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Abstract: Mutual information between a target variable and a feature subset is extensively
used as a feature subset selection criterion. This work contributes to a more thorough
understanding of the evolution of the mutual information as a function of the number
of features selected. We describe decreasing returns and increasing returns behavior in
sequential forward search and increasing losses and decreasing losses behavior in sequential
backward search. We derive conditions under which the decreasing returns and the
increasing losses behavior hold and prove the occurrence of this behavior in some Bayesian
networks. The decreasing returns behavior implies that the mutual information is concave
as a function of the number of features selected, whereas the increasing returns behavior
implies this function is convex. The increasing returns and decreasing losses behavior are
proven to occur in an XOR hypercube.
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1. Introduction

Feature subset selection [1] is an important step in the design of pattern recognition systems. It has
several advantages. First, after feature selection has been performed off-line, predictions of a target



Entropy 2010, 12 2145

variable can be made faster on-line, because predictions can be performed in a lower-dimensional space
and only a subset of the features needs to be computed. Secondly, it can lead to a decrease in hardware
costs, because smaller patterns need to be stored or sensors that do not contribute to the prediction
of a target variable can be eliminated (see e.g. [2] for a recent application of sensor elimination by
means of feature subset selection). Thirdly, it can increase our understanding of the underlying processes
that generated the data. Lastly, due to the curse of dimensionality [1,3], more accurate predictions can
often be obtained when using the reduced feature set. Depending on the context, ‘feature selection’ is
sometimes called ‘characteristic selection’ [4] or ‘variable selection’ [5].

Mutual information between the target variable, denoted as ‘C’, and a set of features, denoted
as {F1,...Fn}, is a well-established criterion to guide the search for informative features. However,
some pitfalls in mutual information based feature subset selection should be avoided. A well-known
property of entropy, i.e., conditioning reduces uncertainty, does not necessarily hold for the mutual
information criterion in feature selection. It would imply that conditioning on more features reduces
the information that a feature contains about the target variable. Conditioning reduces information has
been assumed to hold sometimes in the approximation of the high-dimensional mutual information by
means of lower-dimensional mutual information estimations [6,7]. However, we show in this paper,
using some counterexamples, related to the bit parity problem, that conditioning can increase the mutual
information of a feature or a feature set about a target variable. We show in Section 3 that this can
hold for both discrete, either binary or non-binary, and continuous features. Most lower-dimensional
mutual information estimators may perform weak when dealing with probability distributions in which
conditioning can increase information, see Section 4.4.

It has been observed sometimes that increments in mutual information become smaller and smaller in
a sequential forward search in [8]. In fact, in this paper, we prove by means of a counterexample that the
opposite behavior can also occur: the increments in mutual information become larger and larger in the
SFS. This increasing returns behavior could be proven to occur in a (2n+1)-(2n-1)-...5-3 XOR hypercube
in Section 4.1. The decreasing returns behavior, i.e., increments in mutual information become smaller
and smaller, could be proven to occur in some Bayesian networks in Section 4.2. We show in Section 5.1
that the ‘increasing returns’ has a comparable ‘decreasing losses’ implication in the sequential backward
search. In Section 5.2, we show that the ‘decreasing returns’ has a comparable ‘increasing losses’
implication in the sequential backward search. All our theoretical claims are supported and illustrated
by experiments.

2. Background and Definitions

2.1. Historical Background

Lewis was among the first to apply mutual information as a feature selection criterion almost half a
century ago [4]. Mutual information was used to select good characteristics in a letters and numerals
prediction problem. The following years the criterion was applied by Kamentsky and Liu in [9] and Liu
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in [10] to similar character recognition problems. Although at that time Lewis did not call his criterion
‘mutual information’, but a ‘measure of goodness’ Gi:

Gi =
∑
fi,c

p(fi, c)log

(
p(fi|c)
p(fi)

)
(1)

Multiplying both the numerator and the denominator within the logarithm with p(c), this leads to the
mutual information criterion for feature selection, used extensively since [11]:

MI(Fi;C) =
∑
fi,c

p(fi, c)log

(
p(fi, c)

p(fi).p(c)

)
(2)

This expression for mutual information is also the one used in [12]. For a subset of features
FS = {FS1,FS2, ... FSn1}, this is:

MI(FS;C) =
∑
fs,c

p(fs, c)log

(
p(fs, c)

p(fs).p(c)

)
(3)

The mutual information can be expanded in entropy terms H(C) and H(C|FS) as:

MI(FS;C) = H(C)−H(C|FS) (4)

Throughout the article, we use bold style to denote vectors, capitals to denote variables and lowercase
letters to denote values of variables.

2.2. Conditional Mutual Information

The conditional mutual information of feature Fi and C, given Fj , is defined as [12]:

MI(Fi;C|Fj) =
∑
fi,fj ,c

p(fi, fj, c)log

(
p(fi, c|fj)

p(fi|fj).p(c|fj)

)
(5)

Due to the chain rule for information [12], the conditional mutual information is equal to a difference
in (unconditional) mutual information:

MI(Fi;C|Fj) = MI(Fi, Fj;C)−MI(Fj;C) (6)

3. Conditioning Increases Information

One particular example where conditioning on additional variables can increase information was
given in [12] (see page 35). The example was Z = X + Y, with X and Y binary independent distributed
variables. Then, it was shown that MI(X;Y) < MI(X;Y|Z). We provide examples in this section that are
more tailored to the feature subset selection problem, and also show that it holds for binary, non-binary
discrete and continuous features. The n-bit parity problem and the checkerboard pattern were also
mentioned in [5] to indicate that a variable which is useless by itself can be useful together with others.
We derive the implications for these examples for conditioning in mutual information based feature
selection. We provide results for ‘n’ features in general and derive a general ‘conditioning increases
information’ result in inequality (11) under the conditions given in (7) and (9).
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3.1. n-bit Parity Problem

The bit parity problem is frequently used as a benchmark problem, e.g. in neural network
learning [13]. Consider ‘n’ independent features F1,... Fn that are binary: Fi ∈ {0,1} and
p(F1,F2, ...Fn) =

∏n
i=1 p(Fi).

The target variable in the case of the n-bit parity problem, which is an XOR problem for n = 2, is then
defined as:

C = mod(
n∑

i=1

Fi, 2) (7)

We denote the modulo 2 computation by mod(.,2). The target variable is equal to 1 in case the n-tuple
(f1,f2, ...fn) contains an odd number of 1’s and is 0 otherwise. The mutual information based on the full
feature set is equal to:

MI(F1, F2, ...Fn;C) = H(C)−H(C|F1, F2, ...Fn)

= H(C) (8)

where Equation (8) is due to the result that the uncertainty left about C after observing F1, F2, ...Fn is
equal to 0: H(C|F1,F2, ...Fn) = 0. The probability of class 0, p(c=0), and class 1, p(c=1), is equal to 1/2
for n ≥ 2, this implies that according to Equation (8) the mutual information MI(F1,F2,...Fn;C) = 1 bit.
In the previous computation, we used the base 2 logarithm. In case the target variable takes 2 values,
C ∈ {0,1}, the mutual information will be maximally 1 bit, in fact, in (3) one can choose the base of the
logarithm. For any strict subset FS ⊂{F1,F2,...Fn} excluding ∅, it can be verified that p(fS ,c) = p(fS).p(c).
From this, it follows that, using the definition of mutual information in Equation (3), MI(FS;C) = 0. This
leads us to the following result. Suppose that:

{F1, F2, ...Fn} = FS1 ∪ FS2,

with FS1 ̸= ∅, FS2 ̸= ∅ and FS1 ∩ FS2 = ∅ (9)

Because FS1 and FS2 are strict subsets of the full feature set, it holds that MI(FS1;C) = 0 and
MI(FS2;C) = 0 in the n-dimensional XOR problem. For the conditional mutual information, it holds that:

MI(FS2;C|FS1) = MI(FS1,FS2;C)−MI(FS1;C)

= 1− 0 (10)

From this, we can derive following general result:

MI(FS2;C|FS1) > MI(FS2;C) (11)

Similarly, we can conclude: MI(FS1;C|FS2) > MI( FS1;C).
A case derived from the n-bit parity problem is obtained when the variable Fj and C are interchanged

in Equation (7):

Fj = mod(
n∑

i=1,i̸=j

Fi + C, 2) (12)
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with all the variables Fi,i̸=j and C independent and binary. For this case it holds that
MI(F1,...Fj−1,Fj+1,...Fn;C) = 0, because {F1,...Fj−1, Fj+1,...Fn} and C are independent by construction.
However, after conditioning on Fj we obtain:

MI(F1, ...Fj−1, Fj+1, ...Fn;C|Fj) = H(C|Fj)−H(C|F1, F2, ...Fn) (13)

= H(C|Fj) = 1 (14)

In Equation (13) H(C|F1,F2,...Fn) = 0, because after all other features are observed, C can be perfectly
predicted. In Equation (14) H(C|Fj) = H(C), because Fj on its own contains no information about C.
Hence, for Equation (12) we conclude: MI(F1,...Fj−1,Fj+1,...Fn;C|Fj) > MI(F1,...Fj−1,Fj+1,...Fn;C). In
fact, for Equation (12), the more general result of inequality (11) also holds under the conditions of (9),
regardless whether Fj ∈ FS1 or Fj ∈ FS2.

3.2. Non-binary Discrete Features

Consider the checkerboard pattern shown in Figure 1.

Figure 1. Checkerboard pattern.
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The target variable C is noted in the squares and depends on whether the square is black (c = 0)
or white (c = 1). There are two features F1 and F2, corresponding to the column and row indicators,
respectively. Variables F1 and F2 are 8-ary and take values {1,2,3,...8}, while C is binary. How does
this checkerboard pattern relate to the n-bit parity problem? The pattern in Figure 1 can be seen as a
natural extension of the n-bit parity problem and can also be expressed by Equation (7) with the same
requirement of independence between features. In the case of m-ary features, with ‘m’ even, it holds
that any strict subset of features contains no information about the target variable. The requirement of
‘m’ even arises from the fact that, for any subset of features, we need an equal number of 0 and 1 cells
in order for strict subsets not to be informative, this can only be achieved when ‘m’ is even (see also
Section 4). The full feature set for ‘m’ even contains 1 bit of information. This shows that the general
result of inequality (11) also holds for non-binary discrete features.

A concept related to mutual information is the n-way interaction information introduced by
McGill [14]. This n-way interaction information has been used to characterize statistical systems such as
spin glasses in [15], where the concept was introduced as ‘higher-order mutual information’. The n-way
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interaction information for class variable C and features F1, F2,...Fn, written as In+1(C,F1,F2,...Fn), can
be expressed in terms of the mutual information as follows:

In+1(C,F1, F2, ...Fn) =
n∑

k=1

(−1)(k+1)
∑

i1<...<ik

MI(Fi1 , Fi2 , ...Fik ;C), (15)

with {i1, i2,...ik} ∈ {1,2,...n}. As opposed to the usual mutual information, the higher-order mutual
information can be negative. The statistical system is termed ‘frustrated’ in that case [15]. The
XOR problem presented in Figure 1 is an example of a frustrated system, because
In+1(C,F1,F2,...Fn) = -MI(F1,F2;C)=-H(C). However, it is observed that the XOR problem appears as
‘frustrated’ if the number of features is even. In case of an odd number of features, the higher-order
mutual information is positive, e.g. for n = 3 features In+1(C,F1,F2,...Fn) = MI(F1,F2,F3;C) = H(C). The
n-way interaction information can be useful in feature selection to verify whether any of the features is
independent of all other features and the target variable in a single test. This can be seen from
Equation (15): the n-way interaction information is symmetric (see [14]), one can exchange the
class variable with any feature. Hence, if for any Fj MI(F1,...Fj−1,Fj+1,...Fn,C;Fj) = 0, then
In+1(C,F1,F2,...Fn) = 0. Three-way interaction information has been used to derive causal relationships
between neurons in [16] and more recently between features and the target variable in [17].

All examples above were given for discrete features, the question is whether the ‘conditioning
increases information’ result can also hold for continuous features.

3.3. Continuous Features: Mixture Models

Consider a d-dimensional Gaussian mixture model (GMM) or t mixture model (tMM), with the
number of Gaussians or t distributions equal to 2d, with half of the Gaussians or t distributions assigned
to class 0, and the other half to class 1, and where each distribution has a mixing proportion of 1/(2d).

An example is provided in Figure 2, where the Gaussians are positioned on a cube with corners
(µ1, µ2, µ3) ∈{(0,0,0), (1,0,0),...(1,1,1)}, the covariance matrices are spherical and d = 3.

Figure 2. Gaussian distributions with spherical covariance matrices on cube corners.
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Suppose that we assign the Gaussians for which mod(µ1 + µ2 + µ3,2) = 1 to class 1 (light grey in
Figure 2) and the Gaussians for which mod(µ1 + µ2 + µ3,2) = 0 to class 0. (dark grey). This Gaussian
mixture model can be written as:

∑
i=1:2(3−1),

mod(µi1+µi2+µi3,2)=0

1

23
N
(µi1

µi2

µi3

 ,Σ
)
+

∑
j=2(3−1)+1:2(3),

mod(µj1+µj2+µj3,2)=1

1

23
N
(µj1

µj2

µj3

 ,Σ
)

(16)

The marginal distributions of a multivariate Gaussian distribution or multivariate t distribution are
Gaussian and t distributed again [18], respectively. Hence, when we select 2 features, the marginal
distributions are Gaussian again, and their centers will now be located on the corners of the square (0,0),
(0,1), (1,0), (1,1). Moreover, on each corner, there will be 1 Gaussian from both classes, and in the
case of equal covariance matrices, their distributions will be equal. Equal distributions for both classes
implies that the mutual information with the target variable is equal to 0. This can be seen from the
continuous version of mutual information:

MI(F1, F2, ...Fd;C) =
∑
c

∫∫∫
f1,f2,...fd

p(f1, f2, ...fd, c)log
p(f1, f2, ...fd, c)

p(f1, f2, ...fd).p(c)
df1 df2... dfd (17)

The numerator in Equation (17), after subset selection with sn1 features, with sn1 < d and sn1 > 0, is
equal to p(fs1,...fsn1,c), and the denominator is equal to:

p(fs1, ...fsn1).p(c) =
(
p(fs1, ...fsn1|c = 0).p(c = 0)

+ p(fs1, ...fsn1|c = 1).p(c = 1)
)
.p(c)

= p(fs1, ...fsn1, c) (18)

In Equation (18), we have that p(fs1,...fsn1|c=0) = p(fs1,...fsn1 |c=1) = p(fs1,...fsn1|c). Hence, the
numerator and the denominator are equal in the MI definition and MI(F1,...Fsn1;C) = 0 holds. This
can be extended to more than 3 dimensions. Again the general result of inequality (11) applies. It is
important to note that we only require the covariance matrices for the Gaussian distributions to be equal,
not necessarily spherical, and in the case of multivariate t distributions, one additionally requires their
degrees of freedom to be equal to guarantee that MI(F1,...Fsn1;C) = 0.

4. Increasing and Decreasing Returns

4.1. Increasing Returns

Previously, it was found in [8] that in the sequential forward search (SFS), when features are selected
later in the forward search, they contribute less in the increase of information of the target variable
compared to previously selected ones. Let us illustrate this with an example. Suppose that we dispose
of 3 features F1, F2 and F3 and that F1 is the first feature for which MI(F1;C) > MI(F2;C) > MI(F3;C).
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In the first iteration of the SFS, the feature, for which the objective MI(Fi;C) is the highest, is selected.
In this case, the selected feature will be F1. Suppose that in the second iteration of the SFS, we have:
MI(F2;C|F1) > MI(F3;C|F1). The second selected feature will be F2. In the third iteration, the only
feature left is F3 and the incremental increase in information is: MI(F3;C|F1,F2). The ‘decreasing
returns’ (i.e. every additional investment in a feature results in a smaller return) is then observed as:
MI(F1;C) > MI(F2;C|F1) > MI(F3;C|F1,F2).

However, this is not always true. We show with a counterexample that the opposite behavior
can occur: although the order of selected features is F1, F2 and finally F3, it can hold that
MI(F1;C) < MI(F2;C|F1) < MI(F3;C|F1,F2), i.e. we observe ‘increasing returns’ (every additional
investment in a feature results in an increased return) instead of decreasing returns. Consider a possible
extension of the checkerboard to 3 dimensions in Figure 3.

Figure 3. 7-5-3 XOR Cube. Extension of checkerboard to 3 dimensions, the number of
values that each feature can take is odd and different for each feature.
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Here, the three features F1, F2 and F3 take an odd number of values: 7, 5 and 3 respectively. We will
refer to this example as ‘7-5-3 XOR’. As opposed to ‘m’ even, now each feature individually, as well
as each subset of features, contains information about the target variable. We computed the conditional
entropies for this example in Table 1.

The mutual information and the conditional mutual information can be derived from the conditional
entropies and are shown on the right side of the table. Clearly, the first feature that will be selected is
F1, as this feature contains individually the most information about the target variable. The next feature
selected is F2, because conditioned on F1, F2 contains the most information. Finally, F3 will be selected
with a large increase in information: MI(F3;C|F1,F2) ≈ 0,9183 bits. This increasing returns behavior
can be shown to hold more generally for a (2n + 1) − ... − 7 − 5 − 3 XOR hypercube, with ‘n’ the
number of features. The total number of cells (feature value combinations) in such a hypercube is equal
to (2n+ 1).(2n− 1).(2n− 3)...(3). This can be written as a double factorial:

(2n+ 1)!! = (2n+ 1).(2n− 1).(2n− 3)...3 (19)

This is an odd number of cells. ((2n + 1)!!− 1)/2 of the cells have been assigned a 0 or a 1 value. The
entropy H(C) can therefore be written as:

H(C) = −(2n+ 1)!!− 1

2.(2n+ 1)!!
log

(
(2n+ 1)!!− 1

2.(2n+ 1)!!

)
−(2n+ 1)!! + 1

2.(2n+ 1)!!
log

(
(2n+ 1)!! + 1

2.(2n+ 1)!!

)
(20)
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Table 1. 7-5-3 XOR Cube. Entropies and Mutual Information for the SFS, NA = not
available.

Entropy value(bit) Mutual Inf. value(bit)

H(C)

- 53
105

log2
53
105

NA NA- 52
105

log2
52
105

≈ 0,9999

H(C|F1)

- 8
15

log2
8
15

MI(F1;C) ≈ 3,143.10−3- 7
15

log2
7
15

≈ 0,9968

H(C|F2)

-10
21

log2
10
21

MI(F2;C) ≈ 1,571.10−3-11
21

log2
11
21

≈ 0,9984

H(C|F3)

-18
35

log2
18
35

MI(F3;C) ≈ 5,235.10−4-17
35

log2
17
35

≈ 0,9994

H(C|F1,F2)

-2
3
log2

2
3

MI(F2;C|F1) ≈ 7,850.10−2-1
3
log2

1
3

≈ 0,9183

H(C|F1,F3)

-3
5
log2

3
5

MI(F3;C|F1) ≈ 2,584.10−2-2
5
log2

2
5

≈ 0,9710

H(C|F2,F3)

-4
7
log2

4
7

MI(F3;C|F2) ≈ 1,314.10−2-3
7
log2

3
7

≈ 0,9852

H(C|F1,F2,F3) 0 MI(F3;C|F1,F2) ≈ 0,9183

In every step of the sequential forward search, the feature that takes the largest number of feature
values will be selected first, because this will decrease the conditional entropy (and hence increase the
mutual information) the most. This can be observed from Table 1: first F1 (which can take 7 values) is
selected, subsequently conditioned on F1, F2 (which can take 5 values) is selected. Finally, conditioned
on F1 and F2, F3 (which can take 3 values) is selected. The conditional entropy conditioned on k variables
needs to be computed over hypercubes with dimension (n-k), each containing (2n+1−2k)!! cells. Again
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((2n+1−2k)!!−1)/2 cells have been assigned a 0 or a 1 value. Therefore the conditional entropy after
k steps, k ≤ n− 1, of the SFS can be computed as:

H(C|F1, F2, ...Fk) = −(2(n− k) + 1)!!− 1

2.(2(n− k) + 1)!!
log

(
(2(n− k) + 1)!!− 1

2.(2(n− k) + 1)!!

)
−(2(n− k) + 1)!! + 1

2.(2(n− k) + 1)!!
log

(
(2(n− k) + 1)!! + 1

2.(2(n− k) + 1)!!

)
(21)

4.2. Decreasing Returns

Next, we ask ourselves under what condition the decreasing returns holds. Suppose that the selected
subset found so far is S, and that the feature selected in the current iteration is Fx. In order for the
decreasing returns to hold, one requires for the next selected feature Fy: MI(Fx;C|S) > MI(Fy;C| S,Fx).
First, we expand MI(Fx,Fy;C| S) in two ways by means of the chain rule of information:

MI(Fx, Fy;C|S) = MI(Fx;C|S) +MI(Fy;C|S, Fx)

= MI(Fy;C|S) +MI(Fx;C|S, Fy) (22)

In the sequential forward search, Fx was selected before Fy, thus, it must be that:
MI(Fx;C| S) > MI(Fy;C|S). In the case of ties, it may be possible that MI(Fx;C|S) ≥ MI(Fy;C|S), we
focus here on the case where we have a strict ordering >. Then, in Equation (22) we have that:

MI(Fy;C|S, Fx) < MI(Fx;C|S, Fy) (23)

Hence, a sufficient condition in order for the decreasing returns to hold is that:
MI(Fx;C|S,Fy) ≤ MI(Fx;C|S). This means that additional conditioning on Fy decreases (or equals)
information of Fx about C.

A first dependency structure between variables for which the decreasing returns can be proven to hold
in the SFS is when all features are child nodes of the class variable C. This means that all features are
conditionally independent given the class variable. This dependency structure is shown in Figure 4.

Lemma 4.1. Suppose that the order in which features are selected by the SFS is: firstly F1 subsequently
F2 next F3 until Fn. If all features are conditionally independent given the class variable, i.e.
p(F1,F2, ...Fn|C) =

∏n
i=1 p(Fi|C), then the decreasing returns behavior holds:

MI(F1;C) > MI(F2;C|F1) > MI(F3;C|F1,F2) > ... > MI(Fn;C|F1,F2...Fn−1).

Proof. First, we show that MI(F1;C) > MI(F2;C|F1).

MI(F2;F1, C) = MI(F2;C) +MI(F2;F1|C) (24)

= MI(F2;F1) +MI(F2;C|F1) (25)

In Equation (24) it holds that, due to the conditional independence of the features given the class variable,
MI(F2;F1|C) = 0. In Equation (25), we have that MI(F2;F1) ≥ 0. Comparing Equations (24) and (25),
we obtain that: MI(F2;C) ≥ MI(F2;C|F1). Because, F1 was selected before F2, we have that
MI(F1;C) > MI(F2;C) (again we assume a strict ordering among variables, in case of ties we have
MI(F1;C) ≥ MI(F2;C)). Hence, we obtain MI(F1;C) > MI(F2;C) ≥ MI(F2;C|F1).
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Using a similar reasoning as above, we can show that it holds in general:
MI(Fk−1;C|F1,F2,...Fk−2) > MI(Fk;C|F1,F2,...Fk−1). We start with the generalization of Equation (24):

MI(Fk;F1, F2, ...Fk−1, C) = MI(Fk;F1, F2, ...Fk−2, C) +MI(Fk;Fk−1|C,F1, ...Fk−2) (26)

In appendix (B), we prove that the conditional independence of the variables given C implies that
MI(Fk;Fk−1|C,F1,...Fk−2) = 0. Further expansion of the left and the right hand sides in Equation (26)
results in:

MI(Fk;F1, F2, ...Fk−1, C) = MI(Fk;F1, F2, ...Fk−2, C) (27)

MI(Fk;F1, ...Fk−1) +MI(Fk;C|F1, ...Fk−1) = MI(Fk;F1, ...Fk−2) +MI(Fk;C|F1, ...Fk−2)

(28)

Because MI(Fk;F1,...Fk−1) ≥ MI(Fk;F1,...Fk−2) in Equation (28), we see that
MI(Fk;C|F1,...Fk−1) ≤ MI(Fk;C|F1,...Fk−2). But, Fk−1 was selected before Fk, i.e.
MI(Fk;C|F1,...Fk−2) < MI(Fk−1;C|F1,...Fk−2), from which we obtain what needed to be proven:
MI(Fk;C|F1,...Fk−1) < MI(Fk−1;C|F1,...Fk−2).

In Figure 4 we show a Bayesian network [19,20] where the class variable C has 10 child nodes. This
network has 21 degrees of freedom: we can randomly choose p(c=0) ∈ [0,1] and for the features we
can choose p(fi=0|c=0) ∈ [0,1] and p(fi=0|c=1) ∈ [0,1]. We generated a Bayesian network where the
probability p(c=0) and the conditional probabilities p(fi=0|c=0) and p(fi=0|c=1) are generated randomly
following a uniform distribution within [0,1]. According to Lemma 4.1, we should find the decreasing
returns behavior if we apply the SFS to this network.

Figure 4. Example of class conditional independence of the features given the class variable
C. The joint probability distribution can be factorized as: p(F1,F2,...F10,C) =

(∏10
i=1 p(Fi

|C)
)
.p(C).

C

F1 F2 F4F3 F5 F6 F7 F8 F9 F10

Indeed, this decreasing returns behavior can be observed in Figure 5 using the generated Bayesian
network: Lemma 4.1 predicts that the conditional mutual information decreases with an increasing
number of features being selected. This implies that the mutual information is a concave function in
function of the number of features selected. This can be seen from the fact that the mutual information
can be written as a sum of conditional mutual information terms:

MI(F1, F2, ...Fn;C) = MI(F1;C) +M(F2;C|F1) + ...+MI(Fn;C|F1, F2, ...Fn−1) (29)

with every next term smaller than the previous one. A particular case of Figure 4 is obtained if besides
class conditional independence among features also independence is assumed. In that case, it can
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be shown [21] that the high-dimensional mutual information, can be written as a sum of marginal
information contributions:

MI(F1, F2, ...Fn;C) = MI(F1;C) +M(F2;C) + ...+MI(Fn;C) (30)

The SFS, which is in general not optimal, can then be shown to be optimal in mutual information sense.
Indeed, at the k’th step of the SFS, i.e. after ‘k’ features have been selected, there is no subset of ‘k’
or less than ‘k’ features out of the set of ‘n’ features that leads to a higher mutual information than the
set that has been found with the SFS at step ‘k’, if MI(Fk;C) > 0. Independence and class conditional
independence will often not be satisfied for data sets. Nevertheless, for gene expression data sets that
typically contain up to 10,000 features, overfitting in a wrapper search can be alleviated if the features
with the lowest mutual information are removed before applying the wrapper search [22].

Figure 5. Evolution of the mutual information in function of the number of features selected
with the SFS. A Bayesian network according to Figure 4 was created with probability p(c=0),
conditional probabilities p(fi=0|c=0) and p(fi=0|c=1) drawn randomly following a uniform
distribution within [0,1]. The conditional mutual information at 1 feature is MI(F1;C)
at 2 features MI(F2;C|F1),... and finally at 10 features MI(F10;C|F1,F2,...F9). Lemma 4.1
predicts that the conditional mutual information decreases with an increasing number of
features selected. This implies that the mutual information is concave in function of the
number of features selected.
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It can be shown that also in more complex settings when there are both child and parent nodes the
decreasing returns behavior can still hold. In Figure 6 an example of dependencies between 4 features
is provided for which the decreasing returns holds, if the parent and child nodes are selected alternately.
This leads to the following lemma.
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Figure 6. Example of dependencies between features for decreasing returns. The joint
probability distribution can be factorized as: p(F1,F2,F3,F4,C) = p(F2|C).p(F4|C).p(C|F1,F3)
.p(F1).p(F3). This factorization implies that: MI(F1,F3;F2,F4 |C) = 0.

C

F1 F3

F2 F4

Lemma 4.2. Suppose that the order in which features are selected by the SFS is: firstly F1 subsequently
F2 next F3 until Fn. Assume that the odd selected features, i.e. F1, F3, F5 ..., are parents of C and the
even selected features, i.e. F2, F4, F6 ..., are children of C, then the decreasing returns behavior holds:
MI(F1;C) > MI(F2;C|F1) > MI(F3;C|F1,F2) > ... > MI(Fn;C|F1,F2,...Fn−1).

Let us first prove the result for the case with 4 features, as shown in Figure 6. The order of selected
features in the SFS is F1, F2, F3 and F4, respectively. We show that MI(F3;C|F1,F2) < MI(F2;C|F1).

MI(F3;C,F1, F2) = MI(F3;F1, F2) +MI(F3;C|F1, F2) (31)

= MI(F3;F1) +MI(F3;C|F1) +MI(F3;F2|C,F1) (32)

In Equation (32) MI(F3;F2|C,F1) = 0, this follows from the fact that MI(F1,F3;F2,F4|C) = 0, see
appendix (A). We have in Equation (31) and Equation (32) that MI(F3;F1,F2) ≥ MI(F3;F1). Hence,
combining previous 2 results yields: MI(F3;C|F1,F2) ≤ MI(F3;C|F1). Because feature F2 is selected
before F3 we have: MI(F2;C|F1) > MI(F3;C|F1). Finally, we obtain that MI(F3;C|F1,F2) < MI(F2;C|F1).
Similar expansions for MI(F2;C,F1) and MI(F4;C,F1,F2,F3) as in Equations (31) and (32), enable us to
prove that MI(F2;C|F1) < MI(F1;C) and MI(F4;C|F1,F2,F3) < MI(F3;C|F1,F2) respectively. Hence, we
can conclude that the decreasing returns holds.

Now let us prove the result for any ‘k’ in general and regardless whether Fk is a parent node or a child
node. Apply a similar expansion as in Equation (31).

MI(Fk;C,F1, F2, ...Fk−1) = MI(Fk;F1, F2, ...Fk−1) +MI(Fk;C|F1, F2, ...Fk−1) (33)

= MI(Fk;F1, F2, ...Fk−2) +MI(Fk;C|F1, F2, ...Fk−2)

+MI(Fk;Fk−1|C,F1, ...Fk−2) (34)

Comparing Equations (33) and (34), we have that: MI(Fk;F1,F2,...Fk−1) ≥ MI(Fk;F1,F2,...Fk−2).
Moreover, in Equation (34): MI(Fk;Fk−1|C,F1,...Fk−2) = 0, due to the fact that parent and child
nodes are independent when conditioned on C. Hence, we conclude that MI(Fk;C|F1,F2,...Fk−1) ≤
MI(Fk;C|F1,F2,...Fk−2). Because Fk−1 was selected before Fk, we have that MI(Fk;C|F1,F2,...Fk−2) <
MI(Fk−1;C|F1,F2,...Fk−2). Hence, finally this yields what is to be proven: MI(Fk;C|F1,F2,...Fk−1) <

MI(Fk−1;C|F1,F2,...Fk−2). Note that we did not need to specify whether Fk is a parent or a child node,
we only needed that one node Fk or Fk−1 was a parent node and the other a child node.

Because, the proof is independent regardless Fk is a child or a parent node, we obtain following
corollary of Lemma 4.2.
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Corollary 4.3. Suppose that the order in which features are selected by the SFS is: firstly F1 subsequently
F2 next F3 until Fn. Assume that the odd selected features, i.e. F1, F3, F5 ..., are children of C and the
even selected features, i.e. F2, F4, F6 ..., are parents of C, then the decreasing returns behavior holds:
MI(F1;C) > MI(F2;C|F1) > MI(F3;C|F1,F2) > ... > MI(Fn;C|F1,F2,...Fn−1).

We performed an experiment to verify whether it is plausible that parent and child nodes may become
selected alternately in the SFS, as Lemma 4.2 and Corollary 4.3 require. We generated 10,000 Bayesian
networks with 2 parent and 2 child nodes as shown in Figure 6. This network contains 10 degrees of
freedom. The following probabilities can be chosen freely: the prior probabilities p(f1=0) and p(f3=0),
the conditional probability p(c=0|f1,f3) for all 4 combinations of F1 and F3, p(f2=0|c) for the 2 values of
C and p(f4=0|c) for the 2 values of C. In each of the 10,000 networks, probabilities were drawn following
a uniform distribution within [0,1]. It can be shown that randomly assigning conditional distributions
in this way, this will result almost always in joint distributions that are faithful to the directed acyclic
graph (DAG). This means that no conditional independencies are present in the joint distribution that
are not entailed by the DAG based on the Markov condition, see e.g., [20] on page 99. Next, the SFS
was applied to each of the 10,000 networks. In 943 out of 10,000 cases, a parent node was selected first
and parent and child nodes were selected alternately. In 1,125 out of 10,000 cases, a child node was
selected first and parent and child nodes were selected alternately. In Table 2 we show the probabilities
of a Bayesian network in which first a parent node was selected and the parent and child nodes were
selected alternately. The evolution of the mutual information, when the SFS is applied to the Bayesian
network with probabilities shown in Table 2, is shown in Figure 7.

4.3. Selection Transitions

We show that Lemmas 4.1 and 4.2 and Corollary 4.3 can be put in a more global theory of allowed
selection transitions between features to achieve a decrease in return. When the target variable has both
parent and child features, four elementary selection transitions can occur as shown in Figure 8.

Lemma 4.4. Suppose that feature Fk is just selected after feature Fk−1 in the SFS. Assume a network
with child and parent variables of the target variable C as shown in Figure 8 then a decrease in return
must hold, i.e. MI(Fk;C|F1,F2,...Fk−1) < MI(Fk−1;C|F1,F2,...Fk−2), in: case 1) Fk−1 is a child node and
Fk is a child node, in case 2) Fk−1 is a child node and Fk is a parent node and case 3) Fk−1 is a parent
node and Fk is a child node.

Proof. Case (1) Fk−1 is a child node and Fk is a child node. The proof proceeds in a similar way as in
Lemma 4.2 by starting from the same expansions as in Equations (33) and (34). If Fk and Fk−1 are both
child nodes then it can be proven that MI(Fk;Fk−1|C,F1,...Fk−2) = 0, holds, even in the case when there
are parent nodes. This is shown in Appendix C. For the rest, the proof proceeds the same as in
Lemma 4.2.
Case (2) Fk−1 is a child node and Fk is a parent node. This result was already obtained at the end of the
proof of Lemma 4.2 starting from Equations (33) and (34).
Case (3) Fk−1 is a parent node and Fk is a child node. This result was already obtained at the end of the
proof of Lemma 4.2 starting from Equations (33) and (34).
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Table 2. Probabilities for the network shown in Figure 6. These probabilities were obtained
from one of the 10,000 Bayesian networks that were generated randomly. Applying the
SFS to the network with these probabilities leads to the selection of parent and child
nodes alternately.

F1 F2 F3 F4 C p(.)

0 p(F1) = 0.6596

1 p(F1) = 0.3404

0 p(F3) = 0.5186

1 p(F3) = 0.4814

0 0 0 p(C|F1,F3) = 0.9730

0 0 1 p(C|F1,F3) = 0.0270

1 0 0 p(C|F1,F3) = 0.6490

1 0 1 p(C|F1,F3) = 0.3510

0 1 0 p(C|F1,F3) = 0.8003

0 1 1 p(C|F1,F3) = 0.1997

1 1 0 p(C|F1,F3) = 0.4538

1 1 1 p(C|F1,F3) = 0.5462

0 0 p(F2|C) = 0.4324

1 0 p(F2|C) = 0.5676

0 1 p(F2|C) = 0.8253

1 1 p(F2|C) = 0.1747

0 0 p(F4|C) = 0.0835

1 0 p(F4|C) = 0.9165

0 1 p(F4|C) = 0.1332

1 1 p(F4|C) = 0.8668

Let us remark that case (4) does not necessarily exclude a decreasing return. This occurs e.g., when
the probability distribution is not faithful to the directed acyclic graph (DAG). In that case it occurs
that MI(Fk;Fk−1|C,F1,...Fk−2) = 0 and hence the decreasing returns holds. This independence is not
entailed by the DAG based on the Markov condition [20]. Now let us reinterpret Lemmas 4.1 and 4.2
and Corollary 4.3 in light of Lemma 4.4. Lemma 4.1 only consists of the selection transitions of case 1
and hence the decreasing returns is guaranteed. Lemma 4.2 starts with a parent, next a child is selected
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Figure 7. Evolution of the mutual information in function of the number of features selected
with the SFS. A Bayesian network according to Figure 6 was created with the probabilities
set to values listed in Table 2. The conditional mutual information at 1 feature is MI(F1;C) at
2 features MI(F2;C|F1),... and finally at 4 features MI(F4;C|F1,F2,F3). Lemma 4.2 predicts
that the conditional mutual information decreases with an increasing number of features
selected. This implies that the mutual information is concave in function of the number of
features selected.
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Figure 8. Four elementary selection transitions in the SFS. Fk−1 is the feature selected at
step k-1, Fk is the feature selected at step k. Case 1: Fk−1 is a child and Fk is a child.
Case 2: Fk−1 is a child and Fk is a parent. Case 3: Fk−1 is a parent and Fk is a child. Case 4:
Fk−1 is a parent and Fk is a parent.
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(i.e., a case 3 transition), next a parent is selected (i.e., a case 2 transition) and so on. Hence, case 3
and case 2 transitions are alternated. Corollary 4.3, starts with a child, next a parent is selected (i.e., a
case 2 transition), next a child is selected (i.e., a case 3 transition) and so on. Hence case 2 and case 3
transitions are alternated. Let us remark that also other combinations of cases are possible to guarantee
the decreasing returns behavior. A case 3 (parent → child) transition is also allowed to be followed by a
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case 1 transition (child → child), and a case 1 (child → child) transition is allowed to be followed by a
case 2 (child → parent) transition. Finally, we remark that the increasing returns behavior illustrated by
the XOR hypercube in Section 4.1 is an example of case 4 transitions.

4.4. Relevance-redundancy Criteria

To avoid the estimation of mutual information in high-dimensional spaces, Battiti [11] proposed a
SFS criterion that selects in each iteration the feature with the largest marginal relevance penalized with
a redundancy term. Suppose that the set of features selected thus far is S and that Fi is a candidate feature
to be selected, then the feature Fi is selected for which following criterion is maximal.

Crit = MI(Fi;C)− β
∑
Fs∈S

α(Fi, Fs, C)MI(Fi;Fs) (35)

In Battiti’s work β is a user defined parameter and α (Fi,Fs,C) = 1. Similar criteria were proposed in [23]
(for which α (Fi,Fs,C) = MI(Fs;C)

H(Fs)
), in [24] (for which α (Fi,Fs,C) = 1 and β is adaptively chosen as 1/|S|)

and in [25] (for which α (Fi,Fs,C) = 1/min{H(Fi),H(Fs)} and β is adaptively chosen as 1/|S|). All these
criteria will not be informative for the examples shown in Sections 3.1, 3.2 and 3.3. These criteria will
return for each feature in Equation (35) Crit = 0, because MI(Fi;C) = 0 and MI(Fi;Fs) = 0. Therefore,
these criteria may be tempted to include no features at all, despite the fact that all features are strongly
relevant. For the 7-5-3 XOR cube all criteria will select the features in the same order: first F1, then F2

and then F3. This is due to the fact that F1 individually contains more information than F2 about the target
variable, see Table 1. Also F2 contains more information than F3 about the target variable, see Table 1.
Moreover for the 7-5-3 XOR cube all variables are independent, hence MI(Fi;Fs) = 0. However, from the
criterion values Crit = MI(F1;C), then Crit = MI(F2;C) and finally Crit = MI(F3;C) the increasing returns
cannot be observed. Another criterion that uses lower-dimensional conditional mutual information to
select features was proposed in [26]. This selection algorithm proceeds in 2 stages:

Fs1 = argmax
1≤i≤n

MI(Fi;C) (36)

Fsk = argmax
j

{
min

1≤i≤k−1
MI(Fj;C|Fsi)

}
(37)

In the first step in Equation (36) the feature which bears individually most information about the target
variable is selected, i.e., Fs1. Next, in the k’th step of the second stage, i.e., Equation (37), the feature
is selected which contributes most, conditioned on the set of already selected features Fs1, Fs2, ...Fsk−1.
The contribution for feature Fj is estimated conservatively as min1≤i≤k−1 MI(Fj;C|Fsi). This algorithm
will be able to detect the increasing returns in the XOR problem in case there are only 2 features.
However, it would fail to detect the strongly relevant features in case there are at least 3 features in the
XOR problem. To overcome the limitations of the lower-dimensional mutual information estimators,
higher-dimensional mutual information estimators for classification purposes were proposed [21,22,27,28].
In [27] the authors proposed a density-based method: the probability density is estimated by means of
Parzen windows and the mutual information is estimated from this probability density estimate. In [21,22]
the mutual information was estimated based on pair-wise distances between data points. A similar
estimator can be used for regression purposes [29]. In [28] the mutual information is estimated also
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based on distances between data points, but this time from a minimal spanning tree that is constructed
from the data points.

4.5. Importance of Increasing and Decreasing Returns

The importance of the decreasing and increasing returns lies in that we can compute an upper bound
and a lower bound on the probability of error, without having to compute the mutual information for
higher dimensions. Suppose that the mutual information has been computed up to a subset of n1 features
Fn1, with mutual information MI(Fn1;C). Suppose that the last increment in going from a subset of n1−1

features Fn1−1 to Fn1 equals ∆MI = MI(Fn1;C)-MI(Fn1−1;C). For the mutual information of a subset of
n2 features Fn2, with Fn2 ⊃ Fn1, it holds, under the decreasing returns, that:

MI(Fn1;C) ≤
MI(Fn2;C) ≤ MI(Fn1;C) + (|n2| − |n1|)∆MI (38)

and under the increasing returns that:

MI(Fn2;C) ≥ MI(Fn1;C) + (|n2| − |n1|)∆MI (39)

For the example shown in Figure 5, it can be seen that ∆MI (the conditional mutual information) at 4
features is representative for the conditional mutual information at 5, 6 and 7 features. The conditional
mutual information at 8 features is representative for the ones at 9 and 10 features. From the inequalities
in (38) and (39) one can constrain the probability of error that can be achieved by observing the
(|n2|-|n1|) additional features. This can be obtained by exploiting upper and lower bounds that were
established for the equivocation H(C|F). These upper and lower bounds can be restated in terms of the
mutual information. In Figure 9 the upper bounds are restated in terms of the mutual information as
follows for the Hellman-Raviv upper bound [30]:

(H(C)−MI(F ;C))

2
≥ Pe (40)

and for the Kovalevsky upper bound [31]:

H(C)−MI(F ;C) ≥ (41)

log2(i) + i(i+ 1)(log2
i+1
i
)(Pe − i−1

i
)

with ‘i’ an integer such that (i − 1)/i ≤ Pe ≤ i/(i + 1) and ‘i’ smaller than the number of classes |C|.
Let us remark that some of the bounds on the probability of error have been established independently
by different researchers. The Hellman-Raviv upper bound has also been found in [32]. The Kovalevsky
upper bound on the probability of error has been proposed at least 3 times: first in [31,32] and later
in [33]; see also the discussion in [34]. The lower bound in Figure 9 is solved using the Fano lower
bound [12,35]:

H(C)−MI(F ;C) ≤ H(Pe) + Pelog2(| C | −1) (42)

Due to (38) it must be that the probability of error corresponding with Fn2 falls within the white area
under the decreasing returns, and, due to (39), within the dark grey area under the increasing returns.
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Figure 9. Bounds on the probability of error. For subset Fn1 the mutual information equals
MI(Fn1;C), for which the probability of error falls between the Fano lower bound and the
Kovalevsky upper bound. The white area represents the possible combinations of probability
of error and mutual information for the decreasing returns in the selection of (|n2|-|n1|)
additional features, because MI(Fn2;C) ≤ MI(Fn1;C) + (|n2|-|n1|)∆MI. The grey area is the
possible area for the increasing returns. The hatched area is not possible, because adding
features can only increase the information. This figure illustrates the case when the number
of classes |C| is equal to 8 and when all prior probabilities of the classes are equal.
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5. Decreasing Losses and Increasing Losses

We show that the increasing returns and the decreasing returns for the SFS has a comparable
implication in the sequential backward search (SBS): the comparable behavior for the increasing returns
is the decreasing losses in the SBS, the comparable behavior for the decreasing returns is the increasing
losses in the SBS.

5.1. Decreasing Losses

In the SBS, the feature, for which the information loss is minimal, is removed in every iteration.
Starting from the example in Figure 3, one computes the 3 information losses: MI(F1,F2,F3;C) −
MI(F2,F3;C) = MI(F1;C|F2,F3), MI(F2;C|F1,F3) and MI(F3;C|F1,F2). One then removes the feature Fi

for which MI(Fi;C|Fj ,Fk) is minimal. We show the computations of the mutual information for the
7-5-3 XOR cube in Table 3. In the SBS for this example, we first remove F3, because MI(F3;C|F1,F2) is
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Table 3. 7-5-3 XOR Cube. Mutual Information for the SBS.

Mutual Information value(bit)

MI(F1,F2,F3;C) ≈ 0,9999

MI(F1;C|F2,F3) ≈ 0,9852

MI(F2;C|F1,F3) ≈ 0,9710

MI(F3;C|F1,F2) ≈ 0,9183

MI(F1;C|F2) ≈ 8,007.10−2

MI(F2;C|F1) ≈ 7,850.10−2

MI(F1;C) ≈ 3,143.10−3

the smallest information loss for the set of 3 features. Next F2 is removed, because MI(F2;C|F1) is the
smallest for sets of 2 features and, finally, feature F1 remains. Instead of the increasing returns in the SFS,
we observe now ‘decreasing losses’ in the SBS: MI(F3;C|F1,F2) ≈ 0,9183 > MI(F2;C|F1) ≈ 7,850.10−2 >

MI(F1;C) ≈ 3,143.10−3. The 7-5-3 XOR cube also illustrates that, for this type of problems, the SBS
can outperform the SFS. The initial small increments in the SFS are close to 0 (in the order of 10−3):
for small values, it may be tempting to stop the SFS too early. In XOR-type problems, when the number
of values the features can take are even, e.g., in the 8-8-8 XOR cube, the situation is even worse. All
increments in the SFS are equal to 0, except only in the last iteration of the SFS, a large increment in
the mutual information is observed. In the SBS, this problem is not encountered. In the first iteration
of the SBS, a large information loss is observed immediately (≈ 0,9183). One concludes immediately
correctly that one should not remove any features at all.

5.2. Increasing Losses

Similar as in the case of decreasing returns in the SFS, it can be questioned under which conditions
‘increasing losses’ can be observed. Suppose that, in our SBS example, Fy is removed before Fx. We
can use the 2 expansions of (22). When Fy is removed before Fx, it must be that: MI(Fy;C|S,Fx) <
MI(Fx;C|S,Fy). Combining this inequality with (22), it is clear that: MI(Fx;C|S) > MI(Fy;C|S). Hence,
under the condition that MI(Fy;C|S) ≥ MI(Fy;C|S,Fx) one obtains an ‘increasing losses’ behavior:
MI(Fx;C|S) > MI(Fy;C|S,Fx).

Lemmas comparable to Lemma 4.1 and Lemma 4.2 are obtained for the SBS. For Lemma 4.1 this
leads in the SBS to the following lemma.

Lemma 5.1. Suppose that the order in which features are removed by the SBS is: firstly Fn subsequently
Fn−1 next Fn−2 until F1. If all features are conditionally independent given the class variable, i.e.,
p(F1,F2, ...Fn|C) =

∏n
i=1 p(Fi|C), then the increasing losses behavior holds: MI(Fn;C|F1,F2,...Fn−1) <

MI(Fn−1;C|F1,F2,...Fn−2) < MI(Fn−2;C|F1,F2,...Fn−3) < ... < MI(F2;C|F1) < MI(F1;C).
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The proof proceeds in a similar way as in Lemma 4.1, but starts from a different mutual information
than Equation (26).

MI(Fk−1;F1, F2, ...Fk−2, Fk, C) = MI(Fk−1;F1, F2, ...Fk−2, C) +MI(Fk−1;Fk|C,F1, F2, ...Fk−2)

(43)

Similar as in Lemma 4.1, it holds that: MI(Fk−1;Fk|C,F1,F2,...Fk−2) = 0. Further expanding of the left
and the right hand sides of Equation (43) results in:

MI(Fk−1;F1, F2, ...Fk−2, Fk, C) = MI(Fk−1;F1, F2, ...Fk−2, C) (44)

MI(Fk−1;F1, F2, ...Fk−2, Fk) +MI(Fk−1;C|F1, F2, ...Fk−2, Fk) = MI(Fk−1;F1, F2, ...Fk−2)

+ MI(Fk−1;C|F1, F2, ...Fk−2)

(45)

Because MI(Fk−1;F1,F2,...Fk−2,Fk) ≥ MI(Fk−1;F1,F2,...Fk−2) in Equation (45), we see that
MI(Fk−1;C|F1,F2,...Fk−2,Fk) ≤ MI(Fk−1;C|F1,F2,...Fk−2). But, Fk was removed before Fk−1, i.e.,
MI(Fk;C|F1,F2,...Fk−1) < MI(Fk−1;C|F1,F2,...Fk−2,Fk), from which we obtain what needed to be proven:
MI(Fk;C|F1,F2,...Fk−1) < MI(Fk−1;C|F1,F2,...Fk−2).

We generated a Bayesian network as in Figure 4 with the free parameters randomly drawn following
a uniform distribution within [0,1]. According to Lemma 5.1, we should find the increasing losses
behavior if we apply the SBS to this network. The result of the SBS is shown in Figure 10.

Similar to Lemma 4.2 when there are both child and parent nodes this leads in the SBS to the
following lemma.

Lemma 5.2. Suppose that the order in which features are removed by the SBS is: firstly Fn subsequently
Fn−1 next Fn−2 until F1. Assume that odd removed features, Fn−1, Fn−3,...F3, F1, are parents of C and
even removed features, Fn, Fn−2,...F4, F2, are children of C, then the increasing losses behavior holds:
MI(Fn;C|F1,F2,...Fn−1) < MI(Fn−1;C|F1,F2,...Fn−2) < MI(Fn−2;C|F1,F2,...Fn−3) < ... <

MI(F2;C|F1) < MI(F1;C).

Proof. The proof proceeds similar as in Lemma 4.2, but starts from a slightly different mutual
information then Equation (33).

MI(Fk−1;C,F1, F2, ...Fk−2, Fk) = MI(Fk−1;F1, F2, ...Fk−2, Fk) +MI(Fk−1;C|F1, F2, ...Fk−2, Fk)

(46)

= MI(Fk−1;F1, F2, ...Fk−2) +MI(Fk−1;C|F1, F2, ...Fk−2)

+MI(Fk−1;Fk|C,F1, ...Fk−2) (47)

We do not need to specify that Fk is a parent or a child node, we only need that
one node Fk or Fk−1 is a parent node and the other a child node. Comparing Equations
(46) and (47), we have that: MI(Fk−1;F1,F2,...Fk−2,Fk) ≥ MI(Fk−1;F1,F2,...Fk−2). Moreover in
Equation (47) MI(Fk−1;Fk|C,F1,...Fk−2) = 0 due to the fact that parent and child nodes are



Entropy 2010, 12 2165

independent when conditioned on C. Hence, we conclude that MI(Fk−1;C|F1,F2,...Fk−2,Fk) ≤
MI(Fk−1;C|F1,F2,...Fk−2). Because Fk was removed before Fk−1, we have that MI(Fk;C|F1,F2,...Fk−1)
< MI(Fk−1;C|F1,F2,...Fk−2,Fk). Hence, finally this yields what is to be proven: MI(Fk;C|F1,F2,...Fk−1)
< MI(Fk−1;C|F1,F2,...Fk−2).

Figure 10. Evolution of the mutual information in function of the number of features
selected with the SBS. A Bayesian network according to Figure 4 was created with
probability p(c=0), conditional probabilities p(fi=0|c=0) and p(fi=0|c=1) drawn randomly
from a uniform distribution within [0,1]. The conditional mutual information for 10
features is MI(F10;C|F1,F2,...F9), for 9 features MI(F9;C|F1,F2,...F8),... and, finally for 1
feature MI(F1;C). Lemma 5.1 predicts that the conditional mutual information increases with
increasing number of features removed. This implies that the mutual information is concave
in function of the number of features selected.
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Similar to Corollary 4.3, we obtain following corollary in the SBS.

Corollary 5.3. Suppose that the order in which features are removed by the SBS is: firstly Fn

subsequently Fn−1 next Fn−2 until F1. Assume that odd removed features, Fn−1, Fn−3,...F3, F1, are
children of C and even removed features, Fn, Fn−2,...F4, F2, are parents of C, then the increasing losses
behavior holds: MI(Fn;C|F1,F2,...Fn−1) < MI(Fn−1;C|F1,F2,...Fn−2) < MI(Fn−2;C|F1,F2,...Fn−3) < ... <
MI(F2;C|F1) < MI(F1;C).

Finally, we can relate Lemmas 5.1 and 5.2 and Corollary 5.3 to the allowed selection transitions of
Section 4.3.

Lemma 5.4. Suppose that feature Fk−1 is just removed after feature Fk has been removed in the SBS.
Assume a network with child and parent variables of the target variable C as shown in Figure 8 then an
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increase in loss must hold, i.e. MI(Fk;C|F1,F2,...Fk−1) < MI(Fk−1;C|F1,F2,...Fk−2), in: case 1) Fk−1 is
a child node and Fk is a child node, in case 2) Fk−1 is a child node and Fk is a parent node and case 3)
Fk−1 is a parent node and Fk is a child node.

Proof. The proof is obtained starting from the expansions in Equations (46) and (47). It holds for all 3
cases that MI(Fk−1;Fk|C,F1,...Fk−2) = 0, then the proof proceeds similar as in Lemma 5.2.

Interpreting Figure 8 now as ‘Fk−1 is removed just after Fk has been removed’, following
combinations can be made to guarantee an increasing losses behavior. Case 1 (child → child) can
be followed by case 1 (child → child) and by case 3 (child → parent). Case 2 (parent → child) can
be followed by case 1 (child → child) or by case 3 (child → parent). Case 3 (child → parent) can be
followed by case 2 (parent → child).

6. Conclusions

This work contributes to a more thorough understanding of the evolution of the mutual information
in function of the number of features that are selected in the sequential forward search (SFS) and in
the sequential backward search (SBS) strategies. Conditioning on additional features can increase the
mutual information about the target variable for discrete features (binary as well as non-binary) and
continuous features. Increments in mutual information can become larger and larger in the sequential
forward search, a behavior we described as ‘increasing returns’. An example of increasing returns was
constructed using a (2n+1)−(2n−1)−...−5−3 XOR hypercube. It was shown that, when conditioning
on additional variables reduces information about the target variable, then this is a sufficient condition for
the decreasing returns to hold in the sequential forward search. We provided examples of dependencies
between features and the target variable from which the decreasing returns behavior could be proven to
occur. If features are conditionally independent given the target variable, the decreasing returns behavior
is proven to be guaranteed. Even in the case of more complex dependencies, when there are both child
and parent variables, the decreasing returns was proven to occur when parent and child variables would
be selected alternately by the SFS. The analogous behaviors in the mutual information based SBS are:
‘decreasing losses’ and ‘increasing losses’. Similar to the SFS, if conditioning on additional variables
reduces information about the target variable, then this is a sufficient condition for the increasing losses
to hold in the SBS. If the features are conditionally independent given the target variable, the increasing
losses behavior is proven to occur. If parent and child variables would be removed alternately by the
SBS, the increasing losses behavior is also proven to occur. Lemmas were supported by
experimental results.
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Appendix A

Decompose MI(F1,F3;F2,F4 |C) = 0 in 2 steps as follows:

MI(F1, F3;F2, F4|C) = MI(F1;F2, F4|C) +MI(F3;F2, F4|F1, C)

= MI(F1;F2, F4|C) +MI(F3;F2|F1, C) +MI(F3;F4|F1, F2, C) = 0

Given that the MI ≥ 0, it must be that every term in the last expression is equal to 0, hence
MI(F3;F2|F1,C) = 0.

Appendix B

Given that all features are class conditional independent p(F1,F2, ...Fn|C) =
∏n

i=1 p(Fi|C), we can
show that: MI(Fk;Fk−1|C,F1,...Fk−2) = 0.

MI(Fk;Fk−1|C,F1, ...Fk−2)

=
∑

f1,f2,...fk,c

p(f1, f2, ...fk, c)log

(
p(fk, fk−1|c, f1, ...fk−2)

p(fk|c, f1, ...fk−2).p(fk−1|c, f1, ...fk−2)

)
(48)

It can be shown that the fraction within the logarithm is always equal to 1.

p(fk, fk−1|c, f1, ...fk−2)

p(fk|c, f1, ...fk−2).p(fk−1|c, f1, ...fk−2)

=
p(f1, f2, ...fk, c).p(f1, f2, ...fk−2, c)

p(f1, f2, ...fk−2, fk, c).p(f1, f2, ...fk−1, c)
(49)

=

(
p(f1|c).p(f2|c)...p(fk|c).p(c)

)
.
(
p(f1|c).p(f2|c)...p(fk−2|c).p(c)

)
(
p(f1|c).p(f2|c)...p(fk−2|c).p(fk|c).p(c)

)
.
(
p(f1|c).p(f2|c)...p(fk−1|c).p(c)

) (50)

=
p(fk−1|c)

1
.

1

p(fk−1|c)
(51)

= 1 (52)

This implies that the conditional mutual information must be 0.

Appendix C

Denote the set of the first k selected features by F1:k = {F1, F2, ...Fk}. Denote the ‘i’th selected parent
of C within F1:k by pai(c) and the ‘j’th selected child of C within F1:k by chj(c). Denote the set of all
parents of C within F1:k by Fpa(c) =

∪#parents
i=1 pai(c) and the set of all children of C within F1:k

by Fch(c) =
∪#children

j=1 chj(c). We want to show that if Fk and Fk−1 are children of C then
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MI(Fk;Fk−1|C,F1,...Fk−2) = 0. The definition of MI(Fk;Fk−1|C,F1,...Fk−2) is equal to Equation (48).
Starting from the term within the logarithm, Equation (49):

p(f1, f2, ...fk, c).p(f1, f2, ...fk−2, c)

p(f1, f2, ...fk−2, fk, c).p(f1, f2, ...fk−1, c)
(53)

The four factors in Equation (53) can be factorized as:

p(f1, f2, ...fk, c) =
( ∏

chj(c)
∈Fch(c)\{Fk−1,Fk}

p(chj(c)|c)
)
.p(fk−1|c).p(fk|c).p(c|Fpa(c)).

∏
pai(c)∈Fpa(c)

pai(c)

(54)

p(f1, f2, ...fk−2, c) =
( ∏

chj(c)∈Fch(c)\{Fk−1,Fk}

p(chj(c)|c)
)
.p(c|Fpa(c)).

∏
pai(c)∈Fpa(c)

pai(c) (55)

p(f1, f2, ...fk−2, fk, c) =
( ∏

chj(c)∈Fch(c)\{Fk−1,Fk}

p(chj(c)|c)
)
.p(fk|c).p(c|Fpa(c)).

∏
pai(c)∈Fpa(c)

pai(c) (56)

p(f1, f2, ...fk−1, c) =
( ∏

chj(c)∈Fch(c)\{Fk−1,Fk}

p(chj(c)|c)
)
.p(fk−1|c).p(c|Fpa(c)).

∏
pai(c)∈Fpa(c)

pai(c) (57)

The set of all children of C with Fk−1 and Fk excluded was written in previous equations as the set
difference between Fch and the set { Fk−1,Fk }: Fch(c) \ {Fk−1,Fk}. We notice that all probabilities in
Equations (54) to (57) have following factor in common:( ∏

chj(c)∈Fch(c)\{Fk−1,Fk}

p(chj(c)|c)
)
.p(c|Fpa(c)).

∏
pai(c)∈Fpa(c)

pai(c) (58)

After filling out Equations (54) to (57) in Equation (53) and removing the common factor of Equation
(58), we obtain: (

p(fk−1|c).p(fk|c)
)(

p(fk|c)
)
.
(
p(fk−1|c)

) = 1 (59)

This implies that the conditional mutual information MI(Fk;Fk−1|C,F1,...Fk−2) must be 0.
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