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Abstract: We review recent progress in understanding the entanglement entropy of
gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions
using the AdS/CFT correspondence. We derive simple expressions for the entanglement
entropy of two- and three-dimensional black holes. In both cases, the leading term of
the entanglement entropy in the large black hole mass expansion reproduces exactly the
Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In
particular, for the BTZ black hole the leading term of the entanglement entropy can be
obtained from the large temperature expansion of the partition function of a broad class
of 2D CFTs on the torus.
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1. Introduction

Entanglement is one of the most basic features of quantum mechanics. Historically, it has generated
a long debate about the nondeterministic character of quantum mechanics. More recently, it has played
a crucial role for the development of new areas of research, such as quantum information and quantum
computing. Entanglement is a characterization of the spatial correlations between parts of a quantum
system. It is measured by the entanglement entropy (EE), which is the von Neumann entropy arising
when the degrees of freedom in an unobservable part of the system are traced over.

In recent years the notion of EE has been widely used for investigating general features of quantum
field theory (QFT) and quantum phases of matter (e.g., spin chains and quantum liquids, [1–4]).
Moreover, in the context of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, an
interesting geometric interpretation has been proposed for the EE of CFTs with gravitational duals [5–7].
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As first recognized by ’t Hooft [8–16], EE could also play a key role for understanding the microscopic
origin of the black hole entropy and for solving the information puzzle in black hole physics. A quantum
state in a black hole geometry is divided by the horizon into two disconnected parts, and an external
observer has to trace over the part of the state in the black hole interior. Another strong hint pointing
to a fundamental relationship between entanglement and Bekenstein-Hawking (BH) entropy is that both
quantities scale as the area of the boundary.

Unfortunately, any attempt to explain the BH entropy as due to quantum entanglement is plagued by
both conceptual and technical difficulties.

First, the usual statistical interpretation of the BH entropy—aiming to explain the black hole entropy
in terms of microstates—is conceptually very different from the EE, which measures the observer’s
lack of information about the quantum state of the system in an inaccessible region of spacetime. The
problem becomes even more involved going beyond the semiclassical approximation. In fact, in the
usual Euclidean quantum gravity formulation the metric, except its boundary value, cannot be fixed a
priori (see e.g., [17]), whereas the usual flat-space notion of EE requires to fix lengths in bulk spacelike
regions. Second, the EE depends both on the number of species of matter fields, whose entanglement
should reproduce the BH entropy, and on the value of the ultraviolet (UV) cut-off needed to regularize the
divergences arising owing to the presence of a sharp boundary between the accessible and inaccessible
regions of spacetime; conversely, the BH entropy should be universal.

A possible shortcut for circumventing these difficulties is to consider gravity theories with CFT duals
and to make use of the AdS/CFT correspondence to identify the black hole EE with the EE of the dual
CFT. This approach allows to reduce the computation of the black hole EE to calculations in a field
theory where spacetime geometry is not dynamical.

In this paper we use this approach to compute the EE of two-dimensional (2D) and three-dimensional
(3D) AdS black holes. Two- and three-dimensional AdS gravity allows for a dual description in terms
of 2D CFT. The calculation of the black hole EE is reduced to the calculation of the EE of a 2D CFT, for
which very simple expressions are known.

We derive explicit formulas for the entanglement entropy of 2D and 3D AdS black holes. In both
cases, the leading term of the EE in the large black hole mass expansion reproduces exactly the BH
entropy, whereas the subleading term behaves logarithmically.

This work is mainly based on [18,19] and represents an extended version of them. The structure of
the paper is the following. In Section 2 we review some basic facts about EE in field theory, in particular
CFT, and in black hole physics. In Section 3 we discuss the EE of 2D AdS black holes. In Section 4 we
discuss the EE of 3D AdS black holes.

2. Review of Entanglement Entropy

2.1. Entanglement in QFT

Quantum entanglement gives a measure of spatial correlations between parts of a system and it is
measured by the entanglement entropy. In this paper we are mainly interested in the EE of a quantum
field theory (QFT). In particular, we consider, following the discussion in [20], a field theory in 1+1
dimensions. Let φ ∈ [0,Σ[ be the spacelike coordinate of a 2D universe. When only a spacelike
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slice is accessible for measurement, we lose information about the degrees of freedom localized in the
complementary region. The subsystem where measurements are performed is Q = [0, γ[. The degrees
of freedom in the complementary region P = [γ,Σ[ have to be traced over. EE turns out to be infinite,
but it can be regularized by introducing an ultraviolet cutoff ε necessary to regularize the divergence
originated by the presence of a sharp boundary separating the region P from the region Q.

The density matrix describing the subsystem Q, after tracing over the variables on P , is given by [20]

ρXX′ =

∫
DYΨXY Ψ∗Y X′ , (1)

where the wave function of the system is

ΨXY ∝
∫
DΦ e−S(Φ) . (2)

Here Φ denotes a complete collection of local fields on our theory and X, Y are ordinary c-number
functions. We take Φ = X on Q and Φ = Y on P . The von Neumann entropy corresponding to the
density matrix (1) is calculated using the replica trick

S = −Tr ρ ln ρ = − ∂

∂n
Tr ρn

∣∣∣∣
n=1

. (3)

We first evaluate Tr ρn, differentiate it with respect to n and finally take the limit n→ 1 (ρ is normalized
such that Tr ρ = 1).
As discussed also in [21], Tr ρn can be computed in terms of path-integrals on an n-sheeted Riemann
surfaceRn:

Tr ρn =
1

Zn
1

∫
Rn

DΦ e−S(φ) ≡ Zn
Z1

, (4)

where Zn is the partition function on a space obtained by gluing n copies of the original space.

2.2. Entanglement Entropy of a 2D CFT

Using the general formulation described in Section 2.1, one can in principle compute the EE of any
QFT. In general such a computation is rather involved, but it becomes much simpler in the case of a 2D
conformal field theory. This is because the conformal symmetry can be used to determine the form of
the correlation functions of the theory [20–22]. The resulting expression for the EE of the CFT depends
on the topology of the 2D universe. For a 2D spacetime with the topology of the cylinder C shown in
Figure 1a the EE turns out to be [20–22]:

S
(C)
ent =

c+ c̄

6
ln

(
Σ

επ
sin

πγ

Σ

)
, (5)

where c and c̄ are the central charges of the 2D CFT and ε is the UV cut-off. Thus, Equation (5) gives the
EE for a 2D CFT on the cylinder C, i.e. for a CFT at zero temperature and with a spacelike dimension
with S1 topology.
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For Σ� γ the compact spacelike dimension becomes infinite, the spacetime has the topology of the
plane shown in Figure 1b and the EE is independent of Σ. In this limit Equation (5) gives the EE for
a 2D CFT at zero temperature on the plane P [20–22]:

S
(P)
ent =

c+ c̄

6
ln
γ

ε
. (6)

Figure 1. The three different forms of the 2D spacetime. φ is the spacelike coordinate and t
is the timelike one.
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We can also consider a 2D CFT at finite temperature T = 1/β and a noncompact spacelike dimension.
The spacetime has the topology of the cylinder C represented in Figure 1c and the EE turns out
to be [21]:

S
(C)
ent =

c+ c̄

6
ln

(
β

επ
sinh

πγ

β

)
. (7)

One could also consider a spacetime with the topology of a torus T . In this case the EE has not a
universal form but depends on the details of the 2D CFT [23].

It is important to stress that the cylinder C can be obtained as the limiting case of a torus T (β, γ) with
cycles of length β, γ when γ � β. In Section 4.6 we will use this feature to relate the thermal entropy
of a CFT on the torus with the EE of a CFT on the cylinder C.

2.3. AdS/CFT Correspondence and UV/IR Connection

In Section 4 of this paper we will compute the EE of the BTZ black hole through an approach based
on the holographic principle. In particular, we will use the AdS/CFT correspondence and the UV/IR
relation, which are introduced in this section.

According to the holographic principle, suggested by ’t Hooft [24] and Susskind [25], a bulk theory
with gravity describing a macroscopic region is equivalent to a boundary theory without gravity living
on the boundary of that region.
One of the most fruitful realizations of the holographic principle is the AdS/CFT correspondence,
which was conjectured by Maldacena [26] in 1997. The AdSd+1/CFTd correspondence states that each
field Φ propagating in a (d + 1)-dimensional anti-de Sitter spacetime is related, through a one to one
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correspondence, to an operator O in a d-dimensional conformal field theory defined on the boundary of
that spacetime.

Essentially, the AdS/CFT correspondence can be interpreted as a relation between partition functions
in the bulk and correlation functions on the boundary. The gravity partition function in the bulk turns out
to be equal to the correlation functions of the operators O on the boundary:

Zbulk
[
Φ0(~x)

]
= 〈e

∫
d4xΦ0(~x)O(~x)〉boundary , (8)

where the d-components of the variable ~x parametrize the boundary of AdSd+1 and Φ0(~x) is an arbitrary
function specifying the boundary values of the field Φ(~x, z), with z defined in the bulk. A similar
relationship between fields in AdSd+1 and operators in CFTd also exists for non-scalar fields, including
fermions and tensors in anti-de Sitter spacetime.

The AdS/CFT correspondence implies that we can describe a boundary quantum field theory in
terms of a bulk gravity theory. In particular infrared (IR) effects in the bulk theory describing a
(d+ 1)-dimensional anti-de Sitter spacetime correspond to ultraviolet (UV) effects in the d-dimensional
conformal field theory defined on the boundary: we call this relation the UV/IR connection [27,28].

Following Susskind and Witten in [27], we introduce an infrared regulator for the area of the boundary
of the AdSd+1 spacetime, which is infinite. To do so, we replace the boundary (at r = 1 in cavity
coordinates or at z = 0 in Poincaré coordinates) with a sphere at r = 1 − δ or, equivalently, at z = δ,
where δ is a small number acting as UV regulator of the CFT. The radius R of the sphere turns out to be
R ∼ `

δ
(l is the AdS length) therefore the area of the boundary diverges as δ → 0 and we can interpret

l/δ as an IR regulator in the bulk theory.
This UV/IR connection is at the heart of the holographic requirement that the number of degrees of

freedom should be of order the area of the boundary measured in Planck units [29].

2.4. Entanglement Entropy of Black Holes

As already mentioned in the Introduction, in the last years the notion of EE has been used with success
as a tool for understanding quantum phases of matter, e.g., for spin chains and quantum liquids [1–4].
EE turned out to be very useful for investigating general features of quantum field theory and its
relationship with gravity. In particular, the AdS/CFT correspondence has been used to calculate the EE
of CFTs with gravitational duals, c-theorems have been shown to hold also for the EE and approximate
formulas have been derived for the EE of generic QFTs in any dimension [5–7,30,31].

Because of its geometric nature, EE is also a natural candidate for trying to tackle one of the most
difficult problems of black hole physics: the microscopic origin of the Bekenstein-Hawking entropy. The
notion of quantum entanglement comes naturally in the play, since the horizon of a black hole divides
spacetime into two subsystems, such that observers inside the horizon cannot communicate the results
of their measurements to observers outside. This led ’t Hooft to conjecture in [8] that the BH black
hole entropy could be understood in terms of the quantum entanglement of matter in the black hole
geometry [9–16]. Further support to this conjecture comes from the fact that both the
Bekenstein-Hawking and the entanglement entropy scale as the area of the boundary. In [8] ’t Hooft
showed that the modes of a quantum field in the vicinity of a black hole horizon should be cut off due
to gravitational effects. Although a detailed calculation of the physics associated with this phenomenon
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is quit difficult, it is possible to model such effects by imposing, within a distance h from the horizon,
a “brick wall” cut-off beyond which all modes of a quantum field must vanish. The model avoids the
infinite piling up of modes near the horizon and the result for the EE does not depend upon either the
mass or the charge of the source and is therefore a property only of the horizon. On the other hand, the
EE depends both on the number Z of species of matter fields localized in the black hole geometry and on
the value h of the UV cutoff, which has to be tuned to the value h =

√
Z/90π if one wants to recover the

Bekenstein-Hawking result. This is a problem, since the BH entropy should be universal, independent
of both matter fields and UV cut-off.

Another basic, conceptual, problem is the difficulty to relate the usual statistical interpretation of
the BH entropy—in terms of black hole microstates—with the meaning of EE, which measures the
observer’s lack of information about the quantum state of the system in inaccessible regions of spacetime.
This problem becomes even more severe when one goes beyond the semiclassical approximation. As
mentioned in the Introduction, the very notion of EE for pure quantum gravity is not easy to define: the
main obstruction comes from the fact that in the Euclidean quantum gravity formulation [17] only the
boundary value of the metric can be fixed a priori, whereas the usual flat-space notion of EE requires to
fix lengths in bulk spacelike regions. Some of this conceptual problems may look somehow milder using
Sakharov’s induced gravity approach [32,33], but the fundamental issue is still there.

A possible way out of these difficulties is to consider gravity theories with CFT duals (see e.g., [34])
and to make use of the AdS/CFT correspondence to identify the black hole EE with the EE of the
dual CFT.

There are several advantages in pursuing this approach. As explained in Section 2.2, at least for CFTs
in two dimensions, explicit and simple formulas for the EE are known. Moreover, one can define the
EE of a gravity configuration in terms of the EE of a field theory in which spacetime geometry is not
dynamic, thus avoiding the usual difficulties of the Euclidean quantum gravity approach. Last but not
least, the use of the AdS/CFT correspondence allows to solve the universality problem: one can identify
in a natural way the UV cut-off h with the the AdS length l and the number of matter fields Z with the
central charge c of the CFT.

There are two main drawbacks of this approach. The first is related to the fact that the AdS/CFT
correspondence is holographic. Spatial correlations in the bulk gravity theory are codified in a highly
nonlocal way in the correlations of the boundary CFT. This is particularly evident in the UV/IR
relation, which relates large distances on AdS space with the short distances behavior of the boundary
CFT [27,28]. Because of this difficulty, the AdS/CFT correspondence has been only partially fruitful
for understanding the EE of gravitational configurations, in particular black holes. Some progress in
this direction has been achieved in the general case in [11,12,30]. Strangely enough, the AdS/CFT
correspondence has been used with much more success in the reversed way, i.e., to compute the EE of
boundary CFTs in terms of bulk geometric quantities [5–7,35–37].

The second strong limitation of the holographic approach is that it works only for gravity models
with CFT duals. The most important class of such models is AdS gravity. In Section 3 of this
paper we will study the EE of 2D AdS black holes, while in Section 4 we will consider the 3D
Bañados-Teitelboim-Zanelli (BTZ) black hole.
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3. 2D AdS Black Holes

Two-dimensional models of gravity have been used as toy models for dealing in a simplified context
with complicated problems of black hole physics and quantum gravity. In particular, they can be used
to describe the radial modes (the S-wave sector) of four- and higher-dimensional static black holes. In
this section we derive, using the AdS/CFT correspondence, a simple form for the EE of 2D AdS black
holes. This will turn out to be possible because of peculiarity of 2D AdS gravity, namely the fact that 2D
gravity can be considered as induced by quantum fluctuations of matter fields.

3.1. Entanglement Entropy of the 2D Black Hole

2D AdS black holes are classical solutions of a 2D dilaton-gravity theory, which in the simplest case is
described by the actionA =

∫
d2x
√
gΦ (R+2/`2), where the AdS length ` is related to the cosmological

constant λ of the AdS spacetime (λ = 1/`2) and Φ is a scalar called dilaton. The 2D AdS black hole
solutions can be written as follows [38]:

ds2 = − 1

`2

(
r2 − r2

h

)
dt2 + `2

(
r2 − r2

h

)−1
dr2, Φ =

r

G2`
, (9)

where G2 is the dimensionless 2D Newton constant and rh is the horizon radius.
The black hole mass, temperature and Bekenstein-Hawking (BH) entropy are given by [38]

M =
r2
h

2G2`
3
, T =

rh
2π`2

, SBH =
2πrh
G2`

. (10)

The 2D gravity theory has a dual description in terms of a chiral CFT with with central charge [39–42]

c =
12

G2

. (11)

This AdS/CFT correspondence has been used to give a microscopical meaning to the thermodynamic
entropy of the 2D AdS black hole. The BH entropy (10) can be also reproduced by counting states in the
dual CFT [39–42].

It has been observed that in two dimensions black hole entropy can be ascribed to quantum
entanglement if 2D Newton constant is wholly induced by quantum fluctuations of matter fields
[10,32,33,43]. But Equation (11) tells us that the 2D Newton constant is induced by quantum fluctuations
of the dual CFT. It follows that in the semiclassical approximation the black hole EE should be identified
with the EE of the vacuum for the 2D CFT with central charge given by Equation (11) in the black hole
geometry (9). The black hole exterior and interior should be identified respectively with an observable
region Q of length γ and an unobservable region P of length Σ− γ in the 2D universe described above,
where the CFT degrees of freedom live.

However, two obstacles prevent a direct application of Equation (5):

(1) Equation (5) holds for a 2D flat spacetime, whereas we are dealing with a curved 2D background.

(2) The calculations leading to Equation (5) are performed for a spacelike sliceQ, whereas in the black
hole case there is no global notion of a spacelike coordinate, owing to the coordinate singularities
at r = rh (the location of the horizon) and at r = ∞ (the location of the timelike asymptotic
boundary of the AdS spacetime).
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Owing to these geometric features, in the black hole case we cannot give a direct meaning to both the
measures γ and Σ− γ of the subsystems Q and P .

The second difficulty can be circumvented using an appropriate coordinate system and a regularization
procedure; the first difficulty can be solved using, instead of Equation (5), the formula derived by
Fiola et al. in [10], which gives the EE of the CFT vacuum in the case of a curved background,

Sent = − c
6

(
%|boundary − ln

ε

Σ

)
, (12)

where c is the central charge (11) and e2% is the conformal factor of the metric in the coordinate system
used to define the CFT vacuum. Also notice that we are using the formula of [10] with reversed sign.
The AdS black hole has to be considered as the vacuum seen by the observer using the black hole
coordinates. This observer sees the CFT vacuum as filled with thermal radiation with negative flux [38].
In this coordinate system the black hole metric (9) takes the form [38]

ds2 =
r2
h

`2

(−dt2 + dσ2)

sinh2( rhσ
`2

)
. (13)

Notice that in Equation (12) we have contributions from only one sector (e.g., right movers) of the
CFT. The CFT dual to 2D dilaton gravity is the one chiral sector of a 2D CFT, as shown in [41,42].
The 2D AdS black hole is dual to an open string with appropriate boundary conditions. These boundary
conditions are such that only one sector of the 2D CFT is present.

The coordinate system (t, σ) covers only the black hole exterior. Working in Euclidean space
the 2D manifold has only a boundary at σ = 0, corresponding to r = ∞, i.e. to the timelike conformal
boundary of the 2D AdS space. The conformal factor of the metric (13), as well as the entanglement
entropy (12), blows up on the σ = 0 boundary of the AdS spacetime. The simplest regularization
procedure is to consider a regularized boundary at σ = ε. Here ε plays the role of a UV cut-off for the
coordinate σ, which is the natural spacelike coordinate of the dual CFT. But ε is also an IR cut-off for the
coordinate r, which is the natural spacelike coordinate for the 2D AdS black hole.

The regularized boundary is at finite proper distance from the horizon. Since ε also acts as an IR
regulator, the presence of the IR cut-off Σ in Equation (12) turns out to be redundant. The EE still
depends on the UV cut-off ε. The AdS/CFT correspondence enables us to identify ε as the UV cut-off of
the CFT: ε ∝ `. The proportionality factor can be determined by requiring that the analytical continuation
of Equation (14) below is invariant under the transformation γ → Σ− γ which exchanges the inside and
outside regions. This requirement fixes ε = π`.

Putting all together we obtain from Equation (12) the EE of the 2D CFT in the classical black
hole geometry:

Sent =
c

6
ln

(
`

πrh
sinh

πrh
`

)
, (14)

which has to be identified with the EE of the 2D AdS black hole. The entanglement entropy (14) has the
expected behavior as a function of the horizon radius rh or, equivalently, of the black hole mass M . Sent
becomes zero in the AdS ground state, for rh = 0 (M = 0), whereas it grows monotonically for rh > 0

(M > 0).
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The black hole EE (14) takes a form very similar to the EE of a 2D CFT at finite temperature
(see Equation (7)). On the other hand, our formula (14) differs from the EE for a CFT at zero
temperature (see Equation (5)) by the exchange of hyperbolic with trigonometric functions.
This indicates that Equation (5) can be obtained as the analytic continuation rh → irh of our
formula (14), i.e. by considering the solution (9) with negative mass. The analytically continued
solution is given by Equation (9) with r2

h < 0. In the conformal gauge the solution reads now
ds2 = [rh/(` sin(rhσ/`

2)]2(−dt2 + dσ2).
In terms of the 2D CFT we have to trace over the degrees of freedom outside the spacelike slice

ε < σ < π`2/2rh. Applying Equation (12) to the case of a spacelike slice with two boundary points and
redefining appropriately the UV cut-off ε, we get

Sent =
c

6
ln

(
Σ

πε
sin

πrh
Σ

)
. (15)

Thus, the EE of the 2D CFT in the curved background given by the AdS solution with negative
mass has exactly the form given by Equation (5), with the horizon radius rh playing the role of γ.
The requirement that Equation (15) is the analytic continuation of Equation (14) fixes, as previously
anticipated, the proportionality factor between ε and ` in the calculation leading to Equation (14).

3.2. Large Black Hole Mass Behavior

Let us now consider the large mass behavior rh � ` (macroscopic black holes) of Equation (14):

Sent =
2πrh
G2`

− 2

G2

ln
rh
`

+O(1) = SBH −
2

G2

lnSBH +O(1). (16)

We have obtained the remarkable result that the leading term in the large mass expansion of the
black hole EE reproduces exactly the BH entropy. In this regime, with thermal length given by
β = 1/T � `, thermal correlations dominate and the EE becomes Gibbs entropy. The subleading
term has the universally predicted lnSBH behavior for the quantum corrections to the BH result. Notice
that, although it is universally accepted that the quantum corrections to the black hole entropy behave as
lnSBH [44–52], there is no general agreement about the value of the prefactor of this term. Equation (16)
fixes the prefactor of lnSBH in terms of the 2D Newton constant. Our result, which contradicts some
previous results supporting a G2-independent value of the prefactor, is consistent with our approach,
which considers 2D gravity as induced from the quantum fluctuations of a CFT with central charge
c = 12/G2 . The subleading term in Equation (16) has also the universal behavior shared with other
systems described by 2D QFTs, such as one-dimensional statistical models near the critical point (with
the black hole radius rh corresponding to the correlation length) or free scalar fields [21,31].

For β � ` quantum correlations dominate, but we expect our semiclassical description, which also
neglects back-reaction, to break down at β ∼ `. In this regime it is likely that a phase transition, analogue
to the Hawking-Page transition [53,54] in 4D gravity, takes place.

4. BTZ Black Holes

There are several arguments indicating that our derivation of the EE of 2D AdS black holes could be
extended to black holes in 3D AdS spacetime, i.e. to the BTZ black hole. Pure gravity in three spacetime
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dimensions has the same degrees of freedom (DOF) of 2D dilaton gravity, that is only global DOFs and
no propagating gravitons. Moreover, 2D AdS dilaton gravity can be considered as a circular symmetric
dimensional reduction of 3D AdS gravity with the dilaton parametrizing the radius of the transverse
circle. The 2D AdS black hole discussed in Section 3 of this paper can be obtained as dimensional
reduction of the BTZ black hole with vanishing angular momentum J . The thermodynamic parameters
(mass, temperature and entropy) characterizing the J = 0 BTZ black hole match exactly those pertinent
to the 2D AdS black hole, given by Equation (10), once one expresses the 3D Newton constant G3 in
terms of the 2D Newton constant G2 and of the de Sitter length `.

In the case of 2D AdS gravity, the dual theory has the form of a chiral CFT, whereas in the 3D case,
owing to different boundary conditions, the dual theory is a 2D CFT with both left and right movers.

In this section of the paper we investigate quantum entanglement in the context of 3D AdS gravity, in
particular the Bañados-Teitelboim-Zanelli (BTZ) black hole, using the AdS3/CFT2 correspondence. We
will tackle the problem using a standard method for studying correlations in QFT: we introduce in the
boundary 2D CFT two external length-scales, a thermal wavelength β = 1/T (with T temperature of the
CFT) and a spatial length γ, which is the measure of the observable spatial region of our 2D universe.
Varying β we can probe thermal correlations of the CFT at different energy scales, whereas varying γ
we can probe the spatial correlations at different length scales. The EE of a QFT gives information about
the spatial correlations of the theory. It follows that the EE of a 2D CFT, which is the holographic dual
of 3D gravity, should contain information about bulk quantum gravity correlations.

We will show that the AdS/CFT correspondence, and in particular the UV/IR relation, allows us to
identify in a natural way β and γ in terms of the two fundamental bulk length-scales, the horizon of the
BTZ black hole r+ and the AdS length `. This enables us, using the expression (5), (6), (7) for the EE
of 2D CFTs and modular symmetry, to associate a “holographic” EE to regularized 3D AdS, to the BTZ
black hole and to 3D AdS with conical singularities.

4.1. AdS3 Gravity and Dual CFT2

Classical, pure AdS3 gravity is described by the action

A =
1

16πG3

∫
d3x

(
R +

2

`2

)
, (17)

where ` is the de Sitter length and G3 is the 3D Newton constant. The exact form of the 2D CFT dual
to 3D AdS gravity still remains a controversial point [55–57]. However, in the large N regime (central
charge c � 1), i.e. in the region of validity of the gravity description, we know that the dual CFT has
central charges [58]

c = c̄ =
3`

2G3

. (18)

AdS3 classical gravity allows for three kinds of spacetime configurations. These are solutions of the
action (17) and can be classified in terms of orbits (elliptic, hyperbolic, parabolic) of the SL2(R) group
manifold [55,59,60]. The solutions corresponding to elliptic orbits can be written as

ds2 = − 1

`2

(
r2 + r2

+

)
dt2 +

(
r2 + r2

+

)−1
`2dr2 +

r2

`2
dφ , (19)
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where 0 ≤ t ≤ β, 0 ≤ φ ≤ 2π`, 0 ≤ r < ∞ and r+ is a constant. The corresponding 3D Euclidean
space has a contractible cycle in the spatial φ-direction. For generic values of r+ we have therefore a
conical singularity in this direction. Only for r+ = ` the conical singularity disappears and the manifold
becomes a nonsingular 3D AdS space at finite temperature 1/β. The conformal boundary of the 3D
spacetime is a torus with cycles of length β and 2π`. Correspondingly, the dual CFT will live in the torus
T (β, 2π`). The CFT on the cylinder C discussed in Section 2.2 can be obtained in the limit β � `. This
corresponds to consider −∞ < t <∞ and 0 ≤ φ ≤ 2π`.

The classical solutions of 3D gravity corresponding to hyperbolic orbits of SL2(R) are

ds2 = − 1

`2

(
r2 − r2

+

)
dt2 +

(
r2 − r2

+

)−1
`2dr2 +

r2

`2
dφ2. (20)

Now the 3D Euclidean manifold has a contractible cycle in the t-direction. For generic values of β and
r+ we have therefore a conical singularity in this direction. Only for β = βH , where βH is the inverse
Hawking temperature

βH =
1

TH
=

2π`2

r+

, (21)

the conical singularity can be removed and the space describes the Euclidean BTZ black hole. The black
hole has horizon radius r+, and mass and Bekenstein-Hawking entropy given by

M =
r2

+

8G3`
2
, SBH =

A
4G3

=
πr+

2G3

. (22)

Also in this case the conformal boundary of the 3D spacetime is the torus with cycles of length βH

and 2π`, and the dual CFT will live on T (βH , 2π`). The CFT on the cylinder C discussed in
Section 2.2 can be obtained in the limit ` � βH . This corresponds to consider a CFT at finite
temperature, 0 ≤ t ≤ βH , with noncompact spacelike dimension −∞ < φ < ∞. In terms of
the 3D bulk theory this corresponds to a macroscopic black hole with r+ � `.

The separating element between the two classes of solutions discussed above corresponds to parabolic
orbits of SL2(R),

ds2 = − 1

`2
r2dt2 +

`2

r2
dr2 +

r2

`2
dφ2, −∞ < t <∞. (23)

The solution can be seen as the r+ = 0 ground state of the BTZ black hole, i.e. the M = 0, TH = 0

solution.
For r+ 6= ` the solution (19) has a conical singularity not shielded by an event horizon [59,60]. The

conical singularity can also be thought of as originated by a pointlike source of mass m. In the spectrum
of AdS3 gravity these solutions are located between the NS vacuum, r+ = `, and the RR vacuum,
r+ = 0. Therefore we will consistently take 0 ≤ r+ ≤ `.

If we rescale the coordinates in Equation (19),

r → r+

`
r, t→ `

r+

t, φ→ `

r+

φ , (24)

the metric becomes

ds2 = −
(
r2

`2
+ 1

)
dt2 +

(
r2

`2
+ 1

)−1

dr2 +
r2

`2
dφ. (25)
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The previous expression describes thermal AdS3 in global coordinates but, owing to the rescaling of the
coordinates, we have now 0 ≤ φ ≤ 2πΓ`, with Γ = r+/`. The spacetime has a conical singularity
originated by a deficit angle 2π(1−Γ) = 2π(1− r+/`) = 2π(1−2π`/βcon), where we have introduced

βcon =
2π`2

r+

. (26)

βcon is the analogous of the inverse Hawking temperature βH and characterizes the conical singularity.
In the case of solution (20), setting β = βH eliminates the conical singularity, whereas for solution (19)
we get a regular manifold (AdS3 at finite temperature) for βcon = 2π`.

In order to find the holographic EE of the solution (19), (20) and (23), we have to discuss first the
modular symmetry of the 2D CFT dual to 3D AdS gravity.

4.2. Modular Invariance

It is well known that the partition function of a 2D CFT on the complex has to be invariant for
transformation of the modular group PSL2(Z)

τ → aτ + b

cτ + d
, (27)

where a, b, c, d are integers satisfying ad− bc = 1, τ = ω2/ω1 is the modular parameter of the torus and
ω1,2 are the periods of the torus. For simplicity we will take ω1 = γ real and ω2 = iβ purely imaginary.
We are mainly interested in the modular transformation of the torus

τ → −1

τ
. (28)

3D spaces which are asymptotically AdS are locally equivalent. The asymptotic form of the coordinate
transformations mapping the various spaces can be used to map one into the other the tori describing the
associated conformal boundaries. For our discussion the relevant elements are the Euclidean BTZ black
hole at Hawking temperature 1/βH , AdS3 space with deficit angle 2π(1− 2π`/βcon) and AdS3 at finite
temperature 1/βH . It will turn out that the boundary tori associated with these three spaces are related
by modular transformations of the torus.

Let us briefly review the well-known duality between the BTZ black hole and AdS3 at finite
temperature [34,61]. To this purpose, we use the fact that the Euclidean BTZ solution (20) with
periodicity t ∼ t + βH , φ ∼ φ + 2π` can be mapped by a diffeomorphism into AdS3 in Poincaré
coordinates

ds2 =
1

x2

(
dy2 + dzdz̄

)
, (29)

where z is a complex coordinate.
In the asymptotic r →∞ (x→ 0) region the map between the BTZ black hole and AdS3 in Poincaré

coordinates is

z = exp

[
2π

βH
(φ+ it)

]
. (30)

In order to have a natural periodicity, we introduce a new complex variable w

z = exp(−2πiw), (31)
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so that w = (−t + iφ)/βH . One can now easily realize that the asymptotic conformal boundary of the
BTZ black hole is a complex torus with metric ds2 = dwdw̄. The periodicity of the imaginary (ω2) and
real (ω1) part of w are determined by the periodicity of t, φ: ω2 = 2πi`/βH , ω1 = 1. The modular
parameter τBTZ = ω2/ω1 of the torus is therefore

τBTZ =
2πi`

βH
. (32)

Consider now Euclidean AdS3 at finite temperature, described by the metric (25) with periodicity
t ∼ t + βH and φ ∼ φ + 2π`. The r → ∞ asymptotic form of the map between AdS3 at finite
temperature and AdS3 in Poincaré coordinates is

z = exp

(
t− iφ
`

)
, (33)

whereas the coordinate w in Equation (31) is now w = 1
2π`

(φ+ it). The complex coordinate w has now
periodicity ω1 = 1, ω2 = iβH/2π`. The boundary of thermal AdS3 is a torus with modular parameter

τAdS =
iβH
2π`

. (34)

Hence the boundary torus of the BTZ black hole and that of thermal AdS3 are related by the
modular transformation

τAdS = − 1

τBTZ
. (35)

Passing to consider the Euclidean solution with the conical singularity (19), we note that it is related
to AdS3 just by the rescaling (24). This changes the periodicity of the coordinates, which becomes
t ∼ t+ 2π`, φ ∼ φ+ 4π2`2/βcon. Because the coordinate transformation mapping the boundary torus of
the conical singularity space into the boundary torus of AdS3 has the same form given by Equation (33),
it follows that the periodicity of the coordinate w is now ω1 = 2π`/βcon, ω2 = i. If we set βcon = βH ,
the periodicities of the two tori are related by

ωcon2 =
i

ωAdS1

, ωcon1 =
i

ωAdS2

. (36)

The boundary torus of Euclidean AdS3 with conical singularity characterized by the deficit angle
2π(1 − 2π`/βH) has the same modular parameter as that of AdS3 at temperature 1/βH . Notice that,
although the two manifolds have the same topology and the same boundary torus, they describe different
three-geometries. The first is a singular one, whereas the latter is a perfectly well-behaved geometry.
For this reason, one usually does not include AdS3 with conical singularities in the physical spectrum of
the theory.

Because τcon = τAdS , from Equation (35) it follows immediately that the boundary tori of AdS3 with
conical defect 2π(1− 2π`/βH) and that of the BTZ black hole at inverse temperature βH are related by
the modular transformation

τcon = − 1

τBTZ
. (37)
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4.3. EE and the UV/IR Relation

As a consequence of the AdS/CFT correspondence, the EE expressed in Equations (5), (6)
and (7) should give information about bulk correlators. More precisely, one would expect the EE
in Equation (5) to describe quantum correlations in the presence of conical singularity (19) and the EE
in Equation (7) of the thermal CFT to describe the interplay between thermal and quantum correlations
in the black hole background (20). The main obstacle to make the above relation precise is due to the
holographic nature of the AdS/CFT correspondence. Spatial correlations in the bulk gravity theory are
codified in the boundary CFT in a highly nonlocal way. Whereas the inverse temperature β appearing in
Equation (7) can be naturally identified as the inverse of the black hole temperature (21), the same is not
true for the parameters γ and ε in Equations (5), (6) and (7).

Owing to the holographic nature of the correspondence, the bulk interpretation of these parameters
requires careful investigation. As discussed in Section 2.3, the AdSd+1/CFTd correspondence indicates
a way to relate length scales on the boundary with length scales on the bulk, this is the UV/IR
connection [27,28]. Infrared effects in bulk AdSd+1 gravity correspond to ultraviolet effects in the
boundary CFTd, and vice versa.

The UV/IR connection allows to identify the UV cut-off ε in Equation (6) as an IR regulator of AdS3

gravity [27,28]. This can be done in the usual way by using the dilatation isometry of the metric (23):
r → λr, t→ λ−1t, φ→ λ−1φ. Equivalently, one can introduce “cavity coordinates” on AdS3 and show
that ε acts as an infrared regulator of the “area” of the S1 boundary sphere [27]. In fact, the regularized
radius of the S1 is R = `2/ε. The same is true in terms of the coordinate r parametrizing AdS3 in
the modified Poincaré form (23): cutting off the 2D CFT at length scale less than ε implies an infrared
cut-off on the radial coordinate of AdS3, r < Σ , where

Σ =
4π2`2

ε
. (38)

The length-scales γ and ε are defined up to a dimensionless multiplicative constant of O(1). In the
following we will set this multiplicative constant equal to 2π.

The bulk interpretation of the parameter γ in Equation (6) is not as straightforward as that of ε. γ
is not a simple external length scale we are using to cut off excitations of energy less than 1/γ. It is
the length of a localized spacelike slice of the 2D space on which the CFT lives. On the other hand,
owing to the holographic, nonlocal nature of the bulk/boundary correspondence, we expect that any
localization of DOFs on the boundary will be lost by the correspondence with DOFs in the bulk. If any
localization property of the observable slice Q is lost in the boundary/bulk duality, γ can only play the
role of an upper bound above which spatial correlations for the boundary CFT are traced out. Because
of the UV/IR connection, in AdS3 this will correspond to tracing out the bulk DOFs at small values of
the radial coordinate r, i.e. for r < ω, where

ω =
4π2`2

γ
. (39)

It is important to stress that the bulk parameter ω has not the same physical meaning of the boundary
parameter γ. Whereas γ is the length of a spacelike slice, which is sharply separated from the observable
region (hence it needs a UV regulator), ω has the much weaker meaning of a length scale below
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which spatial correlations are traced out. In particular in the AdS3 bulk there is no sharp boundary
separating observable and unobservable regions. The bulk interpretation of γ, given Equation (39) is
highly nontrivial and has the status of a conjecture, which is supported by the UV/IR relation. On the
other hand, once one accepts the validity of Equation (39) from the UV/IR relation it follows immediately
that tracing in the boundary for distances greater than γ corresponds to tracing in the bulk for r < ω.
We can use this meaning of γ and ω to interpret the EE (5), (6) and (7) as holographic entanglement
entropies of gravitational configurations.

The AdS/CFT correspondence and the IR/UV connection allow us to give to the EE (6) a simple bulk
interpretation: it is the EE of the regularized AdS3 spacetime (23), i.e. it gives a measure of the von
Neumann entropy that arises when an IR cut-off Σ is introduced and correlations are traced over for
r < ω. Substituting Eqs. (38) and (39) into Equation (6), we find SAdSent = c

3
ln Σ

ω
(we have used c̄ = c).

The natural length scale for cutting off quantum bulk correlations is given by the AdS length `: ω = 2π`.
This means that we are considering curvature effects much smaller than 1/`2. Using Equation (39), this
allows the identification of the boundary parameter in terms of the AdS length `

γ = 2π`. (40)

The holographic EE of the regularized AdS3 spacetime

SAdSent =
c

3
ln

Σ

`
(41)

has a simple geometric interpretation. Apart from a proportionality factor, it is the (regularized) proper
length of the spacelike curve t = const, φ = const. This can be easily shown integrating Equation (23)
for ` ≤ r ≤ Σ.

It is interesting to notice that the identification γ = 2π` can be obtained without using the UV/IR
connection, just assuming that in the large N limit the mass/temperature relationship for the BTZ black
hole exactly reproduces that of a thermal 2D CFT.

From Equations (21) and (22) one easily finds the mass/temperature relationship for the BTZ
black hole,

M =
π2`2

2G3

T 2
H . (42)

On the other hand, in the large temperature limit γ � β the EE (7) reduces to the classical, extensive
thermal entropy for an isolated system of length γ. The energy/temperature relationship for such a 2D
CFT is given by

E − E0 =
c

12
πγ
(
T 2

+ + T 2
−
)
, (43)

where E0 is the energy of the vacuum and T+, T− are the temperatures for the right and left oscillators.
Identifying the black hole mass M with E−E0 and the temperature TH = T+ = T− of the CFT thermal
state with the Hawking temperature of the black hole, we easily find, comparing Equation (43) with
Equation (42) and using Equation (18), γ = 2π`.

4.4. Holographic EE of Conical Singularities

Let us now consider the classical solution of 3D AdS gravity given by Equation (19), which describes
3D AdS spacetime with conical singularities. As explained in Section 4.2, solution (19) can be locally



Entropy 2010, 12 2259

obtained applying a diffeomorphism to the AdS spacetime (23). This transformation is the “spacelike”
counterpart of the “thermalization” mapping the metric (23) into the BTZ black hole. On the 2D
conformal boundary of the 3D AdS spacetime this transformation is described by the map

z = exp

(
t− iφ
β

)
. (44)

β is easily determined by first applying the transformation (33) mapping full AdS3 into (23) and then
using the rescaling (24): β = βcon, where βcon is given by Equation (26). In the limit βcon � 2π`

(i.e. ` � r+) the map (44) corresponds to a plane/cylinder transformation that maps the CFT on the
plane P into the CFT on the cylinder C. Thus, this conformal transformation maps the EE of a CFT
on the plane P into the EE of a CFT in the cylinder C [21], i.e. the EE of a CFT at zero temperature
and noncompact spacelike dimension given by Equation (6) into the EE of a CFT at zero temperature
with a compact spacelike dimension given by Equation (5). Correspondingly, the holographic EE of the
regularized AdS spacetime becomes the holographic EE associated to AdS3 with a conical singularity:

Sconent =
c

3
ln

[
βcon
πε

sin

(
2π2`

βcon

)]
=
c

3
ln

[
2`2

r+ε
sin
(πr+

`

)]
. (45)

Equation (45) can be considered as the analytic continuation r+ → ir+ of Equation (46) in the next
section. The holographic EE of a conical singularity described by a deficit angle 2π(1 − 2π`/βcon)

is the analytic continuation of the holographic EE for the BTZ black hole with inverse temperature
βH = βcon. The analytic continuation corresponds to the exchange of the (compact) timelike with the
spacelike direction. This result is a consequence of the modular symmetry (37) of the boundary CFT
on the torus relating the BTZ solution and the conical singularity spacetime. In the limit r+ � ` the
boundary torus corresponding to the BTZ black hole can be approximated by the infinitely long (along
the spacelike direction) cylinder C. The modular transformation (37) maps the cylinder C into the
cylinder C, which has infinitely long direction along the timelike direction and approximates the torus
for ` � r+. Correspondingly, the EE for the BTZ black hole (46) is transformed into the EE for the
conical singularity (45).

An important point, which we have only partially addressed, concerns the role played by the classical
solutions of 3D AdS gravity describing conical singularities of the spacetime. Since they represent
singular geometries, they cannot be part of the physical spectrum of pure 3D AdS gravity (although they
may play a role for gravity interacting with pointlike matter). On the other hand, they are related with
the BTZ black hole solutions by modular transformations, and one can associate an EE to them. All this
could be very useful for shedding light on the phase transition (analogue to the Hawking-Page transition
of four-dimensional gravity [53,54]), which is expected to take place at r+ = `.

4.5. Holographic Entanglement Entropy of the BTZ Black Hole

The spinless BTZ black hole (20) can be considered as the thermalization at temperature T = TH

of the AdS spacetime (23). On the 2D boundary of the AdS spacetime, and in the above discussed
large temperature limit r+ � ` , this thermalization corresponds to a plane/cylinder transformation that
maps the CFT on the plane P into the CFT on the cylinder C. The conformal map plane/cylinder has
the (Euclidean) form given in Equation (30). One can easily check that the above transformation is
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the asymptotic form of the map between the BTZ black hole and AdS3 in Poincaré coordinates. The
conformal transformation (30) maps the EE of a CFT on the plane P into the EE of a CFT in the cylinder
C [21], i.e. the EE of a CFT at zero temperature in a spacetime with noncompact spacelike dimension
into the EE of a CFT at finite temperature. As a result, Equation (6) is transformed into Equation (7)
with β = βH . Correspondingly, the holographic EE of the regularized AdS spacetime becomes the
holographic EE of the BTZ black hole

SBTZent = SCFTent (γ = 2π`, β = βH) =
c

3
ln

[
2`2

εr+

sinh
(πr+

`

)]
. (46)

The EE (46) still depends on the UV cut-off ε. A renormalized entropy S̃BTZent can be defined by
subtracting the contribution of the vacuum (the zero mass, zero temperature BTZ black hole solution).
In terms of the dual CFT, we have to subtract the EE of the zero-temperature vacuum state, which is
given by Equation (6) with γ = 2π`. The renormalized EE is therefore given by

S̃BTZent = SBTZent − Svacent =
`

2G3

ln

[
`

πr+

sinh
(πr+

`

)]
. (47)

As expected, the renormalized EE vanishes for r+ = 0 (the BTZ black hole ground state).
The holographic EE (47) for the BTZ black hole coincides exactly with the previously derived entropy

for the 2D AdS black hole. The 2D AdS black hole is the dimensional reduction of the spinless BTZ
black hole. Using the relationship between 2D and 3D Newton constant G2 = `/4G3 , Equation (47)
reproduces exactly the result (14).

Macroscopic, i.e. large temperature, black holes (with r+ � `) correspond, in terms of the 2D CFT,
to a thermal wavelength βH much smaller than the length 2π`. The expansion of Equation (47) for
r+/`� 1 gives

S̃BTZent =
πr+

2G3

− `

2G3

ln
πr+

`
+O(1) = SBH −

`

2G3

lnSBH +O(1). (48)

The leading term in EE is exactly the Bekenstein-Hawking entropy. This leading term describes the
extreme situation in which thermal fluctuations dominate completely. In this limit the EE is just a
measure of thermodynamic entropy. The EE (the von Neumann entropy) for the CFT becomes extensive
and it agrees with the Gibbs entropy of an isolated system of length γ = 2π`. The subleading term
behaves as lnSBH and describes the first corrections due to quantum entanglement.

The logarithmic correction in Equation (48) matches exactly the short scale correction for the quantum
entropy of a scalar field in the BTZ Euclidean background found in [62] by Mann and Solodukhin. Notice
that the authors of [62] consider the case of a single scalar field, therefore we can reproduce their result
by using for the central charge c + c̄ = 1. The fact that a 3D bulk calculation of the quantum entropy
gives the same result of a boundary CFT calculation is not only a nontrivial check of their correctness,
but also a highly nontrivial check of the AdS3/CFT2 correspondence.

In principle, one could also consider the regime βH ∼ 2π` in which the full quantum nature of the EE
should be evident. However, this regime is singular from the black hole point of view: it corresponds to
the 3D analogous of the Hawking-Page phase transition [53,54].
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The derivation of the EE for the spinless BTZ black hole can be easily extended to the rotating BTZ
solution, obtaining (see [19] for details):

S̃BTZent =
`

4G3

ln

{
`2

π2(r+ + r−)(r+ − r−)
×

× sinh

[
π(r+ + r−)

`

]
sinh

[
π(r+ − r−)

`

]}
, (49)

where r± are the positions of the outer and inner horizons. Expanding the previous expression for r+ � `

and r+ � r−, we get the same result given in (48).
Let us now briefly comment on the relationship between our approach and that of [5–7,35–37],

where the EE of the 2D CFT is computed in terms of 3D bulk geometric quantities (minimal area
surfaces). Conversely, in our approach we assume the validity of the EE formulas for the 2D CFT and
use them (by means of the AdS/CFT correspondence) for giving a holographic interpretation to the EE
of gravitational configurations. The two approaches are complementary in the sense that in [5–7,35–37]
bulk gravitational quantities are used to reproduce the EE of the boundary CFT, whereas we use the EE
of the CFT to reproduce the EE of bulk gravitational configurations.

4.6. Entanglement Entropy vs. Thermal Entropy

In this section we show that the leading term of the holographic EE for the BTZ black hole can be
obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs
on the torus [19]. This result indicates that black hole EE emerges when the semiclassical notion of
spacetime geometry is used to describe the black hole.

In the previous section we have discussed the holographic EE of gravitational configurations in 3D
AdS spacetime. In our approach the EE of the boundary CFT, SCFTent (γ, β), is used to probe thermal
correlations at scales set by β and spatial correlations at scales set by γ. The bulk description depends
crucially on the regime of the AdS3/CFT2 correspondence we want to investigate.

First of all, we work in the region of validity of the gravity description of the AdS/CFT
correspondence, when the AdS length ` is much larger than the Planck length, which coincides in our
units with the 3D Newton constant G3:

`

G3

∼ c� 1. (50)

This is the so-called “large N approximation”.
Moreover, considering curvature effects much smaller than the curvature 1/`2 of the AdS spacetime

allows the identification of the external parameter γ in terms of `. On the other hand, the thermal scale
β can be easily identified when a black hole is present in the bulk: β = βH = 1/TH . The semiclassical
description for black holes holds when the horizon radius r+ is much larger than the Planck length,
r+ � G3 , whereas the holographic EE formula (47) holds for r+ � `. We are in the regime where
we are allowed to approximate the boundary torus with the cylinder C. The path integral of Euclidean
quantum gravity on AdS3 is dominated by the contribution coming from the BTZ black hole at T = TH .
The leading term in the EE (48) describes the main (thermal) contribution of the BTZ geometry and
corresponds to the EE for the CFT dominated completely by thermal correlations. When we increase
the energy scale, we reach a regime for which contributions coming from geometries different from the
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BTZ instanton cannot be neglected. Quantum entanglement and the subleading term in Equation (48)
become relevant.

The other regime we have investigated so far is ` � r+, which is related to the previous one by the
modular transformation (37). The Euclidean quantum gravity partition function for 3D AdS gravity is
now dominated by AdS3 at temperature TH . Although the solutions (19) describe singular geometries
with conical singularities—therefore they cannot be part of the physical spectrum of the theory—the
modular symmetry strongly indicates that they can be used to probe quantum entanglement. In this
regime the boundary torus can be described by the cylinder C and the EE is given by Equation (45).

One may now wonder about the regime r+ ∼ `. In this parameter region we cannot
approximate the torus with an infinitely long cylinder. r+ = ` is the fixed point of the modular
transformations (35), (37) and we have a “large N phase transition”, which is the 3D analogue of the
Hawking-Page transition [53,54]. Since now the dual boundary CFT lives on the torus T (βH , 2π`), our
calculations of the EE on the cylinder lose their validity. Furthermore, it is not a priori evident that
the very notion of EE would maintain a sensible physical meaning in a regime where the semiclassical
description of gravity is expected to fail.

The most direct way to learn something about the relationship between the two regimes r+ ∼ ` and
r+ � ` is to compare the ` � β asymptotic behavior of the thermal entropy Sth(β, `), derived from
the partition function of the dual CFT on the torus, with the EE given by Equation (47). Unfortunately,
whereas the EE for a 2D CFT on a cylinder has an universal form, the thermal entropy Sth(β, `) for the
CFT on the torus takes different form depending on the details of the CFT we are dealing with. Let us
notice that, despite the intense activity on the subject in the last decade, the exact form of the 2D CFT
dual to pure 3D AdS gravity remains still a controversial point [55–57].

Here we will use a simple, albeit not completely general, approach to this problem. We will show that,
for the most common 2D CFTs (free bosons, free fermions, minimal models and Wess-Zumino-Witten
models), the asymptotic, large temperature ` � β behavior of Sth(β, `) calculated from the partition
function of the CFT on the torus reproduces exactly the leading term of the EE (47) for the BTZ
black hole.

The partition function of the CFT on the torus, Z(τ), is a function of the modular parameter
τ = iβ/2π`. Moreover, we will make use of the modular invariance of the partition function under
the modular transformation (28) to write Z(τ) = Z(−1/τ). From the partition function one can easily
compute the thermal entropy

Sth = lnZ − β∂β(lnZ) . (51)

We are interested in the asymptotic expansion of Sth in terms of the variable

y = sinh

(
2π2`

β

)
(52)

when y →∞. The asymptotic form of Sth(y) is determined writing Z as a function of the usual variable
q = exp (2πiτ). After making use of the modular invariance of the partition function under the modular
transformation (28), we then introduce the new variable q̃ = q(−1/τ) = exp (−2πi/τ) and determine
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the q̃ → 0 asymptotic expansion of Z(q̃). Finally, we determine Sth(y) by making use of the y → ∞
asymptotic expansion

q̃ =
1

4y2
+O

(
1

y4

)
. (53)

For free bosons on the torus the asymptotic expansion of the entropy is

Sth(y) =
c

3
ln y +O (ln(− ln y)) . (54)

For free fermions on the torus, as well as for minimal models and for Wess-Zumino-Witten models, the
entropy has the asymptotic form

Sth = − c
6

ln q̃ +O(1) =
c

3
ln y +O(1). (55)

The leading term in the large temperature expansion of the thermal entropy for the four CFT classes
on the torus considered in this section is

Sth ∼
c

3
ln y =

c

3
ln

(
sinh

2π2`

β

)
. (56)

Sth reproduces, for β = βH , the leading term of the holographic EE for the BTZ black hole given by
Equation (47). This result sheds light on the meaning of the holographic EE for the BTZ black hole
in particular and, more in general, on the very meaning of entanglement for black holes. In fact, our
result indicates that the EE of a black hole is a semiclassical concept, which has a meaning only for
macroscopic black holes in the regime r+ � `. Thus, entanglement seems to arise from a purely thermal
description of the underlying quantum theory of gravity, which is assumed to describe 3D quantum
gravity in the region r+ ∼ `. This fact supports the point of view that the microscopic theory describing
the BTZ black hole at short scales is unitary. EE is an emergent concept, which comes out when the
semiclassical notion of spacetime geometry is used to describe the black hole. The agreement between
thermal entropy for the CFT on the torus and holographic EE for the BTZ black hole is limited to the
leading term in the large temperature expansion. The subleading terms are not of the same order for the
different CFTs we have considered: they behave as ln(ln y) for free bosons on the torus, whereas they
are O(1) for the other three cases. Therefore, the subleading terms seem not to be universal (see [63]),
but they depend on the actual CFT we are dealing with.

5. Conclusions

We have derived, using the AdS/CFT correspondence, simple and general formulas for the
entanglement entropy of 2D and 3D AdS black holes. The picture that emerges is intriguing but also not
completely surprising. The EE of 2D and 3D AdS black holes reduces to the Bekenstein-Hawking
entropy—and the subleading terms have the universally predicted logarithmic behavior—only for
macroscopic black holes, when thermal correlations dominate. Our result indicates that the EE for a
black hole is a semiclassical concept with physical meaning only in the region ` � β. Away from this
regime, the EE codifies information about the full quantum gravity description.

It is important to point out that we have not performed a direct calculation of the EE of matter fields in
the BTZ background or other bulk gravitational configurations. In particular, in the 2D and 3D bulk we
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consider pure gravity with no extra matter fields (pure gravity in 3D has no physical propagating degrees
of freedom, so we also have no gravitons).

A highly nontrivial check that our procedure gives the correct answer is represented by the exact
matching of our results for the logarithmic subleading terms in Equation (48) with those found by Mann
and Solodukhin for the EE of scalar fields in the BTZ background [62].

The main drawback of our approach is its limited range of validity. It works only for black
holes in AdS spacetime. Moreover, we have only considered the 2D and 3D case; the extension to
four-dimensional AdS black holes is in principle possible but computationally more involved.
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