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Abstract: In this paper, an entropy based associative memory model will be proposed and 
applied to memory retrievals with an orthogonal learning model so as to compare with the 
conventional model based on the quadratic Lyapunov functional to be minimized during 
the retrieval process. In the present approach, the updating dynamics will be constructed on 
the basis of the entropy minimization strategy which may be reduced asymptotically to the 
above-mentioned conventional dynamics as a special case ignoring the higher-order corre-
lations. According to the introduction of the entropy functional, one may involve hig-
er-order correlation effects between neurons in a self-contained manner without any heu-
ristic coupling coefficients as in the conventional manner. In fact we shall show such high-
er order coupling tensors are to be uniquely determined in the framework of the entropy 
based approach. From numerical results, it will be found that the presently proposed novel 
approach realizes much larger memory capacity than that of the quadratic Lyapunov func-
tional approach, e.g., associatron.  
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1. Introduction 

During the past quarter century, a large number of autoassociative models have been extensively 
investigated on the basis of the autocorrelation dynamics characterized by the quadratic Lyapunov 
functional to be minimized. Since the proposals of the pioneering retrieval models by Anderson [1], 
Kohonen [2], and Nakano [3], some works related to such an autoassociation model of the in-
ter-connected neurons through an autocorrelation matrix were theoretically analyzed by Amari [4], 
Amit et al. [5] and Gardner [6]. So far it has been well appreciated that the storage capacity of the au-
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tocorrelation model, or the number of stored pattern vectors, L , to be completely associated vs. the 
number of neurons N, which is called the relative storage capacity or loading rate and denoted as 
αc = L/N , is evaluated as αc~0.14 at most for the autocorrelation learning model with the activation 
function as the signum one (sgn(x ) for the abbreviation) [7,8]. 

In contrast to the above-mentioned models with monotonous activation functions, neuro-dynamics 
with a nonmonotonous mapping was recently proposed by Morita [9], Yanai and Amari [10], Shiino 
and Fukai [11]. They clarified that the nonmonotonous mapping in a neuro-dynamics model possesses 
a remarkable advantage in the storage capacity, αc~0.27-0.4, superior than the conventional associa-
tion models with monotonous activation functions, e.g., the signum or sigmoidal function. Therefore 
activation functions have been considered to be worthwhile of investigation, not only the associative 
memory models but also learning models in relation with chaos dynamics [12]. 

In the above-mentioned association models, the dynamics have been restricted to the updating rule 
on the basis of the quadratic form of the Lyapunov functionals to be minimized through the retrieval 
process. That is, the nonlinearity of the dynamics results from the nonlinear characteristics of the acti-
vation function rather than the updating rule of the internal states derived from the quadratic Lyapunov, 
or energy, functional form. 

From the above-mentioned viewpoint, we shall propose a novel approach based on the entropy de-
fined in terms of the overlaps, which are defined by the inner products between the state vector and the 
embedded vectors. That is, in the present model the functional to be minimized is defined in terms of 
the entropy instead of the conventional quadratic functionals. Then it will be found that the higher or-
der dynamics is to be involved in a self-contained manner in the present entropy-based approach. In 
Section 2 a theoretical framework based on the entropy approach will be described to present the rela-
tionship between the present proposal and the conventional model with a quadratic Lyapunov func-
tional to be minimized. Some numerical results will be given in Section 3 and then Section 4 will be 
devoted to concluding remarks. 

2. Theory 

Let us consider an associative model with the embedded binary vector )(r
ie = ±1 (1 ≤ i ≤ N,1 ≤ r ≤ L), 

where N and L are the number of neurons and the number of embedded vectors, respectively, to be re-
trieved. The states of the neural network are to be characterized in terms of the vector si (1 ≤ i ≤ N) and 
the internal states σi (1 ≤ i ≤ N) which are related each other in terms of: 

 ( ) ( ) ,   1      Nifs ii ≤≤= σ  (1) 

where f (•) is the activation function of the neuron. 
Then we introduce the following entropy which is to be related to the overlaps: 
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where the covariant vector )(r
ie† is defined in terms of the following orthogonal relation: 
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where ω−1 denotes the inverse matrix of ω. 
Then the entropy defined by Equation (2) can be minimized by the following condition: 

 ( ) ,   ,1      )( Lsrm rs
r ≤≤= δ  (8) 

and:
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That is, regarding ( )2rm  (1 )r L≤ ≤  as the probability distribution in Equation (2), a target pattern 
may be retrieved by minimizing the entropy I with respect to m(r) or the state vector si to achieve the 
retrieval of a target pattern in which the Equation (8) and Equation (9) are to be satisfied. Therefore the 
entropy function may be considered to be a functional to be minimized during the retrieval process of 
the auto-association model instead of the conventional quadratic Lyapunov, i.e. energy functional, E: 
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where †
is is the covariant vector defined by: 
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and the connection matrix wij is defined in terms of: 
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Substituting Equation (12) into Equation (10), one may readily find:  
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According to the steepest descent approach in the discrete time model, the updating rule of the in-
ternal states ( ) sgn( ),i i is f σ σ= =  may be defined by: 
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where η ( > 0) is a coefficient. Substituting Equation (2) and Equation (3) into Equation (14) and not-
ing the following relation with the aid of Equation (11): 
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one may readily derive the following relation: 
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Generalizing somewhat the above dynamics, we propose the following dynamic rule for the inter-
nal states in order to unify the conventional quadratic dynamics as well as the presently proposed en-
tropy approach as mentioned below: 

( )

{ } ( ) { }{ }

2

( ) �

1 1 1

2( ) ( ) ( )

1

( 1) ( ) 1 log 1 ( )

( ) 1 log 1 ( ) .

L N N
r r r

i i j j j j
r j j

L
r r r

i
r

t e e s t e s t

e m t m t

σ η α α

η α α

= = =

=

⎡ ⎤⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪⎢ ⎥+ = + − +⎨ ⎬ ⎨ ⎨ ⎬ ⎬
⎢ ⎥⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭⎣ ⎦

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑
          (17) 

In the above expression α (0 1)α< <  is considered to be a control parameter of the present model 
as follows. First, in the limit of α→0, the above dynamics will be reduced to the conventional auto-
correlation dynamics: 
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On the other hand, Equation (17) results in Equation (16) in the case of α→1. Therefore one may 
control the dynamics between the autocorrelation (α→0) and the entropy based approach ( α→1) on 
the basis of the presently proposed generalized approach defined by Equation (17).  

Now it seems to be worthwhile to see the higher-order correlation in Equation (17) expanding the 
right-hand-side of Equation (17) as follows. 
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where β is defined by: 
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Substituting Equation (3) into Equation (19), one may eventually derive the following up-dating 
rule for the internal state, i.e.: 
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where )12(
1

+n
jij n

w  (0 ≤ n < ∞) are the connection weight tensors between neurons involving such 

higher-order correlations as 1≥n  and are to be expressed by means of )(r
ie and )(r

ie† comparing Equa-

tion (19) and Equation (21). Of course the lowest order connection weight )1(
1ijw in Equation (21) corresponds to 

1ijw in Equation (12), i.e.: 
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Thus the lowest correlation is reduced to the conventional quadratic framework expressed in terms 
of Equation (10) and Equation (12) as 0α → . Furthermore, for the higher-order connection tensors 
appearing in Equation (10c), one may readily obtain the following results: 
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It should be borne in mind here that all of the connection tensors, i.e. )12(
1

+n
jij n

w  (0 ≤ n < ∞) are 

to be uniquely determined in terms of the embedding vectors ( ) (1 ,1 )r
ie i N r L≤ ≤ ≤ ≤ and 

†( ) (1 ,1 )r
ie i N r L≤ ≤ ≤ ≤ , which may be related to each other according to Equation (5) to Equation (7). Thus 

the present approach substantially includes the higher-order correlations beyond the conventional ap-
proach defined by Equation (11), in which the correlation between neurons is restricted up to the 
second-order contribution corresponding to the quadratic Lyapunov functional given by Equation (10). 
For practical association of the stored patterns, the connection tensors )(

1

n
jij n

w  (1 ≤ n < ∞) defined by 

Equation (21) have to be utilised instead of the embedded vectors, i.e. )(r
ie and )(r

ie†  (1 ≤ r ≤ L). 
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3. Results 

The embedded vectors are set to the binary random vectors as follows: 

 ,   )(1   )sgn( )()( Lrze r
i

r
i ≤≤=  (24) 

where )(r
iz (1 ≤i ≤ N , 1 ≤ r ≤ L ) are the zero-mean pseudo-random numbers between -1 and +1. For 

simplicity, the activation function , Equation (1), is set to: 

 ( ) sgn( ),i i is f σ σ= =  (25) 

where sgn (•) denotes the signum function defined by: 
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The initial vector si (0) (1 ≤ i ≤ N) is set to: 
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where )(s
ie is a target pattern to be retrieved and Hd is the Hamming distance between the initial vector 

si (0) and the target vector )(s
ie . The retrieval is successful if: 
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results in 1 for 1≥t , in which the system may be in a steady state such that: 

 ,   )()1( tsts ii =+  (29) 

 .    )()1(i tt iσσ =+  (30) 

To see the retrieval ability of the present model, the success rate Sr is defined as the rate of the suc-
cess for 1,000 trials with the different embedded vector sets )(r

ie (1 ≤ i ≤ N, 1 ≤ r ≤ L). To control from 

the autocorrelation dynamics after the initial state (t~1) to the entropy based dynamics (t~Tmax) , the 
parameter α in Equation (17) was simply controlled by: 

 ( )maxmax
max

Tt0   ≤≤= αα
T

t  (31) 

where Tmax and αmax are the maximum values of the iterations of the updating according to Equation (17) 
and α, respectively. 

Choosing N = 200, η = 1, Tmax = 25, L/N = 0.5 and αmax = 1, we first present an example of the dy-
namics of the overlaps in Figures 1(a)−(d) (entropy based approach) and Figures 2(a)–(d) (associatron), 
in which the abscissa and the ordinate are for the retrieval steps after the initial states and the overlaps 
derived from Equation (16), respectively. Therein the cross symbols (×) and the open circles (o) 
represent the success of retrievals, in which Equation (8) and Equation (9) are satisfied, and the entro-
py defined by Equation (2), respectively, for a retrieval process. In addition the time dependence of the 
parameter α/αmax defined by Equation (31) is depicted as dots (.). In Figures 1(a)−(d) after a transient state, 
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it may be confirmed that the complete association corresponding to the conditions, Equation (8) and 
Equation (9), can be achieved, even for such a relatively large Hamming distance of the initial vector 
from a target vector as Hd/N = 0.1-0.15. On the other hand, in Figures 2(a)–(d), a trapping in a local 
minimum is found to be inevitable for L/N = 0.5 (>>0.14 which is the relative storage capacity for the 
autocorrelation model as discussed by Amari and Maginu [8] (see Concluding remarks), in which Eq-
uation (8) and Equation (9) cannot be achieved even for Hd/N→0 with L/N > 0.5. In addition one may 
sees that the retrieval cannot be achieved beyond Hd/N = 0.05 as in Figures 2(c) and (d). From these 
results one may certainly confirm the advantage of our approach beyond the conventional models 
based on the quadratic Lyapunov (energy) functionals. 

Figure 1. The time dependence of overlaps of the present entropy based model defined  
by Equation (17). 

 
(a) Hd/N = 0.005                              (b) Hd/N = 0.1 

 
(c) Hd/N = 0.2                             (d) Hd/N = 0.3 
 

Then we shall present the dependence of the success rate Sr on the loading rate L/N are depicted in 
Figure 3 for various Hamming distances Ηd with N = 100. For comparison, the corresponding results 
of the associatron model with α~0, i.e. Equation (11), are shown in Figure 4. Comparing between Fig-
ures 3 and 4, it is found that the present approach may achieve a relatively larger memory capacity 
beyond the conventional autocorrelation strategy. Therefore the presently proposed nonlinear dynam-
ics with the higher-order correlations involved in Equation (17) or Equation (21) based on the entropy 
functional to be minimized has a great advantage for the storage capacity beyond the conventional one 
based on Equation (10) and Equation (18).  
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Figure 2. The time dependence of overlaps of the associatron defined by Equation (18). 

 
(a) Hd/N = 0.005                          (b) Hd/N = 0.025 

 
(c) Hd/N = 0.05                         (d) Hd/N = 0.1 

Figure 3. The dependence of the success rate on the loading rate α = L/N of autoassocia-
tion model based on Equation (17) (entropy based approach). 

 
(a) Hd/N = 0.01                          (b) Hd/N = 0.1 
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Figure 3. Cont.  

(c) 
Hd/N = 0.2                          (d) Hd/N = 0.3 

Figure 4. The dependence of the success rate on the loading rate α = L/N of autoassocia-
tion model based on Equation (18) (associatron). 

 
(a) Hd/N = 0.01                         (b) Hd/N = 0.1 

 
(c) Hd/N = 0.2                           (d) Hd/N = 0.3 
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The depression of the success rate at L/N~1 in Figure 3 may be considered to result from the fact 
such that: 
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Thus, noting that  si(t) = sgn(σi (t)) and η > 0, one has: 
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4. Concluding Remarks 

In the present paper, we have proposed an entropy based association model instead of the conven-
tional autocorrelation dynamics. From numerical results, it was found that a large memory capacity 
may be achieved on the basis of the entropy approach. This advantage of the association property of 
the present model is considered to result from the fact such that the present dynamics to update the in-
ternal state Equation (17) assures that the entropy, Equation (2) is minimized under the conditions, 
Equation (8) and Equation (9), which corresponds to the successful retrieval of a  
target pattern. 

To conclude this work, we shall show the dependence of the storage capacity, which is defined as 
the area covered in terms of the success rate curves as shown in Figures 3 and Figure 4, on the Ham-
ming distance in Figure 5. Therein one may see again the great advantage of the present model based 
on the entropy functional to be minimized beyond the conventional quadratic form. In fact one may 
realize the considerably larger storage capacity in the present model in comparison with the associa-
tron over Hd/N~0-0.5. The memory retrievals for the associatron become troublesome near Hd/N = 0.5 
as seen in Figure 5 since the directional cosine between the initial vector and a target pattern eventual-
ly vanishes therein. Remarkably, even in such a case, the present model attains a remarkably large 
memory capacity because of the higher-order correlations involved in Equation (17) or Equation (21), as 
expected from Figure 3. 

As a future problem, it seems to be worthwhile to involve a chaotic dynamics in the present model 
introducing a periodic activation function such as sinusoidal one and to extend the autocorrelation 
model replacing )(r

ie† by )(r
ie /N in the present approach, in which the connection matrix wij and the 

overlaps m(r) read: 
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respectively, corresponding to Equation (12) and Equation (15). The entropy based approach with Eq-
uation (20), i.e. autocorrelation dynamics, is now in progress in the relation with chaos dynamics [12] 
and will be reported elsewhere as a separated paper and to be compared with the previous works 
[13,14] in the near future. Furthermore it seems to be worthwhile to examine the truncation effects of 
the expansion tensors as in Equation (21), which was not directly derived in our previous work [15], 
for practical applications related to the hardware implementation. 

Figure 5. The dependence of the storage capacity on the Hamming distance. Here symbols 
o and x are for the entropy based approach and the associatron, respectively. 
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