least Trimmed Squares (LTS) estimator defined as:

0,rg = arg meinz (r*),y : h=I[N/2]+[(p+1)/2] (24)

being (r?),. the ordered sequence of the squared residuals (first squared, then ordered), namely

()1 < (F)py < (F)gy < < ()

(25)

N:N

where (1?) SN = r? forall j = 1,2,..., N. Notice that in spite of the similarity with traditional Least

Squares, the computation of the LTS estimate is not obvious as the dependance of the ordered sequence
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of the squared residuals from the parameter vector is by no means trivial. For a (not up-to-date, but
still valid) discussion about numerical issues related to the computation of LTS and LMS estimates,
see [1]. Results relative to the complexity and the issues related to the computation of LMS estimates
are described in [6] and [7].

Other robust estimators used mostly in statistics include L-estimators, R-estimators and .S-estimators:
the first are computed as linear combinations of order statistics of the residuals. They are mostly used
in location (p = 1) problems and are usually simple to compute (example, in location problems, 6, =
Zi]\il a; y;.n for proper constants a;), although they have been shown [1] (p. 150) to achieve poor results
when compared with alternative robust solutions. R-estimators are based on ranks of the residuals: such
estimators have been studied from the early 1960s and, under certain conditions, have been shown to
have the same asymptotic properties of M -estimators [1] (p. 150). S-estimators have been suggested
in [1] and are based on M -estimates of the scale of the residuals. As reported in [1] (p. 208), S-estimates
are rather complex to be computed and simulation results suggest that they do not perform better than
the LMS.

One of the limits of the LMS estimator is its slow (N ~'/3) asymptotic convergence rate (notice that
LTS is shown to converge at the “usual” rate of N ~/2) [1]. In the attempt to improve convergence of the
LMS estimate, it was suggested in [1] to use a so called “Reweighted” Least Squares (RLS) approach:
the basic idea is to use a first robust estimate s of the scale of residuals (by example based on the
MAD (21)) to compute binary weights for each residual as:

1 if [H] <
N L (26)
0 otherwise

where c is an arbitrary threshold (usually equal to 2.5). Weights equal to zero will correspond to data

points that will be completely ignored, while weights equal to one will correspond to data points used
for the next step of the algorithm. Once that weights w* have been computed according to equation (26),
a second estimate of the scale is computed as ([1] pp. 44—45):

N * .2
ot = —%ﬁl Dl 27)
D bt Wh =P

Then a new set of weights wj is computed (hence the name “reweighted”) on the basis of the new scale
estimate o*, namely:

1 if |2 <
wf =4 o Tl =6 (28)
0 otherwise
and the final estimate of 6 is computed as a (Re-) Weighted Least Squares estimate according to:
N
Orrs = arg min wj T?. (29)
s = wgny

i=1

Accordingly, the final scale estimate is computed as in equation (27) but with the wj weights in place of
the w; ones.
Numerical simulations reported in [1] show that the above described Reweighted Least Squares

(RLS) solution has very nice finite sample properties, although the hope that this solution could also
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improve the rate of asymptotic efficiency has been shown to be false in [8]. Of course many vari-
ants to this reweighted schema are possible: by example weights can be computed with a smooth
function ([1] p. 129) rather than a binary one, or they can be computed adaptively [9], or even based on
Pearson residuals [10] giving rise to a one step robust estimator. The detailed discussion of these (and
other) variants to the RLS approach goes beyond the scope of this paper and will be omitted for the sake
of brevity.

To conclude this very brief overview of robust estimation methods, it should be noted that besides the
statistics research community, other branches of science have been addressing similar problems exploit-
ing different methods. For example, within the machine learning community, popular approaches include
Neural Networks based or Support Vector Machine (SVM) estimators [11]. For pattern recognition and
computer vision classification problems, voting algorithms are also widely employed. One of the most
popular voting algorithm is the Hugh transform or, more generally, the Radon transform [12]. This is
often used in computer vision applications: it consists in performing a transformation between the image
space (pixels) and a parameter space relative to specific curves. In its most common and simple formu-
lation, the Hugh transform is used to detect straight lines in 2D images: a (simplistic) implementation of
the method could be summarized as follows. First a set of candidate pixels C, is selected based on a given
criteria (by example color, or some other image property). Then, each pixel in C,, with coordinates (x, y)
“votes” for sampled parameters (a;, by) insets S, = {a1,as,...,a, : a1 =a;+A, V j€[l,n—1]}
and Sy = {b1,b2,..., by, : bpp1 =bp+ Ay V he[l,m—1]}if |y — aj x — by| < ¢ for some positive
threshold €. Once that all pixels in C, have been processed, the straight lines in C, are determined by
selecting the parameter pairs (a*, b*) that have been assigned the highest number of votes. This kind of
voting algorithm has the advantage of being computationally simple and relatively fast: this approach is
popular in image processing applications where real time performance is essential. Notice that the spirit
of voting schemas is to sample the parameter space such that the majority of candidate data points agree
on a specific point of the parameter space. The selection of the parameter points is performed “globally”
after all candidate data points have expressed their vote. Robustness to outliers is naturally obtained
through the voting criteria itself. The Hugh transform method can be extended to identify more complex
curves than straight lines. Of course the computation time and the memory requirements of the method
increases rapidly with the number of data points to process and with the dimension of the parameter
space to be sampled. The computational effort associated with the number of data points is due to the
fact that each of them is processed before the estimate can be computed. An alternative algorithm that
remedies this problem is RANSAC, i.e., Random Sample Consensus [13].

The RANSAC is an iterative algorithm based on random sampling of the data: in short, a subset
(candidate inlier data set C;,;..s) of the data points is randomly sampled. In its most simple implemen-
tation, the size N, of this randomly sampled subset is fixed and is one of the design parameters of the
algorithm. The elements in C;,;¢.s are then fitted to the model through standard methods as, by example,
Least Squares. The rest of the data points (not used for estimating the model parameter vector) is tested
against the model: data points with residuals below a given threshold, hence that have reached a consen-
sus with the candidate parameter vector of the model, are added to the candidate inlier set C;y,j;ers. If the
size of C;pjiers built in this manner is sufficiently large (namely larger than a design parameter threshold
N,.), all the data in this set are fitted to the model giving rise to the RANSAC estimate of the parameter
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vector. Otherwise the whole procedure is repeated for a maximum number of times Vy,,x. An estimate
of how large V,,.x should be can be obtained on the basis of an estimate of the percentage of outliers, of
the size Ny of the randomly sampled subset and of the desired probability that the dimension of C;,j;ers
after testing all the data is at least NV, (refer to [13] for details).

Another approach for robust parameter estimation has been developed in the last 15 years within
the information and entropy econometrics research community [14]: exploiting (in essence) Laplaces
principle of insufficient reason and the information theoretic definition of entropy, a method known as
Generalized Maximum Entropy (GME) has been developed [15] for the parameter identification prob-
lem. With reference to linear in the parameters models as in equation (10), contrary to all the other
discussed approaches, the GME method aims at estimating both the parameter vector 8 and the er-
ror term €. From a technical point of view, this goal is pursued by re-parametrizing the model in
equation (10) so that @ and € are expressed as expected values. A basic scenario is the following:
assuming 0; € [—c¢;,¢;] and ¢; € [—d;,d;| for all © = 1,2,... m, the linearly spaced support vectors
z; € R and v; € R™! are defined on the sets [—c;, ¢;] and [—d;, d;] for some . By example, if [ = 5

one would have

zi = [—¢ —ci/20 +¢/2 +af (30)

Such support vectors are then used to define block-diagonal matrices Z and V'

zl 0 ... 0 vieo ... 0
0 z& ... 0 ; 0 vI ... 0 ;
Z=1 . I ] e R™M V= T _ e R™xm (32)
0 0 zl 0 0 vl
such that
& = Zp : p=I[pl ps ... p.]T e Rim*! (33)
e = Vw : w=[wl wl ... wl]T e Rm¥! (34)

where p; € R*! and w; € R™*! are the (discrete) probability density functions (on supports z; and v;)
of #; and ¢; respectively. Having introduced such discrete probability density functions, the values of p
and w are estimated based on the principal of maximum entropy as
Ii)GME = arg max (—pT logp — w’ log W) (35)
WGME p,w

subject to the consistency (10)
y=GZp+Vw (36)

and normalization constraints

MN

k=1

=~ I

0< (Wi <1 5 Y (wy), =1 Vi=12...,m (38)
k=1
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having denoted with (x), the k-th component of vector x. Solving equation (35) subject to constraints
(36), (37) and (38) is in general by no means trivial and needs to be accomplished numerically. On the
other hand, the entropy function in equation (35) to be maximized is strictly concave on the interior of
the constraints (37) and (38) implying that a unique solution to the constrained optimization problem
exists if the intersection between the constraints is non-empty. Of course the GME estimate @G wE of 0
will be given by

Ocrs = Z Pans. (39)

The GME method is extremely interesting for its many noteworthy properties. In particular the method
also converges when the model matrix GG in equations (10) or (35) is singular and there is no need for
specific assumptions on the distribution of the error term €. Notice, for example, that in the extreme
case where G = 0 and E[y| = 0, the Least Squares or Weighted Least Squares estimators would
be ill-defined whereas the GME method would lead to uniform probability density functions p; and
w; implying Ocre = 0 (if the support vectors z; and v; are symmetrical with respect to zero as in
equations (30-31)). Of course this desirable behavior is possible thanks to the prior information on 6
and € (unnecessary within LS and related approaches) that is embedded in the definition of the support
vectors z; and v;.

It should be noticed that the GME method is widely used in econometrics research (see [16] for a
recent application in this field), but still poorly exploited in other application domains that could greatly
benefit from it (consider, for example, system identification and control engineering where robustness
is a must [17, 18]). Notice that the GME approach guarantees high robustness with respect to singular
regression models, but in its standard formulation described above it does not offer specific benefits with

respect to the presence of outliers.
3. An Entropy-Like Estimator

The proposed method, similarly to M-estimators, LTS and LMS-estimators, builds on the minimiza-
tion of a properly defined penalty (or cost) function. The novelty of the method is related to the definition
of the cost function: the aim is to find a cost function able to give a “global” measure of the scatter of
the residuals. As explained in the following, such function will be built on the basis of the concept of
(Gibbs) entropy.

Given the residual r; as in equation (2), define:

N
D=> r (40)

Jj=1

namely the LS estimation cost. Then define the relative squared residuals q; as

2 N
fD#A0 = qi= = : €01 and Y g =1, 41)
Zj:l T i=1

and finally
if D=0

0
1= 42
{ _@ SN gilogg; otherwise. (42)
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The function H enjoys all the mathematical properties of a normalized entropy [19] function associated
to the sequence of “probability”, like ¢; : ¢ =1,2,..., N. In particular:

H € 10,1] (43)
ri=0 V i€[l,N]

H=0 iff { or (44)
I irp#£Oandr; =0 Vi £

H=1iff r7=7r7#0 V i,j€[l,N] (45)

Notice that the hypothesis D # 0 in equation (41) is needed just to prevent the singular situation oc-
curring when the LS fit is perfect. This is not a practical limit, as prior to computing  one can always
check if the LS fit is perfect. In such case there is of course no need to compute any other estimate of the
parameters. Also notice that for null values of ¢; the terms 0log 0 in equation (42) are zero (recall that
xlog x = log 2% and that 0° = 1).

When the relative squared residuals ¢; are properly defined (i.e., D # 0), the H function is a measure
of their spread. When they are not properly defined, it is simply because the residuals are all identically
null which corresponds to a null value of H exactly as in the case when all the residuals are zero except
one. In Physics the entropy of a system admitting /V discrete states with probabilities py, pa, ..., py 1
computed as — Efil pi log p;. Itis well known that such function is a sensitive measure of the dispersion
of the probabilities. Configurations with only a small fraction of highly probable states have a lower
entropy of configurations where most states are approximately equally probable. Motivated by this fact,
the function H is defined with the aim of measuring the dispersion of the relative squared residuals. In
particular given that the entropy-like function H as defined by equation (42) depends on @ through the

residuals r; (equation (2)), the following estimator is proposed:

éLEL = argmeinH (46)

where LEL stands for Least Entropy-Like. Such name was chosen with the twofold objective (z) of un-
derlining that the H function is not properly an entropy and (i7) of avoiding confusion with the Minimum
Entropy estimation approach described in Section 2.. The idea behind the 61,51, estimator defined in (46)
is that such estimate will correspond either to making all the residuals null, or to making the relative
squared residuals as little equally distributed as possible according to the A function minimization cri-
teria (46). Notice that due to the normalization of the relative squared residuals ¢; (41), forcing them to
be “as little equally distributed as possible” means that “most” residual r; will need to be “small” (with
respect to the normalization constant D, i.e. the Least Squares cost) and “a few” of the residuals r; will
need to be “large”. Data points corresponding to these “large” residuals are outlier candidates. Stated
differently, the reason for robustness with respect to outliers is that the devised penalty function does not
directly measure the (weighted) mean square error (that tends to level out or “low pass” residuals), but
rather the dispersion or variability of the relative squared errors.

Before discussing in greater detail the properties of the proposed estimator, it should be noticed that,
in general, there is no guarantee for the H function to have a unique minimum with respect to 8. The

entropy-like penalty function H is nonlinear and may have multiple local minima. The minimization
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of H needs to be carried out numerically with particular attention to the initialization of @: indeed the
proposed estimator should be regarded as local in nature.

4. Basic Algorithm Properties and Problems
4.1. Non uniqueness of the LEL-estimator

One of the most relevant properties of the proposed estimator is its non-uniqueness due to the nonlin-
ear nature of H. In particular, as is well known [19], entropy is invariant under translation of the prob-
ability density function. Indeed this property of entropy needs to be explicitly taken into account in all
entropy related parameter estimation approaches including, i.e., the ME (Section 2.)[3]. As for the LEL-
estimator, besides the possible invariance of H under translation of the relative squared residuals ¢; (41),
H is also invariant under scaling of the residuals r; (2). Indeed, indicating with r := (7,7, . .. ,T’N)T
the residual vector, given the definitions (40, 41) and (42), the relative squared residuals ¢; and the H
function are invariant under scaling of r, namely H(r) = H(Ar) for any scalar A # 0. Such invariance
property may impact on the computation of the estimator 0151 (46): suppose that two distinct values 6,

and 6@, of the parameter vector exist such that
r(01) = )\I’(BQ) (47)

for some constant A # 0, then H(6,) = H(6,) potentially jeopardizing any minimization routine of
H. Yet, interestingly, the potential singularity associated with the scaling situation (47) is absent if the
underlying model is linear in €. Consider a linear in the parameters model as in equation (10), then
equation (47) would be:

If A\ = 1 and 6, # 60,, equation (49) implies that matrix G is not full rank and the non-uniqueness of
the LEL-estimator in this case would be actually inherited by the non-uniqueness of the Least Squares
estimate. If, on the contrary, A # 1 and G has full rank, equation (49) implies that y belongs to the range
of G: in this case the Least Squares estimate O = (GTG)~'G"y yields a perfect fit making any other
estimator useless.

The above simple analysis reveals that for linear in the parameters models, the non-uniqueness of the
LEL estimator due to residual scaling is not an issue, as such situation may only occur if the standard
Least Squares fit is perfect. Indeed, prior to implementing any estimator, one should always analyze the
quality of the Least Squares estimator, in particular for linear in the parameters models .

The above does not mean that linear in the parameters models admit a unique LEL-estimate when
the LS fit is not perfect: it only shows that the eventual non-uniqueness is not due to residual scaling
phenomena (47), but rather to the nonlinear structure of A or its invariance under translation of the

relative squared residuals g;.
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4.2.  Computational Issues

Given the local nature of the LEL estimate, how should one compute the minimum in equation (46)?
According to the experience so far acquired with simulated [20] and real data (work is in progress
with detecting planes in 3D range-image camera data), the computation of 6151 can be successfully
performed locally and numerically from an initialization value sufficiently close to the real value of 8. Of
course this is by no means trivial being the real value of @ unknown: for models linear in the parameters
experience has shown that good results may be achieved by running any numerical minimization routine

m times (where m is the dimension of 0, i.e. @ € R™*!) from m initial values 8; chosen as:

6, = 6, (50)
0; L 6;Yi#j and |6 = 6| D

where 6, is either an initial guess based on prior information, or another estimate as, by example, the
Least Squares one 90 =0 Ls- The 8; : i = 2,... m values can be computed based on a Gram—Schmidt
algorithm. Should the m LEL estimates thus computed not coincide, the obvious best (local) solution
among them will be the one corresponding to the least value of /1. Numerical examples relative to the
above described heuristics are provided in Section 5..

As for the minimization algorithm to be used in computing 051, any state of the art optimization
routine for nonlinear equations can be a suitable candidate. One can eventually exploit gradient and
Hessian information knowing the structure of the penalty function . On the basis of equations (40, 41)

and (42), by direct calculation it follows that the gradient, by example, has components:

N
1 10r2 120D
H=— 1 tlogg) (=20 _ 1O 2
Ve, log N ;( +log ) (Daej D2aej) (52)

4.3. LEL-estimator breakdown point

Assessing the breakdown point for the LEL estimator is not an easy task. To determine the finite
sample breakdown point according to the definition given in equation (17), the least fraction of outliers
possibly causing a diverging bias in the estimate should be found. Given the H function property (44) it
can be stated that a single outlier in a data set is not able to move H (9 1) from its absolute minimum,
i.e., zero. This means that a worst case estimate of the finite sample breakdown point over N data
points is 2/N, i.e., it is double with respect to the Least Squares finite sample breakdown point 1/N.
Yet this means that the the LEL asymptotic breakdown point would be 0%, i.e., not any better than the
Least Squares estimate. Nevertheless, extensive simulations have shown that the LEL estimator has an
excellent finite sample behavior and, in particular, that it may be effectively used to spot outliers by
analyzing the residuals. As known, the Least Squares method may perform poorly when used in this
way because of its intrinsic tendency to low pass outliers.

4.4.  Why should one use the LEL estimator?

In the previous sections it was shown that the proposed LEL estimator is local in nature and, in

general, cannot be computed analytically as the Least Squares one. Moreover its asymptotic breakdown



Entropy 2009, 11 573

point is 0% whereas alternative estimators as the Least Median of Squares (LMS) or the Least Trimmed
Squares (LTS) can achieve 50% asymptotic breakdown point. It is thus natural to ask why should one
consider it: the answer is to be found in its most interesting numerical properties when compared to
alternatives as the LMS or LTS. Indeed the computation of the LMS or LTS estimates is extremely
complex: standard algorithms [1] may be very time consuming as they are not far from performing
an exhaustive search in the parameter space. Moreover, the LMS cost function med; {r?} (22) when
computed on the finite sample of available data can be extremely erratic as a function of the parameter
vector 0 (examples are reported in the following of the paper). To the contrary, the proposed H function
(besides enjoying properties 43, 44 and 45) is as smooth as the square residuals r? as a function of 6.
This allows the chosen minimization algorithm to compute its minima with much less effort. Of course
the choice of using the LEL estimator or an alternative with a more favorable breakdown point will
strongly depend on the application. Further considerations on application scenarios that could benefit
from the proposed LEL estimator are reported in the closing section of the paper.

5. Numerical Results

As a first toy example to investigate the properties of the proposed cost function H as compared
to the Least Squares (LS) and Least Median of Squares alternatives, consider the data set depicted in
Figure (1): there are 100 points depicted as dots having z—coordinates equally spaced in the range
[—10, 10]. The y—coordinates are computed as y = z + € being € a Gaussian random noise of zero
mean and unit variance. Moreover there are other 25 data points depicted with a diamond shape: these
have z—coordinates normally distributed with mean 5 and unit variance, while their y—coordinates are
normally distributed with mean 10 and unit variance. The total data set is made of the these 2 subsets,
namely it contains 125 points that can be thought of as 100 values satisfying a linear model y = x (with
some noise), plus 25 outliers.

The reference model for the above described data set is

y=0x

being y and x € R'?*! known while # € R is the unknown scalar to be estimated. Given the presence
of the outliers, the LS estimate is expected to be biased with respect to the “real” value 1. Indeed its

value results in .

frs = —> = 1.16. (53)
xT'x
Given that the unknown parameter is a scalar, the LS, LMS and LEL cost functions can be easily plotted

as functions of 6. The LMS, LS (normalized) and LEL cost functions are computed as

N/ )2
frs(0) = > (Wi AH ;) _ (55)
> (yj —Ows ij)

N

_ 1 (yi — 0x:)° 5 (ys — Ox:)?
frec(0) = Tog N Z (ZN (s — exj)Q) log (ZN (y; — 9@2) (56)

i=1 j=1
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Figure 1. Linearly distributed data y = x with zero mean unit variance noise (100 round
dots) plus 25 outliers normally distributed around the point (5, 10). Refer to the text for

details.
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where med;{-} is the sample median over the set in argument and N = 125. The LS cost f15(f) in
equation (55) is normalized such that fLS(éLS) = 1 whereas the LEL cost function f; . (#) in (56) is
the H function of equation (42) except for checking if Zj.v:l(yj — 6z;)* is null or not (unnecessary in
practice). These cost functions are sampled in the range 6 € [—10, 10] with 10* equally spaced values
of the slope 6: the resulting plots are depicted in Figure (2) at different zoom levels. As expected, the
LS cost has a (unique) minimum in 1.16. The LMS cost has a discontinuous and rather erratic behavior
making it difficult to accurately determine where its minima are. The LEL cost function has a regular
plot (the function is actually smooth in this case) and it appears to have a sharp local minimum in § = 1.
Notice that the LEL function has also a local minimum close to # = 2 confirming the local nature of the
proposed estimator. To explore the behavior of the proposed approach on a multidimensional problem,

consider the following model:
Y; = Q'rl sin(wl IZ> + QTQ COS(Cdl Iz) -+ ‘9r3 SiH(WQ [L‘l) + 0T4 COS(u)Q IZ> +&; (57)
or, in vector notation,

y = GO, +¢ (58)
sin(wyzy)  cos(wiry) sin(wozy)  cos(wry)
G = : : : : (59)

sin(wixy) cos(wizy) sin(wezy) cos(wxy)
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Figure 2. LMS, LS and LEL costs as function of the line slope. Refer to the text for details.
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where w; and w, are known, but ,. is not. Assume that a data set (y,x) : x,y € R¥*! is available and
that e € R™V*! is a vector of zero mean, normally distributed noise (eventually with known covariance).
The following numerical experiment (Case 1) is performed: the “real” value of the parameter vector 8,
is randomly generated (each component is the rounded value of a uniformly distributed number in the
range [—100, 100]) yielding 6, = (63,2, 11, —29)7. The values of w; and w, are chosen to be w; = 1
and wy = 2 and the noise term € is normally distributed (i.i.d.) with zero mean and variance equal to 10.
The independent variable x is generated as a uniform ramp of N = 10* values in the range [—10, 10],
whereas y is computed according to equation (58). Given these numerical values, the LS estimate
of 8, may be computed as 0,5 = (GTG)'GTy resulting in 0,5 = (62.92,2.03,11.02, —29.03)7.
The corresponding LEL estimate (Case 1) is computed according to its definition (46). In particular
the minimization of the [ function is performed 4 times starting from 4 different initialization values
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computed as in equations (50-51) with 8y = 0 Ls- The minimization routine is the FMINSEARCH
multidimensional unconstrained nonlinear minimization (Nelder-Mead) of Matlab (Version 7.8.0.347
(R2009a)). The results of these minimizations are summarized in Table 1: the first column refers to the
values of 6 used to initialize the minimization routine. The second column refers to the local minimum
that was found and the third column refers to the value of H in such local minimum. Notice that the top
element of the first column (case 1A) is 0 Ls. Also notice that cases 1C and 1D lead to the same local
minimum and that the least value of H is obtained in case 1A. Nevertheless in all four cases the value of
H is relatively high (recall that H € [0, 1]) and the differences among the four cases (in particular 1A,
1C and 1D) are extremely small, i.e., poorly significant. The plot of the (x,y) data together with the LS
and LEL fits (1A, 1B, 1C/D) are reported in Figure (3).

Table 1. LEL estimates: Case 1 (refer to text for details).

initial 8 final 0 final H | Case
(62.92,2.03,11.02, —29.03)7 (62.15,2.38,11.89, —28.00)7 | 0.9199 | 1A
(—30.79, —0.64, 30.65, —55.13)T | (26.69, —3.70,40.78, —19.82)" | 0.9287 | 1B
(—3.93,59.24, —33.35, —17.04)T | (—32.94,54.63, —42.48,43.37)T | 0.9219 | 1C
(2.27,37.60, 52.48,27.47) (—32.94,54.63, —42.48,43.37)T | 0.9219 | 1D

Figure 3. Case 1 data with LS and LEL fit. Refer to the text for details.

Data and LS fit Data and LEL 1A fit

150 150
100 . - - 100
50 § L W 4 50
0 | / ' ot
sl “h'f' " L
100 0 5 10 %0 0 5 10
150 VD‘ata and 'LEL 1B fit 7 150 Dgta and LEL 1C/D' fit
100

50

-100 -100
-10 -5 0 5 10 -10 -5 0 5 10




Entropy 2009, 11 577

The LEL-1A estimate is very close to the LS one (that is very close to the real parameter vector 8,.)
and in Figure (3) the fitted data GO LEL—14 and GO Ls appear to be almost perfectly overlapping with
the original data y (first row in Figure (3)). To the contrary, the fitting behavior of the other two LEL
estimates is clearly less accurate. A quantitative criteria to determine unambiguously which of the four
(LS, LEL-1A, LEL-1B, LEL-1C/D) estimates is the “best” can be the value of the median of the fitting
errors. More precisely, the median of the absolute fitting errors or of the squared fitting errors. These
values are reported in Table 2.

Table 2. Median of fitting errors: Case 1 (refer to text for details).

Estimate | med;{|y; — (GO),|} | med;{(y; — (G@);)?} | Case
0.5 2.1719 4.7170 LS
OLer_14 2.2901 5.2444 1A
Ore1- 15 22.3232 498.33 1B
0LEL 10D 55.5248 3083 1C/D

The results summarized in Table 2 suggest that the LS estimate, in this case, should be preferred to
the LEL one. To cross check this result, it may be useful to graphically inspect the plot of the sorted
absolute values of the fitting errors as depicted in Figure (5).

These results should not be surprising as in the given setting (no outliers and additive zero mean nor-
mally distributed noise) the LS is guaranteed to be the optimal estimator. Yet things change considerably
if the data set (x,y) is corrupted so that some of the data (a minority) will not satisfy the above hypothe-
sis. Assume, for example, that a fraction of the available y values (say 10%) are multiplied by a random
gain in the range [0, 10] (due to some data recording or communication problem, it does not really matter
here). In particular this kind of corruption (Case 2) is generated taking exactly the same y vector of Case
1 and multiplying 10% randomly selected components of y (i.e., 1000 randomly selected y values) each
by a different random number uniformly distributed in the range [0, 10]. The resulting data is plotted in
Figure (4).

The LS estimate of @ based on this corrupted data (Case 2) results in éLS = (87.44,2.68,15.95, —39.96)
that appears to be significantly distant from the real value 6, (and from the Case 1 LS estimate). The
LEL estimate is computed exactly as described for Case 1, but using the new (Case 2) LS estimate as
initialization value 6.

The results are summarized in Table 3. Notice that the minimization routine always converges to the
same value that appears to be very close to the real one. Moreover, the least value of H is significantly
smaller than in Case 1 suggesting that the distribution of the relative squared residuals has a smaller
dispersion than in Case 1. The plots of the LS fit, the LEL fit and the case 2 data is depicted in Figure

(6).
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Figure 4. Case 2 corrupted data (red dots) and original data (solid blue line).
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Figure S. Case 1 sorted LS and LEL fitting errors in absolute value.
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Figure 6. Case 2 data (blue), LS fit (red) and LEL fit (black).
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Table 3. LEL estimates: Case 2 (refer to text for details).

initial 8 final 0 final H | Case
(87.44,2.68,15.95, —39.96)7 (64.18,2.46,10.66, —28.87)T | 0.6455 | 2A
(27.44, —21.20, —88.03,23.49)" | (64.18,2.46,10.66, —28.87)T | 0.6455 | 2B
(—33.04,0.03, —33.13, —85.53) | (64.18,2.46,10.66, —28.87)T | 0.6455 | 2C
(3.66,95.12, —20.06, 6.38)T (64.18,2.46,10.66, —28.87)T | 0.6455 | 2D

As for Case 1, based on the only plots of the fitted data, it is not obvious which model is performing
better. Yet in terms of the median of the absolute values of the residuals (Table 4), the LEL estimate is
certainly to be preferred. Indeed the plot of the sorted absolute residuals in Figures (7-8) reveals that the
great majority (about 90%) of the data is significantly closer to the LEL fit rather than the LS fit.

The Case 2 experiment has been repeated 100 times with different values of 8,., namely each time its
components were rounded values of uniformly distributed numbers in the range [—100, 100]. In each of
the 100 iterations all the random variables used were different realizations. Each of the 100 iterations
gave similar results to the ones described, i.e., a LEL estimate was computed that had lower median
of absolute residuals with respect to the LS estimate and was closer to the real parameter vector. As
for computational effort, the minimization of the / function was performed with the FMINSEARCH
multidimensional unconstrained nonlinear minimization (Nelder-Mead) of Matlab (Version 7.8.0.347
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Figure 7. First 9000 sorted LS (dashed line) and LEL (solid line) absolute fitting errors (i.e.,

residuals).
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(R2009a)). The Matlab code was not optimized. The computer platform was an Apple Laptop with a
2.16 GHz Intel Core 2 Duo processor, 2 GB RAM, running the MAC OS X Version 10.5.8 operating
system. The CPU time required for minimizing the H function resulted to be on average (1.4140.19)[s]

where the error was computed as the sample standard deviation of all the iterations. Recalling that the

number of data points was always N = 10? this result is rather interesting as it suggests that the proposed

method can be eventually employed for on line applications, at least for models of comparable size.

Table 4. Median of fitting errors: Case 2.

Estimate | med;{|y; — (G);|} Case
0, 15.91 LS
0,51 2.46 2A/B/C/D

As a final numerical experiment to evaluate the performance of the proposed method in comparison

to the LMS technique, consider the following model:

y =G0

(60)

beingy € R™®*!, 0 € R and G = [x; xy x3] € R™*3, The y, x1, X» and x5 values are given by the

Hawkins - Bradu - Kass data set [1] (Chapter 3, section 3) available in electronic format (together with



Entropy 2009, 11 581
Figure 8. Last 1000 sorted LS (dashed line) and LEL (solid line) absolute fitting errors (i.e.,
residuals).
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all the other data sets used in [1]) from the University of Cologne Statistical Resources http://www.uni-
koeln.de/themen/statistik/index.e.html (follow the links DATA and then Cologne Data Sets). The first
10 values of this artificially generated data set correspond to bad leverage points, i.e. outliers that can
significantly affect the LS estimate (refer to [1] for more details). Points 11, 12, 13 and 14 are outliers
in x;, namely they lay far from the bulk of the rest of the data in x; space, but their y values agree with
the model. A LEL estimate of @ is computed by minimizing the corresponding H function from three
different initialization values computed as in equations (50-51) using the Least Squares estimate 05
as a 90. The three so computed LEL estimates are labelled as A, B and C. Their values are listed in
Table 5.

Table 5. Hawkins—Bradu—Kass data set analysis.

Estimate med;{(y; — (G);)2} | H value
0.5 — (0.08,—0.36,0.44)" 0.68 0.6532
9LEL—A/B = (—0.33,0.33,0.23)" 0.53 0.4290
éLEL—C = (—0.0043,0.05, —0.05)T 0.31 0.5600

The A and B estimates coincide and correspond to the least value of // among the three. Hence the

best (local) LEL estimate of 0 is to be considered ] LeL—4/B- Nevertheless, interestingly this estimate
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does not correspond to the least value of the median of squares cost. The 0151 estimate performs
better in terms of the median of squares cost criteria. For a graphical interpretation of these results, refer
to Figure (9) where the residuals, scaled by their median absolute deviation MAD (21) scale estimate,
are depicted. Comparing the bottom plot in Figure (9) with the equivalent plot for the LMS estimate in
[1] (p. 95), one can arguably conclude that the ] LEL—c estimate is (very) close to the LMS one. This
shows that the LEL and LMS criteria differ and should not be considered equivalent, although in spirit
both are defined so that the residual scatter is somehow minimized. The Hawkins—Bradu—Kass example
also shows that the LEL estimate can be affected by the presence of bad leverage points (outliers):
notice that the central plot in Figure (9) reveals how the (best) LEL estimate (A/B) accommodates the
10 bad leverage points within the fit and excludes the four x;-space outliers 11, 12, 13 and 14. Although
from the LEL criteria perspective one could also argue that the first 10 points are not outliers (or bad
leverage points), whereas the following 4 are. Indeed the very definition of outlying data should be given
according to a fitting criteria. The interpretation of similar results without an a priori agreement on the
definition of outlier will always be debatable.

Figure 9. LS and LEL residuals of the Hawkins - Bradu - Kass data set fitting. The dashed
lines indicate the £2.5 values.
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6. Conclusions

A novel prediction error method for robust parameter identification in the presence of outlying data
has been presented. The approach builds on minimizing a cost function inspired by the concept of
(Gibbs) entropy although the probabilistic or information theoretic meaning of entropy is not explicitly
involved. The function to be minimized inherits the smoothness properties of the data model, hence if the
model is sufficiently well behaved, any off-the-shelf unconstraint numerical minimization routine can be
exploited. Although the asymptotical breakdown point of the algorithm is not any better than standard
Least Squares, numerical examples were provided showing an excellent finite sample behavior. The
function to be minimized may have multiple minima, hence the proposed approach is structurally local
in nature. A simple heuristic method to select a family of initialization values for the local minimization
has been suggested and tested on several examples. Potential outlying data can be identified by analyzing
the (sorted) plot of the absolute (or squared) residuals.

One of the significant properties of the proposed method is relative to the low computational effort
required to compute the parameter estimate; such property may be exploited in online applications. As
an example, consider sensor signal processing in robotics or automatic controls. Assume that range or
imaging data are acquired by a robot or a vehicle and that a set of features needs to be extracted from
the data online. Typical examples may include sonar data acquired by marine or areal vehicles or images
acquired by any moving robot equipped with a computer vision system. If a reliable estimate 0, of the
features is known at time £, it is often a reasonable assumption that they will be “approximately close”
to 9k at time k£ + 1. In this case, the local nature of the LEL estimator may not be a serious issue,
in the sense that at time k£ + 1 one may estimate ék;+1 through the proposed LEL method using 0, as
the initialization value. Notice that the standard implementation of many alternative robust methods as
RANSAC, the Hough transform, LMS or M-estimators would most probably be much more demanding
from a computational point of view. Ongoing work is in progress to test the use of the LEL approach
with experimental data, in particular for the identification of planes from 3D data acquired by a robot
using a range camera (Figure (10)).

Figure 10. 3D range camera image of an office with LEL based detected (in red) wall.
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