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Abstract: An ensemble formulation for the Gompertz growth function within the framework
of statistical mechanics is presented, where the two growth parameters are assumed to be
statistically distributed. The growth can be viewed as a self-referential process, which enables
us to use the Bose-Einstein statistics picture. The analytical entropy expression pertain to
the law can be obtained in terms of the growth velocity distribution as well as the Gompertz
function itself for the whole process.
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1. Introduction

Growth phenomena are universal in nature and their underlying governing laws have attracted
considerable attention from many researchers. We shall focus on one of these laws in this paper, namely
that of Gompertzian evolution [1]. The Gompertz law was first used to describe the tumour growth
phenomena [2], where the mammalian tumour growth data were fitted with the Gompertz function. Here
we go beyond the original context of tumour growth and our results should be applicable to systems that
simply obey the Gompertz model. [3] should be consulted for both a historical and pedagogical review
on the use of the Gompertz growth function in the context of tumour growth.

A justification for the validity of the application of the Gompertz function to tumour growth
is still lacking. However, it is found empirically that the dynamics of tumour growths follows
exp[a(1 − exp[−bt])], where t is time, a and b are parameters which are determined by fitting
experimental data. The interpretation of the Gompertz function has been attempted in various fields
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such as biology, mathematics and thermodynamics (for the examples, see [3]). Some papers have
focused on the issues on where the law comes from. For example, the derivation of the functional
form based on the self-similar process [4], on the combinatorial consideration of the degree of cellular
heterogeneity [5], and on the change of entropy for the growth process [6] have all been suggested.
The statistical mechanics for the Gompertz model whose system consists of interacting species
were considered more than two decades ago [7, 8]. Recent developments include thermodynamics
considerations and a stochastic model. The thermodynamics approach considered an energy balance
among the different cell activities at some fixed time [9] and a stochastic model incorporating
environmental fluctuations was investigated in [10]. These attempts have much to do with statistical
description for the tumour growth phenomena and are the main motivation behind this work.
Furthermore, the fractal nature of the temporal and spatial process of Gompertz dynamics [11] and the
fractal-stochastic duality as a consequence of the intercellular interaction [12] has also been investigated.

In spite of the above studies and interests in the Gompertz function itself, a statistical ensemble
approach to the model is still lacking. This is probably due to the broad range of applications of the
Gibbs ensemble theory in equilibrium statistical mechanics whose form is exponential and also due to
the usefulness for curve fittings with two parameters tuning. Main aims of this paper are to focus on the
theoretical aspect of Gompertz growth and especially to investigate several ensemble descriptions for the
distribution functions whose growth parameters differ by some “elements”. By “elements” we suppose
that whole organism consists of clusters or ensemble of the tumour tissue that has a pair of different
proliferation rates ai and bi, where i discriminates individual tissue. We may also consider the set of
tumour formed in different times in different parts of an organ. We are motivated from a view point of
statistical mechanics to describe these situations statistically.

The organization of this paper is as follows. We consider the functional form of Gompertz as a
consequence of a self-reference process in the distribution function in the next section. In Section 3,
we deal with properties of fluctuations of a growth rate in order to see the statistical nature. Section 4
revisits the issue of entropy properties by defining it differently from one used in previous works in the
literature. A demonstration of the statistical mechanics formulation of the Bose-Einstein statistics will
be provided in Section 5. Summary and concluding remarks in Section 6 close this paper.

2. Distributions Generated from a Self-referential Process

To understand the Gompertz growth process from a view point of self-generating phenomena of
tumour cells, which can be attributed to complex intercellular interactions, we consider a feedback
process at the level of distribution, where the process is assumed to proceed in “self-referential” way.
By “self-referential”, we mean both replication and a feedback process as we shall explain later. In this
approach, the original distribution of the number of cells f(t) derives a distribution via a proliferation
rate r(t) multiplicatively. It is defined

F (t) = f(t) ± r(t)F (t) (1)

where F (t) represents the derived distribution of cells generated from an underlying dynamical process
with a given initial distribution. We interpret the above relation in the following way. That is, F (t) is
defined by r.h.s at equal-time. The number of tumour cells at time t is given by f(t) = f0r(t), where f0
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is the number of initial cells and therefore r(0) = 1. In the case of the upper sign (+) in Equation (1), it is
referred to as self-replication process [13], on the other hand, when the process proceeds according to the
lower sign (-), we call it self-feedback process. It follows from the above definition that the distribution
F (t) is produced from the original distribution f(t) as

F (t) =
r(t)

1 ∓ r(t)
f0 (2)

What is the physical meaning of F (t)? As f(t) can represent the number of elements, F (t) can have a
characteristic of the cumulative number of them up to time t, because Equation (2) expresses the sum of
infinite series with the geometric ratio r (for (-) sign: (0 < r < 1), for (+) sign: r < −1) and the first term
rf0. Moreover, we can regard that the self-replication process relates the two distributions −F (t)/f0

and f(t)/f0 by the Euler’s transform [13]. Under this transform between −F (t)/f0 and f(t)/f0, F (t)

contains information of all the elements generated in the process, where the original element at t = 0

produces accompanying ones. Again, it is an interpretation of Equation (2). In the self-replication
process, the derived distribution F (t) has a singularity at t = 0. On the other hand, in the case of the
self-feedback process, the evolution starts with the half of the initial population and the new distribution
is produced by subtraction of the new one multiplied by the growth rate from the original distribution
(negative feedback). The interesting application of these processes is performed for the Gompertz growth
model

f(t) = f0e
a(1−e−bt) (3)

and the growth factor is therefore r(t) = ea(1−e−bt), which provides the following form,

F (t) =
1

e−a(1−e−bt) ∓ 1
f0 (4)

Therefore, in short time region or for small growth rate b, which enables us to regard bt ≪ 1, F (t) can
be approximated, by the series expansion of e−bt, as

F (t) ∼ 1

e−abt ∓ 1
f0 (5)

An interesting point in Equation (5) is that F (t) takes the logistic function in the positive time regime
for a > 0 when the process is self-replicating. The logistic model has been used for chemotherapy
optimization [14] and used for describing immune response to tumour [15]. It would be also worthwhile
noting that, for a < 0, the obtained distributions are remarkably similar to distributions in the
Bose-Einstein and the Fermi-Dirac ones in quantum statistical mechanics in the case of minus and plus
signs in Equation (5), respectively. We shall further pursue one of this similarities in Section 5.

Next, we show that the parameter of growth rate a plays a role of the exponent of the power law
decay of F (t). We are concerned with the time region where bt ≪ 1 holds and note the fact that for
small values of x, the gamma function is expressed as Γ(1 + x) ≈ Γ(1) + xΓ′(x) = 1 − γx, where
γ = −Γ′(1)/Γ(1) = 0.57721566 · · · is the Euler’s constant. Then, the expression for the power of the
gamma function Γ(x)ξ = [Γ(1 + x)/x]ξ can be approximated for large values of ξ as(

1 − γx

x

)ξ

≈ x−ξe−γxξ (6)
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Therefore, in the range bt ≪ 1, regarding the variables as x = bt/γ and ξ = a, then substituting
Equation (6) into Equation (2) leads

F (t) = f0
1

e−γxξ ∓ 1
≈ f0

[xΓ(x)]ξ ∓ 1
≈ f0

[(
bt

γ

)
Γ

(
bt

γ

)]−a

(7)

which shows power law decay by the exponent a when a > 0. Note however that the last expression
holds for large values of a. To sum, the self-referential process for the Gompertz growth model indicates
that the derived distribution F has the connection to the quantum statistical distribution as represented
in Equation (2) and we shall use it in section 5. In the context of tumour growth, this picture provides a
possibility for macroscopic treatments according to the prescription of statistical mechanics.

3. On Fluctuation of a Growth Parameter

We consider fluctuation properties (dispersion) of time and a growth rate in this section. Instead of
directly dealing with f(t) (Equation (3)) itself, we introduce the velocity va,b(t) or the change of the
number of cells per unit time, which is normalized by the value at infinite time,

va,b(t) ≡
d

dt

(
f(t)

f(∞)

)
= abe−bte−ae−bt

(8)

Then, we find that va,b(t) satisfies the normalization in the range [−∞,∞] with va,b(0) = ab/ea and
reaches a maximum value b/e at t = ln a/b. Therefore, va,b(t) can be used as a probability distribution
over time in order to obtain averaged statistical quantities. The parameter a controls the growth (the
regression) rate when the value is positive (negative). On the other hand, the growth parameter b denotes
retardation. We recall that the S-shaped curve of the Gompertz growth model depends on the value
of the inflection point which is given by ln a/2b. Also, the large values of parameter a dominate
the shape, which make the point shift rightward. In general, tissues are in different stages of growth
and have different velocities depending on their embedded environments and we therefore concern the
statistically averaged quantity. Since the velocity defined above is normalized, we can identify va,b(t)

with a weighting distribution function and perform averaging with it. These are the main motivation for
employing the velocity distribution for averaging quantities in later discussion. One of the intriguing
quantities is the time to get to a certain size. Tissues start growing at various time instants and will
reach the steady size or cell numbers according to Gompertz law. Once values for a and b are fixed, the
Gompertz curve determines the time to reach a certain level (size or number). Inversely, in case that the
sizes at which tumors will arrive differ tumour by tumour and they are statistically distributed in some
way, the time will be different and should be averaged over tumors and its dispersion can be calculated
for the fixed values of a > 0 and b > 0. For the average and the second moment of time, we obtain [16]

⟨t⟩ =

∫ ∞

−∞
tva,b(t)dt =

γ + ln a

b
(9)

⟨t2⟩ =

∫ ∞

−∞
t2va,b(t)dt =

1

b2

(
(ln a)2 + 2γ ln a + γ2 +

π2

6

)
(10)

where γ is the Euler’s constant again. Therefore, the dispersion or the time fluctuation pertain to this
growth process is calculated as

∆t = ⟨t2⟩ − ⟨t⟩2 =
π2

6b2
(11)
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We find that the time fluctuation is determined only by the growth rate b. Next, we consider the statistical
property of the growth rate b. More realistic cases are that b is statistically distributed reflecting the nature
of the ensemble of the tumour tissues. Of course, in order to determine the distribution law, we need a
detailed dynamics behind the Gompertz model, however it is beyond the present consideration. Without
the exact distribution form of b, we can move the discussion forward. Then, the moments of the growth
rate b are given as

⟨b⟩ =

∫ ∞

0

bva,b(t)db =
2a

t3
3F3[{1, 1, 1}, {2, 2, 2},−a] (12)

⟨b2⟩ =

∫ ∞

0

b2va,b(t)db =
6a

t4
4F4[{1, 1, 1, 1}, {2, 2, 2, 2},−a] (13)

where pFq({a1, . . . , ap}, {b1, . . . , bq}; z) is the generalized hypergeometric function defined as

∞∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
(14)

where z ∈ R and (a)0 = 1, (a)k = a(a + 1)(a + 2) · · · (a + k − 1) for k > 1 being the Pochammer
symbol. Assuming a ≃ 1, we take the series expansion in a

3F3[{1, 1, 1}, {2, 2, 2},−a] ≃ 1 − a

23
+

(
1

3

)3
a2

2!
−

(
1

4

)3
a3

3!
+ · · · (15)

4F4[{1, 1, 1, 1}, {2, 2, 2, 2},−a] ≃ 1 − a

24
+

(
1

3

)4
a2

2!
−

(
1

4

)4
a3

3!
+ · · · (16)

Thus, the fluctuation of b can be expressed as

∆b =
6

t4
a −

(
3

8t4
− 4

t6

)
a2 +

(
1

27t4
+

2

t6

)
a3 −

(
1

44t4
+

91

432t6

)
a4 + · · · (17)

We show in figure 1 the plot of ∆b as a function of t for some positive values of a. The temporal
behaviour of ∆b is decreasing with respect to time, meaning that the fluctuation is suppressing
with time.

4. Entropy Revisited

The mere growth curve does not convey macroscopic statistical information for processes. Therefore,
it is interesting to investigate how the entropy behaves in tumour growth processes, because in a statistical
sense, entropy can be a good measure to quantify how order or disorder in a process evolves. We
employ the Shannon entropy for this purpose, however, the Gompertz function of the number of cells
is a sigmoid curve. This means that the integration of the function in the range t ∈ [−∞,∞] does not
converge [17]. This is the main reason which prevents us from obtaining a direct analytical expression
for the entropy during the process without computational elaborations if the Gompertz function itself is
employed. Moreover, this interval of integration have less biological sense due to the finite time existence
of the tumour organisms [18]. To obtain the Gompertzian function as an asymptotic limit in time [6], the
entropy concept was useful, where the rate of change of the probability q(t) of quiescent cells in tumour
is assumed to be proportional to its binary entropy −q(t) log q(t)−(1−q(t)) log(1−q(t)). Furthermore,
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to show the superiority of the Gompertzian model over the other two models, i.e., the logistic and the
Bertalanffy models, the total entropy change in the entire process of the growth has compared [19],
where assumptions and a modification of the integration were required to obtain analytical expressions.
There could be several alternatives for defining entropy of the Gompertz growth model. In this section,
we point out alternative ways for obtaining the analytic entropy expressions associated with the process.
One definition of the entropy is to formulate it as a function of one of the growth parameters. This
definition allows us to see the entropy change as a function of time. That is, the expression for the
entropy is provided by integrating −f log f with respect to the growth parameter a. For the fixed value
of the growth rate b at time t, we obtain

S(b, t) = −
∫ ∞

0

f0e
a(1−e−bt)

[
log f0 + a(1 − e−bt)

]
da (18)

If b < 0, we obtain the analytical expression by performing the integration

S(b, t) =
af0 sinh(bt) − f0

2
log f0(1 − ebt)

1 − cosh(bt)
(19)

This expression implies that the initial higher entropy state asymptotically converges to a constant value.
We plot this behaviour for some different values of b in Figure 2.

Figure 1. The comparison of the decreasing behaviour of the dispersion for the growth rate
b for two cases, i.e., a = 0.4 (the solid line) and a = 0.2 (the broken line) according to
Equation (17) up to the 4th oder in a.
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The other definition that we are concerned with is based on the velocity or the rate of change
va,b(t) = abe−bte−ae−bt used in the previous section. To see the time evolution of the entropy for the
growth velocity, we introduce wa,b(t), the growth velocity normalized by the initial velocity va,b(0) and
integrate a quantity −wa,b(t) log wa,b(t) with respect to a in the range [0,∞]. Then, we have an analytical
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Figure 2. The behaviour of entropy S(b, t) given by Equation (19) as a function of time for
b = −0.5 and b = −2.0. We set a = 1.0 and f0 log f0 = 1.0.
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expression if b < 0,

S(b, t) = −
∫ ∞

0

ea−bte−ae−bt [
a − bt − ae−bt

]
da

=
1 + bt

1 − ebt
(20)

This entropy decreases with time and reaches zero, which corresponds to the asymptotic approach to
the vanishing growth velocity and can be regarded reasonable in a sense that it matches the Gompertz
sigmoidal curve. Once the system reaches the plateau in the curve, the entropy will never change. Figure
3 shows the behaviour of Equation (20) for two different values of growth rates b. For other possible
choices (e.g., S(a, b) and S(a, t) etc.) in the framework of the logarithmic entropy, we cannot obtain
analytical expressions. These characterization of the Gompertz law as a probability function encourage
us to focus on the comparison of the role of the two growth rates a and b in the statistical description. In
general, growth parameters a and b can be related each other depending on the environment that tissues
are embedded, but they are tuned independently in terms of the data fitting. If a and b are not independent
variables, there should be underlying laws, however, specifing them is beyond our present scope. One
of the meaningful quantities in the ensemble analysis would then be a ratio of the averaged values. We
define the following ratio r [20] for a quantity g

r :=
⟨g⟩f(a,b)

⟨g⟩f(b,a)

(21)

where g denotes any function of a and b, not depending on time. The averages are taken with the
functions f(a, b) and f(b, a), respectively. The Gompertz function is not symmetric under the change of
the two growth parameters, i.e, f(a, b) ̸= f(b, a). This implies that the ratio should contain the statistical
information for the role of the two growth parameters. Performing the integration, we obtain

r =
a

b
ea−b Γ(0, a)

Γ(0, b)
(22)
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Figure 3. The behaviour of entropy S(b, t) given by Equation (20) as a function of time for
b = −0.5 and b = −2.0 when a = 1.0 and f0 log f0 = 1.0.
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where Γ(a, z) =
∫ ∞

z
ta−1e−tdt is the incomplete gamma function. When the two growth rates take the

same value, r = 1 holds. In this sense, the deviation from the unity would provide the estimation of the
statistical weight on the growth process. We plot the r as functions of a and b in Figure 4.

Figure 4. The ratio of two statistical averages of function g given by Equation (22). It
diverges as both a and b approach zero.
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Next, we consider the ratio of the averaged value of the factor e−at and that of e−bt. We define the
following simultaneous ratios r1 and r2 of the averaged growth factors as follows,

r1 =
⟨e−at⟩f
⟨e−bt⟩f

r2 =
⟨e−at⟩v
⟨e−bt⟩v

(23)

where ⟨·⟩f and ⟨·⟩v denote averages over t ∈ [0,∞] with the function f(t) and with the velocity va,b(t),
respectively. We think that the choice of this integration interval does not alter the results due to the
exponential function of the integrand even when a finite time is set. Note also that these are ratios of
the Laplace transform of the Gompertz function and its derivative, respectively. When Re(a) > 0 and
Re(b/a) > 0, we have the expression

r1 =
a1− b

a

[
Γ

(
b
a

)
− Γ

(
b
a
, a

)]
1 − e−a

(24)

and when Re(a) > 0 and Re(a/b) > −1, we have the expression

r2 =
a1−a

b ea
[
Γ

(
1 + a

b

)
− Γ

(
1 + a

b
, a

)]
ea − 1 − a

(25)

where Γ(z) is the gamma function. If the two growth rates are the same, i.e., a = b, then r1 = r2 = 1

holds by necessity. In Figures 5 and 6, we show their behaviour as functions of a and b, respectively.
The Figure 5 indicates that there is a line on a − b plane, where the r1 value becomes zero and for

Figure 5. The plot of the ratio r1 given by Equation (24) as a function of a ∈ [0, 1] and
b ∈ [0, 1].
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small values of b, r1 tends to diverge, i.e., the averaged factor of e−at is much larger than that of e−bt.
This can be interpreted as indicating that the growth parameter b is statistically dominating compared
to a. Likewise, the divergent behaviour can be seen in figure 6, which enables us to have statistically
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significant interpretation, i.e., the domination of a (or b) over b (or a) depending on their values. In
the context of tumour cell ensemble, these facts indicate that the growth parameters a and b statistically
control the progress and retardations of growth.

Figure 6. The plot of the ratio r2 given by Equation (25) as a function of a ∈ [0, 3] and
b ∈ [−3, 0].
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5. Bose-Einstein Condensation Picture for the Gompertz Model

We have seen in Section 2 that the self-replication process in terms of the distribution function for the
Gompertz model provides the Bose-Einstein statistics form, which was originally introduced to describe
statistics for photons and atoms [21]. We shall further pursue this remarkable similarity to this statistics.
We restrict our consideration to the case that the growth dynamics is regressive i.e., a < 0 to keep this
analogy and the tumour cells are indistinguishable. As we mentioned in Section 2, the case a > 0

amounts to deal with the logistic model and does not pose new challenges driven by this similarity.
Furthermore, let us assume that the parameter a is discretized and put it as

cl = −al = ϵ + dl ϵ ≥ 0 (l = 0, 1, · · · ,∞) (26)

where the constant ϵ is the lowest value of cl and the parameter dl bears the discreteness with d0 = 0.
From Equation (4), we define the mean number of tumour cells ⟨nl⟩ in an organism and suppose that the
organism lies in the state level l, then

⟨nl⟩ =
1

eclq − 1
(l = 0, 1, · · · ,∞) (27)

where q ≡ 1 − e−bt takes the range 0 ≤ q ≤ 1 corresponding to the time range 0 ≤ t ≤ ∞ for a fixed
value of b. Then, the total number N is written as

N =
∞∑
l=0

⟨nl⟩ =
1

eϵq − 1
+

∞∑
l=1

1

η−1eqdl − 1
(28)
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where we have introduced a variable η ≡ e−ϵq, (e−ϵ ≤ η ≤ 1). We evaluate the second term of
Equation (28). As is often the case in natural sciences, the density of states ω of density y takes the form
of a power law,

ω(y) = const. × ys, s ≥ 0 (29)

Then, the second term can be replaced as a continuous form,∫ ∞

0

ω(y)

η−1eqy − 1
dy = const. × q−s−1Γ(s + 1)ϕ(s + 1, η) (30)

where ϕ(s, η) is the Appel function defined as

ϕ(s, η) =
1

Γ(s)

∫ ∞

0

xs−1

η−1ex − 1
dx (31)

As this integration of the second term excludes the state of y = 0, the division of the number N into two
parts in Equation (28) is consistent. Now, we set a critical value qc when η takes unity (i.e., when ϵ = 0),
then we have an expression,

N = const. × q−s−1
c Γ(s + 1)ϕ(s + 1, 1) (32)

Therefore N is written as

N =
η

1 − η
+ N

(
q

qc

)−s−1
ϕ(s + 1, η)

ϕ(s + 1, 1)
(33)

Since q and η are not independent variables each other (they are related by q = − ln η
ϵ

), we can write

N0

N
= 1 −

(
ln η

ln ηc

)−s−1
ϕ(s + 1, η)

ϕ(s + 1, 1)
(34)

where N0 = η/(1 − η) is the number of states for the level l = 0. This means that when η satisfies
ln η ≤ ln ηc, N0/N = 0 holds and when ln η ≥ ln ηc, we have a form at η ≃ 1

N0

N
= 1 −

(
ln η

ln ηc

)−s−1

(35)

The existence of the critical value in η means that there is a corresponding critical value in the growth
rate bc at a certain finite time, which is given by

bc = − ln

(
1 +

ln ηc

ϵ

)
/t (36)

For this value, the number of the lowest state N0 becomes large as N becomes large, which means
the Bose-Einstein condensation. We have seen that the straightforward application of the Bose-Einstein
statistics was feasible due to the equivalent form of the Gompertz type distribution function to this
statistics for occupation number. In the context of tumour population, this implication shows that all the
indistinguishable cells tend to herd at the same lowest state to form a condensate of the tumour tissue.
On the other hand, in the case of another quantum statistical similarity (with Fermi-Dirac statistics),
the average number takes between 0 and 1 (occupied or empty for each energy level), which may not
match our present consideration in tumour context, although calculations can be performed according to
a textbook on statistical mechanics (e.g., [22]).
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6. Summary and Concluding Remarks

We have discussed the ensemble approach to the Gompertz type growth model, where two growth
parameters are supposed not to be single-valued for all elements but are statistically distributed. This
setup enabled us to consider the statistical mechanics features in the context of tumour cells. Distribution
functions are main ingredients for the discussion of statistical treatments of systems. The self-referential
process in Equation (1) for the distribution function has two possibilities, i.e., the self-replication and the
self-feedback. We have shown that if we apply the self-replication process to the Gompertz growth within
the domain bt ≪ 1, a logistic growth law is included in the generated distribution function. The causal
dynamics producing the Gompertz form is at present not fully clear in the literature. However, we have
shown that a statistical ensemble approach can be performed. In terms of the growth velocity function,
the fluctuation of the growth rate b can be expressed ∆b =

∑∞
k=1 g(t)ak, where g(t) is determined

from the coefficients of the generalized hypergeometric functions. As long as the growth state is in a
regressive phase (a < 0), we can keep the Bose-Einstein statistics description. This would motivate
us for directions for further investigation in quantum statistical setting. In fact, there is a recent desire
for the exploratory power of quantum theory to mechanisms behind biological phenomena [23, 24]. In
this perspective, an exemplification for the connection between the Gompertz function and a quantum
coherent state is also intriguing, where the Gompertz functional form can be regarded as a solution of a
time-dependent counterpart of the Schrödinger equation for the Morse oscillator with the anharmonicity
constant equal to unity [25]. In tumour growth context, the direct comparison of the present approach
and obtained formulae with real experimental data set of tumors remains future work.
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