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Abstract:



A set of many identical interacting agents obeying a global additive constraint is considered. Under the hypothesis of equiprobability in the high-dimensional volume delimited in phase space by the constraint, the statistical behavior of a generic agent over the ensemble is worked out. The asymptotic distribution of that statistical behavior is derived from geometrical arguments. This distribution is related with the Gamma distributions found in several multi-agent economy models. The parallelism with all these systems is established. Also, as a collateral result, a formula for the volume of high-dimensional symmetrical bodies is proposed.
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1. Introduction


Nowadays different approaches to study economic systems can be taken within a multi-agent framework. Econophysics applies the techniques and tools of statistical physics to the understanding of this type of systems [1]. From this point of view, an economic system is regarded as a set of many agents exchanging money or trading with products of the most diverse origins. This exchange, which can be done in a deterministic or in a random way, finally generates an asymptotic wealth distribution. One of the goals of econophysics is to propose different models for the agents’ interactions and, by making the respective simulation experiments, to try to reproduce in a statistical way the real asymptotic wealth distribution in society [2].



In this paper, a general multi-agent system evolving under an additive constraint is considered. The geometrical properties of this system in phase space are exploited in order to obtain its statistical behavior. A striking coincidence is observed. Some dynamical mechanisms that have been proposed in the literature to model the interaction among agents in economic systems [3,4,5,6,7,8,9] provoke the same statistical results in the asymptotic wealth distribution than those derived from the geometrical properties in our multi-agent system under the assumption of equiprobability. This fact bring us to speculate on the possible close relationship that there exists between the local interactions among the agents in the former economic systems and the global geometrical conformation in phase space of our general system. Hence, with an adequate change of coordinates, we suggest that those economic systems asymptotically evolve in an equiprobable way over the volume of accessible states in the transformed phase space.



We start in Section 2 by recalling the derivation done for some particular geometries for the cases in which the constraint has a linear or quadratic dependence on the variables defining the agents. Then, in Section 3, the statistical behavior for a more general constraint is obtained. In Section 4, we speculate on the possible relationship with some economic systems [3,4,5,6,7,8,9] in which the Gamma distributions are also obtained. A formula for the volume of high-dimensional symmetrical bodies is proposed in Section 5. The last Section 6 contains our conclusions.




2. Recalling Some Results


2.1. Linear constraint


Let us assume N agents interacting in an open economy, each one with coordinate [image: there is no content], [image: there is no content], with [image: there is no content]≥0 representing the wealth or money of the agent i, and a total available amount of money E. The additive linear constraint reads:


[image: there is no content]



(1)




The result here explained for an open economy is also obtained when constraint (1) is an equality, i.e., when the economy is closed [10]. Under random evolution rules for the exchanging of money among agents [3], let us suppose that this system evolves in the interior of the N-dimensional pyramid given by Equation (1). We can suppose that the state or the bank system of western societies plays in this model the role of a heat reservoir that supplies money instead of energy. The formula for the volume [image: there is no content] of an equilateral N-dimensional pyramid formed by [image: there is no content] vertices linked by N perpendicular sides of length E is


[image: there is no content]



(2)




If each point on the N-dimensional pyramid is equiprobable, then the probability f([image: there is no content])d[image: there is no content] of finding the agent i with money [image: there is no content], with normalization condition ∫0Ef([image: there is no content])d[image: there is no content]=1, is proportional to the volume formed by all the points into the [image: there is no content]-dimensional pyramid having the ith-coordinate equal to [image: there is no content]. Then f([image: there is no content]) verifies


f([image: there is no content])=VN-1(E-[image: there is no content])[image: there is no content]



(3)




If we call ϵ the mean wealth per agent, [image: there is no content], then in the limit of large N ([image: there is no content]), we have


limN≫1VN-1(E-x)[image: there is no content]=1ϵe-x/ϵ



(4)




where the index i has been removed because the distribution is the same for each agent, and thus the wealth distribution can be obtained by averaging over all the agents,


f(x)dx=ϵ-1e-x/ϵdx



(5)




This Boltzmann-Gibbs distribution has been found to fit the real distribution of incomes in western societies [3].




2.2. Quadratic constraint


Now let us suppose a one-dimensional ideal gas of N non-identical classical particles with masses [image: there is no content], with [image: there is no content], and total maximum energy E. If particle i has a momentum [image: there is no content]vi, we define a kinetic energy:


K≡[image: there is no content]≡12[image: there is no content]vi2



(6)




where [image: there is no content] is the square root of the kinetic energy. Then the quadratic constraint reads:


[image: there is no content]



(7)




The distribution for [image: there is no content] here derived for an open system is also obtained when constraint (7) is an equality, i.e., when the energy is fixed [11]. When a finite number of particles are present in the system the asymptotic distribution maximizes the Tsallis entropy [12]. In the case with constraint (7) the system has accessible states with different energy, which is supposed to be supplied by a heat reservoir. These states are all those enclosed into the volume of the N-sphere given by Equation (7), with radius [image: there is no content]. The formula for the volume [image: there is no content] of an N-sphere of radius R is


[image: there is no content]



(8)




where [image: there is no content] is the Gamma function. If we suppose that each point into the N-sphere is equiprobable, then the probability f([image: there is no content])d[image: there is no content] of finding the particle i, with coordinate [image: there is no content] (energy [image: there is no content]) and normalization condition ∫-RRf([image: there is no content])d[image: there is no content]=1, is proportional to the volume formed by all the points into the [image: there is no content]-sphere having the ith-coordinate equal to [image: there is no content]. Then f([image: there is no content]) verifies


f([image: there is no content])=VN-1((E-[image: there is no content])[image: there is no content])[image: there is no content]([image: there is no content])



(9)







If we call ϵ the mean energy per particle, [image: there is no content], then in the limit of large N ([image: there is no content]), we have


limN≫1VN-1((E-p2)[image: there is no content])[image: there is no content]([image: there is no content])=12πϵ-1/2e-p2/2ϵ



(10)




where the index i has been removed because the distribution is the same for each particle. Thus the asymptotic distribution


f(p)=12πϵ-1/2e-p2/2ϵ



(11)




can be obtained by averaging over all the particles. If the change of variables p=m2v is performed, with v the generic velocity of a particle, then the Maxwellian distribution is just derived from geometrical arguments.





3. Multi-Agent Systems and Equiprobability: General Derivation of the Asymptotic Distribution


In this section, we address the same problem above presented but in a general way. Let b be a positive real constant (cases [image: there is no content] have been indicated in the former section). If we have a set of positive variables [image: there is no content] verifying the constraint


[image: there is no content]



(12)




with an adequate mechanism assuring the equiprobability of all the possible states [image: there is no content] into the volume given by expression (12), will we have for the generic variable x the distribution


f(x)dx∼ϵ-1/be-[image: there is no content]/bϵdx



(13)




when we average over the ensemble in the limit [image: there is no content], with [image: there is no content], and constant ϵ?. Now it is shown that the answer is affirmative. Similarly, we claim that if the weak inequality (12) is transformed in equality the result will be the same, as it has been proved for the cases [image: there is no content] in References [10,11].



From the cases [image: there is no content], (see Equations (3) and (9)), we can extrapolate the general formula that will give us the statistical behavior [image: there is no content] of the generic variable x, when the system runs equiprobably into the volume defined by a constraint of type (12). The probability [image: there is no content] of finding an agent with generic coordinate x is proportional to the volume [image: there is no content] formed by all the points into the [image: there is no content]-dimensional symmetrical body limited by the constraint [image: there is no content]. Thus, the N-dimensional volume can be written as


[image: there is no content](E[image: there is no content])=∫0E[image: there is no content]VN-1([image: there is no content][image: there is no content])dx



(14)




Taking into account the normalization condition [image: there is no content], the expression for [image: there is no content] is obtained:


f(x)=[image: there is no content][image: there is no content](E[image: there is no content])



(15)







The N-dimensional volume, [image: there is no content], of a b-symmetrical body with side of length ρ is proportional to the term [image: there is no content] and to a coefficient [image: there is no content] that depends on N:


[image: there is no content](b,ρ)=gb(N)[image: there is no content]



(16)




The parameter b indicates the original Equation (12) that defines the boundaries of the volume [image: there is no content]. Thus, for instance, from Equation (2), we have [image: there is no content].



Coming back to Equation (15), we can manipulate [image: there is no content]([image: there is no content][image: there is no content]) to obtain (the index b is omitted in the formula of [image: there is no content]):


[image: there is no content]([image: there is no content][image: there is no content])=gb(N)[image: there is no content][image: there is no content]N=gb(N)ENb1-[image: there is no content]ENb



(17)




If we suppose [image: there is no content], then ϵ represents the mean value of [image: there is no content] in the collectivity, that is, ϵ=<[image: there is no content]>. If N tends toward infinity, it results:


limN≫11-[image: there is no content]ENb=e-[image: there is no content]/bϵ



(18)




Thus,


[image: there is no content]([image: there is no content][image: there is no content])=[image: there is no content](E[image: there is no content])e-[image: there is no content]/bϵ



(19)




Substituting this last expression in formula (15), the exact form for [image: there is no content] is found in the thermodynamic limit ([image: there is no content]):


f(x)dx=[image: there is no content]ϵ-1/be-[image: there is no content]/bϵdx



(20)




with [image: there is no content] given by


[image: there is no content]=gb[image: there is no content]gb(N)N[image: there is no content]



(21)




Hence, the conjecture (13) is proved.



Doing a thermodinamical simile, we can calculate the dependence of ϵ on the temperature by differentiating the entropy with respect to the energy. The entropy can be written as S=-kN∫0∞f(x)lnf(x)dx, where [image: there is no content] is given by Equation (20) and k is the Boltzmann constant. If we recall that [image: there is no content], we obtain


S(E)=kNblnEN+kNb(1-bln[image: there is no content])



(22)




where it has been used that ϵ=<[image: there is no content]>=∫0∞[image: there is no content]f(x)dx



The calculation of the temperature T gives


[image: there is no content]



(23)




Thus [image: there is no content], a result that recovers the theorem of equipartition of energy for the quadratic case [image: there is no content]. The distribution for all b is finally obtained:


f(x)dx=[image: there is no content]bkT[image: there is no content]e-[image: there is no content]/kTdx



(24)








4. Gamma Distributions, Economic Gas Models and Geometry: A Speculation


If we perform the change of variables [image: there is no content] in the normalization condition of [image: there is no content], ∫0∞f(x)dx=1, where [image: there is no content] is expressed in (20), we find that


[image: there is no content]=∫0∞e-yb/bdy-1



(25)




If we introduce the new variable [image: there is no content], the distribution [image: there is no content] as function of z reads:


f(z)dz=[image: there is no content]b1-1bz1b-1e-zdz



(26)




Let us observe that the Gamma function appears in the normalization condition,


∫0∞f(z)dz=[image: there is no content]b1-1b∫0∞z1b-1e-zdz=[image: there is no content]b1-1bΓ1b=1



(27)




This implies that


[image: there is no content]=b1-1bΓ1b



(28)




By using Mathematica the positive constant [image: there is no content] is plotted versus b in Figure 1. We see that limb→0[image: there is no content]=∞, and that lim[image: there is no content][image: there is no content]=1. The minimum of [image: there is no content] is reached for [image: there is no content], taking the value [image: there is no content]=0.7762. Still further, we can calculate from Equation (28) the asymptotic dependence of [image: there is no content] on b:


limb→0[image: there is no content]=12πbe[image: there is no content]1-b12+⋯



(29)






lim[image: there is no content][image: there is no content]=b-1/b1+γb+⋯



(30)




where γ is the Euler constant, [image: there is no content]. The asymptotic function (29) is obtained after substituting in (28) the value of [image: there is no content] by [image: there is no content], and performing the Stirling approximation on this last expression, knowing that [image: there is no content]. The function (30) is found after looking for the first Taylor expansion terms of the Gamma function around the origin [image: there is no content]. They can be derived from the Euler’s reflection formula, [image: there is no content]. We obtain [image: there is no content]. From here, recalling that [image: there is no content], we get [image: there is no content], when [image: there is no content]. Although this last term of the Taylor expansion, [image: there is no content], is negligible we maintain it in expression (30). The only minimum of [image: there is no content] is reached for the solution [image: there is no content] of the equation [image: there is no content], where [image: there is no content] is the digamma function (see Figure 1).


Figure 1. Normalization constant [image: there is no content] versus b, calculated from Equation (28). The asymptotic behavior is: limb→0[image: there is no content]=∞, and lim[image: there is no content][image: there is no content]=1. This last asymptote is represented by the dotted line. The minimum of [image: there is no content] is reached for [image: there is no content], taking the value [image: there is no content]=0.7762.



[image: Entropy 11 00959 g001]






Let us now recall two interesting statistical economic models that display a statistical behavior given by distributions of the form (26), that is, the standard Gamma distributions with shape parameter [image: there is no content],


f(z)dz=1Γ(1b)z1b-1e-zdz



(31)









ECONOMIC MODEL A: The first one is the saving propensity model introduced by Chakraborti and Chakrabarti [4]. In this model a set of N economic agents, having each agent i (with [image: there is no content]) an amount of money, [image: there is no content], exchanges it under random binary [image: there is no content] interactions, ([image: there is no content],uj)→(ui′,uj′), by the following the exchange rule:


ui′=λ[image: there is no content]+ϵ(1-λ)([image: there is no content]+uj)



(32)






uj′=λuj+ϵ¯(1-λ)([image: there is no content]+uj)



(33)




with [image: there is no content], and ϵ a random number in the interval [image: there is no content]. The parameter λ, with [image: there is no content], is fixed, and represents the fraction of money saved before carrying out the transaction. Let us observe that money is conserved, i.e., [image: there is no content]+uj=ui′+uj′, hence in this model the economy is closed. Defining the parameter [image: there is no content] as


[image: there is no content]



(34)




and scaling the wealth of the agents as [image: there is no content], with [image: there is no content] representing the average money over the ensemble of agents, it is found that the asymptotic wealth distribution in this system obeys the standard Gamma distribution [5]


f(z¯)dz¯=1Γ(n)z¯n-1e-z¯dz¯



(35)




The case [image: there is no content], which means a null saving propensity, [image: there is no content], recovers the model of Dragulescu and Yakovenko [3] in which the Gibbs distribution is observed. If we compare Equations (35) and (31), a close relationship between this economic model and the geometrical problem solved in the former section can be established. It is enough to make


n=[image: there is no content]



(36)






[image: there is no content]



(37)




to have two equivalent systems. This means that, from Equation (36), we can calculate b from the saving parameter λ with the formula


[image: there is no content]



(38)




As λ takes its values in the interval [image: there is no content], then the parameter b also runs in the same interval [image: there is no content]. On the other hand, recalling that z=[image: there is no content]/bϵ, we can get the equivalent variable x from Equation (37),


x=ϵ[image: there is no content]u[image: there is no content]



(39)




where ϵ is a free parameter that determines the mean value of [image: there is no content] in the equivalent geometrical system. Formula (39) means to perform the change of variables [image: there is no content]→[image: there is no content], with [image: there is no content], for all the particles/agents of the ensemble. Then, we conjecture that the economic system represented by the generic pair [image: there is no content], when it is transformed in the geometrical system given by the generic pair [image: there is no content], as indicated by the rules (38) and (39), runs in an equiprobable form on the surface defined by the relationship (12), where the inequality has been transformed in equality. This last detail is due to the fact the economic system is closed, and then it conserves the total money, whose equivalent quantity in the geometrical problem is E. If the economic system were open, with an upper limit in the wealth, then the transformed system would evolve in an equiprobable way over the volume defined by the inequality (12), although its statistical behavior would continue to be the same as it has been proved for the cases [image: there is no content] in [10,11].



ECONOMIC MODEL B: The second one is a model introduced in [6]. In this model a set of N economic agents, having each agent i (with [image: there is no content]) an amount of money, [image: there is no content], exchanges it under random binary [image: there is no content] interactions, ([image: there is no content],uj)→(ui′,uj′), by the following the exchange rule:


ui′=[image: there is no content]-Δu



(40)






[image: there is no content]



(41)




where


Δu=η([image: there is no content]-xj)ϵω[image: there is no content]-[1-η([image: there is no content]-xj)]ϵωxj



(42)




with ϵ a continuous uniform random number in the interval [image: there is no content]. When this variable is transformed in a Bernouilli variable, i.e., a discrete uniform random variable taking on the values 0 or 1, we have the model studied by Angle [7], that gives very different asymptotic results. The exchange parameter, ω, represents the maximum fraction of wealth lost by one of the two interacting agents ([image: there is no content]). Whether the agent who is going to loose part of the money is the i-th or the j-th agent, depends nonlinearly on ([image: there is no content]-xj), and this is decided by the random dichotomous function [image: there is no content]: [image: there is no content] (with additional probability [image: there is no content]) and [image: there is no content] (with additional probability [image: there is no content]). Hence, when [image: there is no content]>xj, the value [image: there is no content] produces a wealth transfer from agent i to agent j with probability [image: there is no content], and when [image: there is no content]<xj, the value [image: there is no content] produces a wealth transfer from agent j to agent i with probability [image: there is no content]. Defining in this case the parameter [image: there is no content] as


[image: there is no content]



(43)




and scaling the wealth of the agents as [image: there is no content], with [image: there is no content] representing the average money over the ensemble of agents, it is found that the asymptotic wealth distribution in this system obeys the standard Gamma distribution [6]


f(z¯)dz¯=1Γ(n)z¯n-1e-z¯dz¯



(44)




The case [image: there is no content], which means an exchange parameter [image: there is no content], recovers the model of Dragulescu and Yakovenko [3] in which the Gibbs distribution is observed. If we compare Equations (44) and (31), a close relationship between this economic model and the geometrical problem solved in the last section can be established. It is enough to make


n=[image: there is no content]



(45)






[image: there is no content]



(46)




to have two equivalent systems. This means that, from Equation (45), we can calculate b from the exchange parameter ω with the formula


[image: there is no content]



(47)




As ω takes its values in the interval [image: there is no content], then the parameter b runs in the interval [image: there is no content]. It is curious to observe that in this model the interval [image: there is no content] maps on [image: there is no content], a fact that does not occur in MODEL A. On the other hand, recalling that z=[image: there is no content]/bϵ, we can get the equivalent variable x from Equation (46),


x=ϵ[image: there is no content]u[image: there is no content]



(48)




where ϵ is a free parameter that determines the mean value of [image: there is no content] in the equivalent geometrical system. Formula (48) means to perform the change of variables [image: there is no content]→[image: there is no content], with [image: there is no content], for all the particles/agents of the ensemble. Then, we conjecture that the economic system represented by the generic pair [image: there is no content], when it is transformed in the geometrical system given by the generic pair [image: there is no content], as indicated by the rules (47) and (48), runs in an equiprobable form on the surface defined by the relationship (12), where the inequality has been transformed in equality. As explained above, this last detail is due to the fact the economic system is closed, and then it conserves the total money, whose equivalent quantity in the geometrical problem is E. If the economic system were open, with an upper limit in the wealth, then the transformed system would evolve in an equiprobable way over the volume defined by the inequality (12), although its statistical behavior would continue to be the same as it has been proved for the cases [image: there is no content] in References [10,11].




5. Other Geometrical Questions


We shall proceed now to derive an asymptotic formula ([image: there is no content]) for the volume of the N-dimensional symmetrical body enclosed by the surface


[image: there is no content]



(49)




The linear dimension ρ of this volume, i.e., the length of one of its sides verifies ρ∼E[image: there is no content]. As argued in Equation (16), the N-dimensional volume, [image: there is no content], is proportional to the term [image: there is no content] and to a coefficient [image: there is no content] that depends on N. Thus,


[image: there is no content](b,ρ)=gb(N)[image: there is no content]



(50)




where the characteristic b indicates the particular boundary given by Equation (49).



For instance, from Equation (2), we can write in a formal way:


[image: there is no content]



(51)




From Equation (8), if we take the diameter, [image: there is no content], as the linear dimension of the N-sphere, we obtain:


g[image: there is no content](N)=π4N2ΓN2+1



(52)




These expressions (51) and (52) suggest a possible general formula for the factor [image: there is no content], let us say


[image: there is no content]



(53)




where a is a b-dependent constant to be determined. For example, [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content].



In order to find the dependence of a on the parameter b, the regime [image: there is no content] is supposed. Applying Stirling approximation for the factorial [image: there is no content] in the denominator of expression (53), and inserting it in expression (21), it is straightforward to find out the relationship:


[image: there is no content]=(ab)-1/b



(54)




From here and formula (28), we get:


a=Γ1b+1b



(55)




that recovers the exact results for [image: there is no content]. The behavior of a is monotonous decreasing when b is varied from [image: there is no content], where a diverges as [image: there is no content], up to the limit [image: there is no content], where a decays asymptotically toward the value a∞=e[image: there is no content]=0.5614.



Hence, the formula for [image: there is no content] is obtained:


gb(N)=Γ1b+1NΓNb+1



(56)




It would be also possible to multiply this last expression (56) by a general polynomial [image: there is no content] in the variable N, and all the derivation done from Equation (53) would continue to be correct. We omit this possibility in our calculations. For a fixed N, we have that [image: there is no content] increases monotonously from [image: there is no content], for [image: there is no content], up to [image: there is no content], in the limit [image: there is no content] (see Figure 2). For a fixed b, we have that [image: there is no content] decreases monotonously from [image: there is no content], for [image: there is no content], up to [image: there is no content], in the limit [image: there is no content] (see Figure 3).


Figure 2. The factor [image: there is no content] versus b for [image: there is no content], calculated from Equation (56). Observe that [image: there is no content] for [image: there is no content], and lim[image: there is no content]gb(N)=1.



[image: Entropy 11 00959 g002]





Figure 3. The factor [image: there is no content] versus N for [image: there is no content], calculated from Equation (56). Observe that [image: there is no content] for [image: there is no content], and lim[image: there is no content]gb(N)=0.



[image: Entropy 11 00959 g003]










The final result for the volume of an N-dimensional symmetrical body of characteristic b given by the boundary (49) reads:


[image: there is no content](b,ρ)=Γ1b+1NΓNb+1[image: there is no content]



(57)




with ρ∼E[image: there is no content].




6. Conclusions


In this work, we have considered a general multi-agent open system verifying an additive constraint. Its statistical behavior has been derived from geometrical arguments. The Maxwellian and the Boltzmann-Gibbs distributions are particular cases of this type of systems. Also, other multi-agent economy models, such as the Dragalescu and Yakovenko’s model [3], the Chakraborti and Chakrabarti’s model [4] and the modified Angle’s model [6], show similar statistical behaviors compared to our general system. This fact fosters a geometrical interpretation of all those models. This geometrical speculation allows us to suggest the equivalence with the Chakraborti and Chakrabarti’s model when the geometrical characteristic b of our model runs in the interval [image: there is no content]. The equivalence with the modified Angle’s model is suggested when b varies in the interval [image: there is no content]. As a particular case of both types of models, the Dragulescu and Yakovenko’s model is obtained for [image: there is no content].



We have not found in the literature other multi-agent models to establish an equivalence with our system in the range [image: there is no content]. This point remains an open question and a challenge that will probably trigger other works in this direction.
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