
Entropy 2010, 12, 2171-2185; doi:10.3390/e12102171 

 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Article 

Incorporating Spatial Structures in Ecological Inference:  

An Information Theory Approach 

Rosa Bernardini Papalia 

Department of Statistics, University of Bologna, Via Belle Arti 41, Bologna, Italy; 

E-Mail: rossella.bernardini@unibo.it 

 

Received: 30 August 2010; in revised form: 12 October 2010 / Accepted: 12 October 2010 /  

Published: 14 October 2010  

 

Abstract: This paper introduces an Information Theory-based method for modeling 

economic aggregates and estimating their sub-group (sub-area) decomposition when no 

individual or sub-group data are available. This method offers a flexible framework for 

modeling the underlying variation in sub-group indicators, by addressing the spatial 

dependency problem. A basic ecological inference problem, which allows for spatial 

heterogeneity and dependence, is presented with the aim of first estimating the model at the 

aggregate level, and then of employing the estimated coefficients to obtain the sub-group 

level indicators. 
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1. Introduction  

This paper introduces an Information Theory (IT)-based method for modeling economic aggregates 

and estimating their sub-group (sub-area) decomposition when no individual or sub-group data are 

available. The proposed approach offers a tractable framework for modeling the underlying variation in 

sub-group indicators. A basic ecological inference problem which allows for spatial heterogeneity and 

dependence is presented with the aim of estimating the model at the aggregate level. The estimated 

coefficients are then employed to obtain the sub-group level indicators.  
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The latent sub-group indicators may be treated as random coefficients or modeled as a parametric 

function in the unit level model in which the observed aggregate is regressed on the explanatory 

variables both at the group and sub-group level. 

By taking as a point of departure the approach presented in Johnston and Pattie [1] in Judge, Miller 

and Cho [2], and in Bernardini Papalia [3–7], the basic idea is to introduce an estimator based on an 

entropy measure of information which provides an effective and flexible procedure for reconciling 

micro and macro data. The maximum entropy (ME) procedures (Golan, Judge and Robinson, [8]; 

Golan, Judge and Miller, [9,10]; Golan, [11]) allow the possibility of taking into account  

out-of-sample information which can be introduced as additional constraints in the optimization 

program or by specifying particular priors for parameters and errors. A unique optimum solution can 

also be achieved if there are more parameters to be estimated than available moment conditions and the 

problem is ill-posed. If there exists additional non-sample information from theory and/or empirical 

evidence, over that contained in the consistency and adding-up constraints, for the unknown 

probabilities, it may be introduced in the form of known probabilities, by means of the cross-entropy 

formalism (Shannon, [12]; Jaynes, [13]; Kullback, [14]; Levine, [15]).  

The paper is structured as follows. In Section 2.1 an introduction to the typical ecological inference 

problems is presented. Sections 2.2 and 2.3 introduce two alternative approaches to ecological 

modeling that account for spatial heterogeneity and spatial dependence problems, respectively.  

Section 3 provides the formulation of the proposed information theoretic approaches incorporating 

both spatial heterogeneity and dependence. In Section 4, the IT-based disaggregation procedure is 

applied to Italian data. Finally, the last section provides concluding remarks and outlines some 

direction for further research. 

2. Ecological Inference Assuming Heterogeneity and Dependence across Space 

2.1. Theoretical Framework of Ecological Inference 

Ecological inference (EI) is the process of drawing conclusions about individual level behaviour 

from aggregate data, when no individual data are available. Situations where the only available data are 

aggregated at a level other than the level of interest are quite common in many application fields. This 

is the typical setting for Ecological Inference (Freedman, Klein, Ostland and Roberts, [16]; Schuessler, 

[17]; King, Rosen and Tanner, [18]), for Cross-level Inference (Achen and Shively, [19]; Cho, [20]) 

for Small Area Estimation (Rao, [21]), or for disaggregation methods (Barker and  

Pesaran, [22]). The basic idea is that in order to study the behavior of the individuals (or sub-groups of 

individuals), a microeconomic analysis ought to be carried out using fairly localized individual data, 

and data which are aggregated by areal units may be used in order to investigate the behavior of the 

individuals comprising those units. In this paper we specifically refer to the process of drawing 

conclusions about individual level behaviour from aggregate data, when no individual data are 

available or when individual data are incomplete. 

In this inferential context, one problem is that many different possible relationships at the individual 

(or subgroup) level can generate the same observations at the aggregate (or group) level (King, [23]). 

In the absence of individual (or subgroup) level measurement (in the form of survey data), such 
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information need to be inferred. Estimates of the disaggregated values for the variable of interest can 

be inferred from aggregate data by using appropriate statistical techniques. However, in many 

situations, given that micro-data of interest are not available, the accuracy of any predicted value 

cannot be verified.  

The traditional approach to ecological inference is based on the homogeneity across space 

hypothesis which assumes constancy of parameters across the disaggregate spatial units. This 

assumption is rarely tenable, since the aggregation process usually generates macro-level observations 

across which the parameters describing individuals may vary (Cho, [20]). It is recognized that 

observations at an aggregate level of analysis do not necessarily provide useful information about 

lower levels of analysis, particularly when spatial heterogeneity is present. Moreover, the objective of 

recovering disaggregate information from aggregate data may produce ―ill-posed‖ or ―undetermined‖ 

inverse problems given that there are more unknowns than data points. In EI it is also important to deal 

with the ―modifiable area unit problem‖ which refers to (i) the scale effect or aggregation effects, and 

(ii) the grouping effect or zoning effect. In the first case the resulting aggregation bias may produce 

different results when data (or individuals) are grouped into increasingly larger areal units. In the 

second case, the resulting specification bias is connected to the variability in results due to alternative 

formulations of the areal units leading to differences in unit shape at the same or similar scales and 

arises when there is a non linear relationship that is not properly accounted for in the specification of 

the aggregated model.  

Spatial structures are generally associated to: (i) Absolute location effects that refer to the impact—

for each unit—of being located at a particular point in space, and to (ii) Relative location effects that 

consider relevant the position of an unit relative to other units. 

The UNOBSERVED SPATIAL HETEROGENEITY (absolute location effects) can be introduced 

by assuming: (i) slope heterogeneity across spatial units, implying that parameters are not 

homogeneous over space but vary over different geographical locations; (ii) the presence of  

cross-sectional correlation due to the presence of some common immeasurable or omitted factors. 

The SPATIAL DEPENDENCE (relative location effects) is traditionally introduced by 

incorporating: a spatial autoregressive process in the error term, and/or a spatially lagged dependent 

variable. A Spatial Error Model specification assumes that the spatial autocorrelation is modeled by a 

spatial autoregressive process in the error terms. It follows that: spatial effects are assumed to be 

identical within each unit, but all the units are still interacting spatially through a spatial weight matrix. 

The presence of spatial dependence is then associated with random shocks (due to the joint effect of 

misspecification, omitted variables, and spatial autocorrelation). In alternative, a Spatial 

Autoregressive Model specification, (Spatial Lag Model) assumes that all spatial dependence effects 

are captured by the lagged term. The spatial autocorrelation is then modeled by including a spatially 

lagged dependent variable. Global and local measures of spatial autocorrelation are computed to 

determine whether the data exhibit spatial dependence and a series of test statistics based on the 

Lagrange Multiplier (LM) or Rao Score (RS) principle are used to determine whether the variables in 

the model sufficiently capture the spatial dependence in the data. If the variables do not fully model the 

dependence, the diagnostics indicate whether the researcher should estimate a model with a spatially 

lagged dependent variable, a spatially lagged error term, or both. The LM/RS principle can also be 
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extended to more complex spatial alternatives, such as higher order processes, spatial error components 

and direct representation models, and to probit models. Paralleling and complementing the theoretical 

motivation may represent a useful guide for modelling the spatial dependence. 

The substantive implications of properly modelling spatial heterogeneity and dependence are linked 

with methodological implications. The estimation of models incorporating spatial heterogeneity poses 

both identification and collinearity problems (due to the correlation between unobserved 

heterogeneity—individual specific effects—and explanatory variables). Regarding spatial dependency. 

The estimation of spatial lag and spatial error models poses: identification problems, 

endogeneity/collinearity problems; and the incidental parameter problem. As a consequence: the 

standard estimation procedures can produce biased parameter estimates, unbiased but inefficient 

parameter estimates, biased estimates of the SE(s). Consistent estimates may be obtained for both of 

these specifications using: a combination of Feasible Generalized Least Squares (F-GLS) and 

Maximum Likelihood estimation (Anselin, [24]; Smirnov and Anselin, [25]; Kelejian and  

Prucha, [26]; Lee, [27,28]; Bell and Bockstael, [29]), two-stage estimation procedures (Zellner, [30]), 

the moment conditions for GMM estimation derived by Honoré and Hu [31].  

Developing estimation methods designed to improve both ecological inference and small area 

inference, by combining aggregate and individual-level survey data even in the presence of spatial 

dependency, would seem to be an important and interesting topic for research.  

Hence the distinctive features of this present paper are: (i) the formulation of a generic 

methodological disaggregation framework within which to estimate sub group/ sub regional indicators 

in the presence of spatial structures; (ii) the formulation of an informational-theoretical approach to the 

estimation of economic aggregates or their sub-group/area decomposition, when no individual or  

sub-group data are available, by assuming heterogeneity across space and/or spatial dependence; (iii) 

the empirical application of the said approach to real data. This estimation approach presents the 

advantage of producing consistent estimates in small samples, in the presence of incomplete  

micro-level data as well as in the presence of collinearity and endogeneity problems, without imposing 

strong distributional assumptions.  

As a first task, a functional relationship between the variable to be disaggregated and a set of 

variables/indicators at area level is specified by combining different macro and micro data sources. The 

model at the aggregate level is then estimated and the sub-group level indicators are obtained by 

employing these parameter estimates. The latent sub-group indicators may be treated as random 

coefficients in a regression model. Alternatively, the parameters of an initial model can be modeled as 

functions of a set of covariates in an expansion equation, producing a combined model (Spatial 

Expansion model). In the latter case, the inclusion of the error term in the expansion equation induces 

heteroskedasticity. Finally, different model specifications extended to include spatial effects are also 

introduced with the aim of testing the hypothesis of: (i) parameters homogeneity/heterogeneity;  

(ii) uniform/varying spatial dependence.  

2.2. Ecological Inference and Heterogeneity across Space 

Econometric studies have proposed several solutions to the problem of incorporating spatial 

structures when analyzing economic phenomena. When heterogeneity in parameters is assumed by 
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means of Spatial random coefficients models, a Feasible Generalized Least Squares (FGLS) estimation 

approach is generally used to deal with the induced heteroskedasticity. It is also possible to assume that 

a parameter is homogeneous within spatial subsets of data and heterogeneous across these subsets and 

to specify a Spatial switching regression model which refers to a discrete spatial heterogeneity in 

parameters. By using Spatial Expansion and Geographically Weighted regression models it is possible 

to introduce a continuous spatial heterogeneity in parameters. In the Spatial Expansion model, the 

parameters of an initial model are modeled as functions of a set of covariates in an expansion equation, 

producing a combined model. The inclusion of the error term in the expansion equation induces 

heteroskedasticity which is modeled via FGLS. A Geographically Weighted Regression (GWR) 

approach to Ecological Inference can provide a straightforward solution to the problems associated 

with extreme spatial heterogeneity and autocorrelation (Calvo and Escolar, [32]). This technique 

extends the traditional regression model, by allowing the estimated coefficients to vary from location to 

location and is an alternative to the more common spatial weight matrix approaches used for exploring 

extreme spatial heterogeneity. This method employs distance weights to give more weight in the 

calculation of the spatially varying parameters and includes all observations in an area that is calibrated 

by different bandwidths. It represents a good solution to model the spatial structure when second and 

third-order contiguity entered into the equations. 

The assumption of heterogeneity in functional forms produces biased standard error estimates, while 

the assumption of heterogeneity in error variance produces Heteroskedasticity of error term, unbiased 

but inefficient OLS parameter estimates and biased standard error estimates.  

The approach we follow when incorporating heterogeneity across space in ecological inference 

firstly focuses on the problem of decomposing aggregate indicators for various sub groups/regions of a 

population, by introducing unknown individual-specific effects into the model specification. The 

advantage is to test possible determinants of the variation in the underlying subgroup indicators. 

We start by defining the aggregate indicator for group/region i, yi, as a weighted geometric mean of 

the latent sub group/region indicator ijy  in group/region i:  

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where zij,k (k = 1, K) are the covariates observed at the level of sub group/ sub region j within the 

group/region i, xi,h (h = 1,..H) are the covariates observed only at the level of group/region i, ijα are 

unobserved fixed effects, and ijε  are error terms. 

By substituting Equation (2) into Equation (1), we can obtain the following model: 
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 is a ―composite‖ error term, which is heteroskedastic. 

This model implies some kind of weighted regression, capturing ―distributional effects‖ by using 

data on weights for each group/region. It is important to point out that we assume: (i) unit specific 

coefficients for the sub groups/regions (parameter heterogeneity); (ii) a parametric specification of the 

unobserved spatial effects (spatial heterogeneity) through ijε ‘s, which can be positive or negative.  

Using the estimated coefficients in Equation (3) we can obtain estimates of the unobserved or latent 

sub-regional indicators as follows: 
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2.3. Ecological Inference and Spatial Dependence 

As discussed previously, spatial dependency may occur when the responses to particular variables 

are inherently different across space. On the one hand, spatial dependence may be produced by the 

diffusion of behaviour between neighbouring units. Alternatively, neighbouring units may share similar 

behaviours due simply to the units‘ independent adoptions of the behaviour. If so, the spatial 

dependence observed in data does not reflect a truly spatial process, but merely the geographic 

clustering of the sources of the behaviour in question. Such dependence can be termed attributional 

dependence, as neighbouring units have shared attributes that produce the clustering of behaviours. 

Clearly, determining which process is producing spatial dependence is critical to our substantive 

understanding of the behaviour of interest. 

As proxies for the ignorance of the sources of spatial dependence, statistically significant parameters 

on dummy variables for geographic areas merely indicate that behaviours differ for units in these 

particular areas in contrast to the reference category. Such an approach cannot indicate whether the 

spatial dependence is consistent with diffusion or with the spatial clustering of the behaviour‘s sources. 

Spatial diffusion occurs because units‘ behaviour is directly influenced by the behaviour of 

―neighbouring units.‖ This diffusion effect corresponds to a positive and significant parameter on a 

spatially lagged dependent variable capturing the direct influence between neighbours. In the diffusion 

case, neighbors influence the behavior of their neighbors and vice versa. Conversely, the geographic 

clustering of the sources of the behaviour implies an alternative specification  
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If one is unable to fully model the sources of spatial dependence in the data generating process 

(DGP), the spatial dependence in the error terms between neighboring locations is assumed. This 

spatial error dependence can be modeled via a spatially lagged error term. It is also possible to 

hypothesize that spatial dependence is produced both by the diffusion and by the independent adoption of 

behaviors by neighbors. This joint spatial dependence can be modeled by incorporating both a spatially 

lagged dependent variable and a spatial error term, with proper identifying restrictions imposed. 

In the case of attributional dependence, errors for neighboring observations exhibit simultaneous 

dependence. The simultaneous multidimensional nature of spatial dependence leads to implications for 

inference that are distinct from the time series case. The simultaneous error dependence produce a non-

zero covariance between the error terms at all locations with a covariance declining as the order of 

contiguity increases (Anselin, [24]). This induces heteroskedasticity in the errors which must be 

accounted for in estimation. When there is spatial autocorrelation in cross-sectional data, constraints 

must be imposed on the covariances between observations and generally, there is insufficient 

information in cross-sectional data to estimate each of these covariances. 

In the estimation context of sub groups indicators, assuming the model specification (3), in order to 

take into account the correlation between neighbouring groups/regions (areas), we adopt two 

alternative spatial model specifications: the spatial Lag and spatial error models.  

When the spatial autocorrelation is modeled by a SPATIAL LAG MODEL, SPATIAL 

AUTOREGRESSIVE MODEL—SAR MODEL, the previous model (3) can be generalized by 

introducing a spatial-lag term ( iwyln ) into the model. The resulting latent sub-group indicators 

(values) are specified in a multiplicative form as follows: 
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where  is a spatial lag coefficient (the parameter associated to the spatially lagged dependent variable, 

wyln ), w  is a proximity matrix of order N.  

The definition of neighbors for each observation via a spatial weights matrix is a critical decision in 

modeling spatial autocorrelation. In empirical applications, it is common practice to derive spatial 

weights from the location and spatial arrangements of observation by means of a geographic 

information system. In this case, units are defined ‗neighbors‘ when they are within a given distance of 

each other, ie w ij=1 for d ij  and ij, where dij is the distance function chosen, and  is the critical 

cut-off value. More specifically, a spatial weights matrix w* is defined as follows: 
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The SAR model assumes that all spatial dependence effects are captured by the lagged term by 

showing how the performance of the dependent variable impacts all the other (neighbor) 

groups/regions through the spatial transformation. 

In alternative, by assuming a spatial dependence is the error structure (in terms of a first order 

spatial autoregressive process), the resulting SPATIAL ERROR MODEL (SEM) specification relative 

to model (3) is derived as follows: 
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where  is a spatial autoregressive coefficient, w  is a proximity matrix of order N, as previously 

defined, and ijτ are the usual stochastic error terms.  

The Spatial Error Model leaves unchanged the systematic component and assumes spatially 

autocorrelated errors. In this respect, it is observed how a random shock in a group/region affects 

performances in that group/region and additionally impacts all the other groups/regions through the 

spatial transformation. This model specification measures the joint effect of misspecification, omitted 

variables, and spatial autocorrelation. 

3. An Information Theoretic Approach 

The application of Maximum Entropy methods and Information Theoretic techniques has been 

explored within the context of ecological inference (Johnston and Pattie, [1]; Judge, Miller and  

Cho, [2]). The first use of entropy-maximizing models concerned the application of gravity models and 

transportation flows. Recently, applications of Information Theoretic methods have focused on the 

analysis of spatial patterns of voting at the individual level (King, Rosen, and Tanner, [18]) 

However, the present study extends the IT approach to the case of Ecological Inference 

incorporating Spatial Dependence. Past studies have given little weight to the role of spatial effects in 

ecological inference analysis, and so this present study is going to introduce a basic framework for EI 

in the presence of spatial heterogeneity and dependence. It also deals with the specification of models 

that explicitly control for spatial effects, interpretation and IT-based formulation. 

An Information Theoretic technique (Golan, Judge, and Miller, [9]; Bernardini Papalia, [5–7]) is 

suggested as an adequate solution in the present context since it provides an effective and flexible 

procedure for reconciling micro and macro data and for addressing problems related to spatial 

structures. 

Information theoretic estimation methods present some useful advantages over classical estimation 

techniques (as Generalized Least Squares, GLS) that refer to the possibility:  

to reformulate ―ill-posed‖ or ―under-determined‖ problems into ―well-posed‖ problem,  

to allow for the estimation of each individual parameter directly;  

to deal with the problem of collinearity, simultaneity, and endogeneity arising in spatial models;  

to take into account out-of-sample information which can be introduced as additional constraints in 

the optimization program or by specifying particular priors for parameters and errors.  

In the present work we have embraced the Information Theoretic (IT)—Generalized Cross Entropy 

(GCE) philosophy and adopted the Kulback-Liebler information-divergence measure (Kullback, [14]).  
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Implementation of these methods requires that the parameters and errors of the model in Equations 

(5) and (8) are specified as linear combinations of some predetermined and discrete support values and 

unknown probabilities (weights). Thus, all coefficients ,,,, ijijij γβα  and unknown errors ,ij  ijτ  in 

Equations 5 and 8, are reparameterized and expressed in terms of proper probabilities. For each 

parameter, a set of M support points (with 2 M) has been chosen: 
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For the sake of simplicity, the above support spaces are constructed as discrete, bounded entities. It 

is possible to construct unbounded and continuous supports within the same framework (Golan, Judge 

and Miller, [9]). 

The support points are chosen on the basis of a priori information as discussed in Golan, Judge and 

Miller [9]. However, such knowledge is not always available, and symmetric parameter supports 

around zero are generally used in the presence of scarce prior information about each parameter. With 

regard to errors, in most cases where the underlying distribution is unknown, one conservative way of 

choosing the error supports  ss , , as recommended by Golan, Judge and Miller, [9], is to employ the 

―three-sigma rule‖ established by Pukelsheim. 

Under the GCE framework, the full distribution of each parameter and of each error (within their 

support spaces) is simultaneously estimated under minimal distributional assumptions. More 

specifically, the parameters ,,,, ijijij γβα  and errors ,ij  ij  are reparameterized as:  
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with support vectors for parameters ,,,, ijijij γβα  and errors ,ij  ij  given by:  
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and corresponding unknown probabilities given by:  
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with M,R  2.  

In addition, prior information reflecting subjective information or any other sample and pre-sample 

information is introduced by specifying the priors for all parameters and errors: 

ijijijijijij ,,,,,,,,,,,
~~~~~~
 pppppp . These priors may come from prior data, theory, and/or other 

experiments.  

The GCE optimization problem for the ecological spatial model corresponding to Equation (5) can 

be reformulated by minimizing the following objective function H(.) as follows: 
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subject to:  

(i) data consistency conditions: 
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(ii) adding-up constraints for probabilities. 

jiijijijijij ,1,,,,,    ppppp  

Analogously, the GCE optimization problem for the ecological spatial model corresponding to 

Equation (8) can be reformulated by minimizing the following objective function H(.) as follows: 
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subject to:  

(i) data consistency conditions: 
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(ii) adding-up constraints for probabilities: 

jiijijijijij ,1,,,,,    ppppp  

The optimal solutions depend on the prior information, the data and a normalization factor. If the 

priors are specified such that each choice is equally likely to be selected (uniform distributions), then 

the GCE solution reduces to the GME one. As with the GME estimator, numerical optimization 

techniques should be used to obtain the GCE solution.  

4. An Empirical Application 

The IT formulation presented in Section 2.2 is applied to an Italian data set provided by the Italian 

Institute of Statistics (ISTAT), the Osservatorio Brevetti Unioncamere, and the EPO (European Patent 

Office), and refers to the nine provinces within the Emilia Romagna region for the year 2005. The 

objective of the analysis is to disaggregate the value-added of Emilia Romagna‘s provinces into six 
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macro-sectors: Agriculture; Industry, Construction; Commerce, Transport, Hotels/Restaurants 

Services, Telecommunication; Financial Intermediation Services; Other Services. The total  

value-added at the sub-regional level of the aforesaid 9 provinces is estimated assuming that the 

available information at sub regional level pertains to: (i) the total value-added of each province; (ii) 

the sectors‘ shares of the total number of workers; while at the regional level, the total value-added for 

each sector within Emilia Romagna is a known quantity that can be regarded as a fixed regional total.  

The Information Theoretic approach may be used to yield the most uninformed distribution in 

keeping with the observed sample data, while minimal assumptions are made regarding the underlying 

distribution generating the data. As priors for parameters and errors distributions we consider uniform 

distributions, then the GCE solution reduces to the GME one. The basic formulation assumes that: (i) 

the GME estimates of the value-added of Emilia Romagna‘s nine provinces, disaggregated by sector, 

are consistent with the total value-added observed at the regional level; (ii) the value-added of the 

provinces are measured with error. By introducing the baseline statistical model, 

,lnlnln
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we estimate the total value-added for each sector at the level of 

ER‘s provinces, by employing all available information, that is: sub-area (provincial) level information 

about certain H explanatory variables hi ,x  (in logs), that traditionally refer to measures of the main 

primary input (employment rate, ER; real capital stock, RC, as well as other measures of innovation, 

INN), but also refer to measures of certain exogenous or endogenous sources of spatial externalities 

(population density, POPD, agglomeration spillovers, spillovers connected to specialization and to 

diversity). A sector‘s share of the total number of workers here is used for ijθ ; together with the total 

value-added (in log) for each sector within the Emilia Romagna region iyln .  

Our choice of model is motivated by a set of diagnostic tests which have been performed with 

reference to a pooled OLS estimator for a model specification without spatial variables. Spatial 

heterogeneity is confirmed by spatial correlation tests on GME residuals for a non spatial model 

specification. Specifically, Moran's I and Geary's C tests accept the null hypothesis of global spatial 

independence (0.131; p-value: 0.024 for the former; 0.881; p-value: 0.096 for the latter). Alternative 

specifications, related to spatial LAG model and spatial Error model have been the objective of a 

preliminary analysis; in all cases spatial lag as well as spatial autoregressive coefficients are not 

significant. In our analysis, the weight matrix to model spatial dependence is computed by means of 

the distance from Bologna, where the critical cut-off value is given by the first quartile.  

We choose symmetric parameter supports around zero, given that we have very little prior 

information about each parameter, and M = 5 support points for each parameter, since estimation is not 

improved by choosing more than about five support points. We choose j = 3 support points for each 

error, and we specify error supports according to Pukelsheim‘s ―Three Sigma Rule‖. The estimation 

procedure is implemented using the GAMS software and a nonlinear solver, CONOPT2.  

The results (see Table 1) seem to be relatively robust in terms of estimate signs and magnitude; the 

GME parameter estimates do not vary a great deal as parameter supports are modified. The choice of 

support vectors for the parameters, within the intervals (−100, 100) and (−20, 20), has a negligible 

effect on the coefficients. The asymptotic standard errors are calculated using the method proposed by 

Golan, Judge and Miller [9]. 
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Table 1. Estimates of the value added of Emilia Romagna‘s provinces disaggregated by six 

sectors for the year 2005. 

Provinces (Emilia Romagna) Agriculture Industry Construction 

Transport, 

Hotels, 

Telecom. 

Financial 

Services 

Other 

Services 

PIACENZA 227.4573 1568.474 366.4849 1522.572 1747.364 1183.74 

PARMA 277.8251 3317.61 692.2093 2278.186 3007.466 1704.97 

REGGIO NELL' EMILIA 314.3605 4576.695 917.9048 2351.606 3288.713 1552.768 

MODENA 362.4585 6376.475 1076.482 3439.923 4597.192 2428.439 

BOLOGNA 375.1509 7001.803 1361.174 6264.928 8143.771 5113.127 

FERRARA 402.0568 1641.202 522.8528 1658.157 2074.427 1445.826 

RAVENNA 341.7594 2037.979 592.185 2176.184 2394.936 1617.214 

FORLI-CESENA 307.3608 2395.311 609.7457 2168.655 2435.76 1623.719 

RIMINI 141.9309 1048.246 410.3823 2219.982 1991.04 1294.397 

Explanatory variables: hi ,x  (in logs) GME estimates: hj ,γ̂  

Population Density: POPD 

Employment Rate: ER 

Per Capita Innovation Activities: INN 

Real Capital Stock: RC 

0.11* 

0.19* 

0.08* 

0.22** 

* 5% significant level, **1% significant level; fixed effects are included; mean values of the nine 

estimated varying parameters. 

 

The distribution of the value-added of Emilia Romagna‘s nine provinces, disaggregated by sector  

for 2005, seems to be quite heterogeneous. Our analysis validates the hypothesis of spatial 

heterogeneity in slope coefficients ( hj ,γ ) across the provinces, as well as the contribution made by the 

explanatory variable consisting in the share of the total number of workers operating in each sector h 

and located in province i.  

In order to evaluate the accuracy of the disaggregation results, we computed the prediction errors as 

the difference between observed and predicted value-added for each province and sector; the root mean 

squared error (RMSE) is defined as:  
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The RMSE values show a reasonable level of precision, since the mean value is equal to 0.007 with 

a standard deviation of 0.004. In particular, we observed the 1.7% reduction in the MAPE compared to 

the OLS estimates. 

5. Conclusions 

In this paper we have tackled the problem of providing reliable estimates of a target variable in a set 

of small geographical areas, by exploring spatially heterogeneous relationships at the disaggregate 

level. Controlling for spatial effects means introducing models whereby the assumption is that values 
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in adjacent geographic locations are linked to each other by means of some form of underlying spatial 

relationship. 

In certain cases, in order to account for spatial dependency we need to grasp the spatial variations in 

the regression coefficients, since empirical predictions based on global parameters may be biased, and 

thus misrepresent local behavior. This is particularly problematic in the case of regional analysis, 

where locally representative regression coefficients are required for micro-level policy decisions  

to be taken. 

We have discussed the importance of taking into account individually- and spatially-correlated 

group level variations, and we have recommended the use of Information Theoretic-based methods for 

the estimation of variables within the small groups in question.  

The Information Theoretic-based formulations could be a useful means of including spatial and 

inter-temporal features in analyses of micro-level behavior, and of providing an effective, flexible way 

of reconciling micro and macro data. An unique optimum solution may be obtained even if there are 

more parameters to be estimated than available moment conditions and the problem is ill-posed. 

Additional non-sample information from theory and/or empirical evidence is introduced in the form of 

known probabilities by means of the cross-entropy formalism. This procedure is capable of producing 

consistent estimates in small samples, in the presence of incomplete micro-level data as well as in the 

presence of problems of collinearity and endogeneity in the individual local models, without imposing 

strong distributional assumptions.  

The Information Theoretic formulation has been employed in relation to an Italian data set, in order 

to compute the value-added of Emilia Romagna‘s nine provinces, per sector, by formulating a suitable 

set of constraints for the optimization problem in the presence of errors in the aggregates at the sub-

area level. The results show that this approach provides a flexible, powerful data-disaggregation 

method, since it enables us to: (i) consider prior knowledge introduced by adding linear and nonlinear 

inequality constraints, errors in equations, and error in variables; (ii) allow for the efficient use of 

information from a variety of sources; (iii) reconcile data at different levels of aggregation within a 

coherent framework. 

In this work we have only considered models with continuous response variables. Further work 

should be done in order to explore IT methods by considering (i) area/group level count outcomes and 

rates data with spatial structures; and (ii) temporal dependence.  

Acknowledgements 

This paper has been completed within the BLU-ETS project ―Blue-Enterprises and Trade 

Statistics‖, a small or medium-scale focused research project funded by the Seventh Framework 

Programme of the European Commission, FP7-COOPERATION-SSH (Cooperation Work 

Programme: Socio-Economic Sciences and the Humanities). 

References  

1. Johnston, R.; Pattie, C. Ecological inference and entropy-maximizing: An alternative estimation 

procedure for split-ticket voting. Polit. Anal. 2000, 8, 333–345.  



Entropy 2010, 12  

 

 

2184 

2. Judge, G.; Miller, D.; Cho, W.K.T. An information theoretic approach to ecological inference. In 

Ecological Inference: New Methodological Strategies; King, G., Rosen, O., Tanner, M.A., Eds.; 

Cambridge University Press: Cambridge, UK, 2004; pp. 162–187. 

3. Bernardini Papalia, R. Modeling mixed spatial processes and spatio-temporal dynamics in 

information-theoretic frameworks. In COMPSTAT 2006: Proceedings in Computational Statistics; 

Rizzi, A., Vichi, M., Eds.; Physica-Verlag: Heidelberg, Germany, 2006; pp. 1483–1491.  

4. Bernardini Papalia, R. Combining Incomplete Information and Learning in Microeconometric 

Models. In Correlated Data Modeling; Gregori, D., Mackenzie, G., Friedl, H., Corradetti, R., 

Eds.; Franco Angeli: Milano, Italy, 2007; pp. 137–143. 

5. Bernardini Papalia, R. A Composite Generalized Cross Entropy Formulation in Small Samples 

Estimation. Econom. Rev. 2008, 27, 596–609.  

6. Bernardini Papalia, R. Analyzing Trade Dynamics from Incomplete Data in Spatial Regional 

Models: A Maximum Entropy Approach. In Bayesian Inference and Maximum Entropy Methods 

in Science and Engineering; Springer-Verlag: New York, NY, USA. 

7. Bernardini Papalia, R. Data Disaggregation Procedures within a Maximum Entropy Framework. J. 

Appl. Statist. 2010, in press. 

8. Golan, A.; Judge, G.; Robinson, S. Recovering Information from Incomplete or Partial 

Multisectoral Economic Data. Rev. Econom. Statist. 1994, 76, 541–549. 

9. Golan, A.; Judge, G.; Miller, D. Maximum Entropy Econometrics: Robust Estimation with Limited 

Data; Wiley: New York, NY, USA, 1996. 

10. Golan, A.; Judge, G.; Miller, D. The Maximum Entropy Approach to Estimation and Inference: 

An Overview. In Advances in Econometrics. Applying Maximum Entropy to Econometric 

Problems; Fomby, T.B., Hill, R.C., Eds.; Jai Press Ltd.: London, UK, 1997; pp. 3–24. 

11. Golan, A. Information and Entropy Econometrics: A Review and Synthesis. In Foundations and 

Trends® in Econometrics; Now Publishers: Hanover, MA, USA, 2008; Volume 2, pp. 1–145.  

12. Shannon, C.E. A mathematical theory of communication. Bell Syst. Techn. J. 1948, 27, 379–423. 

13. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. 

14. Kullback, J. Information Theory and Statistics; Wiley: New York, NY, USA, 1959.  

15. Levine, R.D. An information theoretical approach to inversion problems. J. Phys. A 1980, 13,  

91–108. 

16. Freedman, D.A.; Klein, S.P.; Ostland, M.; Roberts, M.R. Review of ―A solution to the ecological 

inference problem‖. J. Am. Statist. Assoc. 1998, 93, 1518–1522.  

17. Schuessler, A.A. Ecological inference. PNAS 1999, 96, 10578–10581. 

18. King, G., Rosen, O. and Tanner, M.A. Ecological Inference: New Methodological Strategies; 

Cambridge University Press: Cambridge, UK, 2004; pp. 162–187. 

19. Achen, C.H.; Shively, W.P. Cross-level Inference; Chicago University Press: Chicago, IL, USA, 

1995. 

20. Cho, W.K.T. Latent groups and cross-level inferences. Elect. Stud. 2001, 20, 243–263. 

21. Rao, J.N.K. Small Area Estimation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. 



Entropy 2010, 12  

 

 

2185 

22. Barker, T.; Pesaran, M.H. An introduction in disaggregation in econometric modelling. In 

Disaggregation in Econometric Modelling; Barker, T., Pesaran, H., Eds.; Routledge: London, UK, 

1990; pp. 1–14. 

23. King, G. A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior 

from Aggregate Data; Princeton University Press: Princeton, NJ, USA, 1997. 

24. Smirnov, O.; Anselin, L. Fast maximum likelihood estimation of very large spatial autoregressive 

models: A characteristic polynomial approach. Comput. Statist. Data Anal. 2001, 35, 301–319.  

25. Anselin, L. Spatial Econometrics: Methods and Models; Kluwer: Boston, MA, USA, 1988. 

26. Kelejian, H.H.; Prucha, I.R. A generalized moments estimator for the autoregressive parameter in 

a spatial model. Int. Econ. Rev. 1999, 40, 509–533. 

27. Lee, L.F. Asymptotic Distributions of Quasi-maximum Likelihood Estimators for Spatial 

Econometric Models: I. Spatial Autoregressive Processes; Ohio State University: Columbus, OH, 

USA, 2001.  

28. Lee, L.F. Asymptotic Distributions of Quasi-maximum Likelihood Estimators for Spatial 

Econometric Models: II. Mixed Regressive, Spatial Autoregressive Processes; Ohio State 

University: Columbus, OH, USA, 2001. 

29. Bell, K.P.; Bockstael, N.E. Applying the generalized-moments estimation approach to spatial 

problems involving microlevel data. Rev. Econ. Statist. 2000, 82, 72–82. 

30. Zellner, A. A Bayesian Method of Moments (BMOM): Theory and Applications. Adv. Econome. 

1997, 12, 85–105. 

31. Honoré, B.E.; Hu, L. Estimation of cross sectional and panel data censored regression models with 

endogeneity. J. Econom. 2004, 122, 293–316. 

32. Calvo, E.; Escolar, M. The local voter: A Geographically Weighted Approach to Ecological 

Inference. Am. J. Polit. Sci. 2003, 47, 189–204. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


