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Abstract: In this article, we discuss the relationships between thermodynamic quantities 
and the spatial pattern in a reaction-diffusion model based on the reversible Gray-Scott 
model. This model is introduced for calculation of the entropy production in a  
reaction-diffusion system. First, we show the relationship between entropy production and 
pattern formation, and suggest that the entropy production could be an index of different 
patterns. Then the entropy production is applied for searching the parameter region where 
the pattern is bistable. Moreover, the entropy change is calculated by using the relative 
chemical potential that is defined based on the equilibrium state and not on the standard 
chemical potential. The results of the entropy change are consistent with the intrinsic 
property of the entropy, therefore, the entropy change calculated in this way may be 
regarded as an appropriate quantity for the discussion of the thermodynamic properties in a 
non equilibrium system. 
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1. Introduction

In Nature, many temporal or spatio-temporal structures emerge spontaneously. These structures, 
called dissipative structures, are evoked through dissipative processes under conditions far from 
equilibrium [1,2]. They can be seen, for example, in the skin patterns of fish as ordered arrays of stripes 
or dots (or both) [3], in the aggregation process of amoeboidal cells of Dictyostelium discoideum  
as rotating spirals [4], and so on. In order to explain these phenomena, nonlinear reactions and 
reaction-diffusion systems have been invoked in many cases. These systems exhibit temporal 
structures such as an eventual excitation, periodic or chaotic oscillations [5–8], spatio-temporal 
structures such as traveling chemical waves and spatial structures known as Turing patterns [9–15]. 

In the framework of non-equilibrium thermodynamics, dissipative structures emerge through the 
instability of the thermodynamic branch. This branch is stable near equilibrium where the entropy 
production plays the role of the thermodynamic potential, especially when the Onsager reciprocal 
relations hold [1,2,16]. Therefore, the behavior of any system can be predicted when the system is near 
the equilibrium. When the thermodynamic branch becomes unstable, i.e., dissipative structures 
emerge, we know little about the existence of thermodynamic potential, except the principle of 
maximum entropy production [17]. 

The principle of maximum entropy production insists that the most stable state has maximum 
entropy production in an open system [17,18]. Thus the system will go to the state which has highest 
entropy production and then the entropy production is an index of state evolution. For example, this 
principle describes evolutions of crystal growth and the Earth’s climate [19–22]. This principle is 
described with not only thermodynamic terms and also statistical mechanics or information theory 
[23–25]. Then this principle can be applied for many phenomena. However, some numerical studies 
have failed to find a unique relation between entropy production and dissipative structures [26–31]. 
For example, the value of entropy production averaged over one cycle of oscillations in the oscillatory 
Oregonator can be both lower or higher than that of the corresponding unstable steady state, depending 
on the bifurcation parameter [26]. Similarly, the entropy production in a reaction-diffusion system 
increases or decreases during the pattern developing process, depending on the values of parameters 
and the initial conditions [31]. This result means that the entropy production does not converge to a 
minimum or maximum value in the global phase space. Therefore, the entropy production cannot play 
a role of global Lyapunov function under some non-equilibrium conditions.  

We review this historical issue by limiting our concern to the relation between the thermodynamic 
quantities and the spatial pattern in a reaction-diffusion system. In this article, we use the reversible 
Gray-Scott (r-GS) model as a reaction-diffusion system [29]. First, we calculate the entropy production 
and show the relations between this quantity and pattern formation processes. Second, we calculate not 
only this value, but also the flow of entropy thrown out to the environment and make the summation of 
these two quantities. In order to calculate numerically these thermodynamic quantities in a model 
study, we introduce an alternative quantity equivalent to the chemical potential [31]. In this paper, the 
availability of this alternative quantity is discussed too.  

This paper is organized as follows: the entropy balance equations are given in Section 2. This 
equation gives the relationships among the fundamental thermodynamic quantities discussed in this 
paper. The reversible Gray-Scott (r-GS) model is introduced in Section 3. Subsections 3.1 and 3.2 
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describe the r-GS model and the features of the pattern formations in the two dimensional system, 
respectively. The relation between the entropy change and the pattern formation is discussed in 
Section 4. Then, in Section 5, we consider the entropy balance, i.e., the thermodynamic interaction 
between the system and its environment. In Subsections 5.1 and 5.2, we give a practical definition for 
the calculation of the divergence of entropy flow by introducing the relative chemical potential,  
which is a measure of the thermodynamic distance from the equilibrium state. We deal with the  
one-dimensional r-GS system just for simplicity. The results and discussion are given in Subsections 5.3 
and 5.4, respectively, and summarized in Section 6. 

2. Entropy Balance 

The entropy balance equation is a basic equation for non-equilibrium thermodynamics. This 
equation shows the relation between the three thermodynamic quantities: the entropy change, the 
entropy production and the entropy flow. The entropy change is the time derivative of the entropy of 
the system, �S/�t, and is given as the sum of two integrals (the entropy production and the entropy 
flow) taken over the system: 
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where kB is the Boltzman constant; ��� and ��� are the rates of the forward and the backward reactions 
of the ��th chemical reaction, respectively. Dj and cj are the diffusion coefficient and the concentration 
of the j th chemical species, respectively.  

3. Reversible Gray-Scott model 

3.1. Model Equations 

Generally, models of irreversible chemical reactions are used for simulations of non-linear pattern 
formation. However, the entropy production becomes infinite in the case that at least one of chemical 
reactions is irreversible, i.e., ��� = 0 in Equation (2). Therefore, it is impossible to calculate the 
entropy production of irreversible reactions. This is the reason why reversible chemical reactions are 
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introduced. This model is called the reversible Gray-Scott model, which is modified from the original 
Gray-Scott model [29]. The model consists of two chemical reaction steps and three chemical spices 
U, W and P: 

U+2W  3W, (3) 

W  P. (4) 

The equations that govern this reaction-diffusion system are as follows: 
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where f is the flow rate constant; k and kr are the rate constants of the forward and the backward 
reactions, respectively. DU, DW and DP are the diffusion coefficients of U, W and P, and are set to be 
DU = 2.0 × 10�5, DW = 1.0 × 10�5 and DP = 1.0 × 10�6, respectively. 

3.2. Property of Pattern Formation 

The dynamics and the dependence on the parameters f and k in the present model are almost the 
same as these of the original model when the backward reaction rate constant is sufficiently  
small [20,21]. In the original model, the saddle node bifurcation line has only one extremal point as a 
function of f. However, in the r-GS model a new extremal point appears at low f, and the line has two 
extremal points. The Hopf bifurcation line also has a new extremal point because it should be 
connected with the saddle node bifurcation line at these two extremal points.  

This system shows various pattern formations. The dependency of patterns on the parameters f- k is 
plotted in Figure 1a after [32]. An inhomogeneous pattern appears near and at the right side of the 
saddle node line. The patterns change from the chaotic to the static (the black spots and lines) pattern 
as f increases. Some white spots appear when the system is on the Hopf bifurcation line. This 
parameter dependency is almost the same as that of the original Gray-Scott model which is classified 
by Pearson [9].  

The difference of the parameter dependency between two models becomes remarkable as the 
backward reaction rate constant increases. The extremal points on the saddle node bifurcation line 
become close to each other and finally collide to annihilate. The Hopf bifurcation line also disappears 
when these points annihilate. The system shows only static patterns: white spots, lines, and black spots 
patterns when the backward reaction rate constant becomes larger (Figure 1b). 

The system can exhibit a coexisting pattern even if all of the parameters are spatially homogeneous 
[14]. The spot and the line pattern region can coexist. The distance between pattern elements in this 
coexisting pattern can easily extend by artificial perturbations [14]. Such a pattern and such features 
cannot be seen in most dissipative reaction-diffusion systems and also in free-energy governed 
systems.  
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Figure 1. Parameter dependency of the pattern in the reversible Gray-Scott model. The 
gray scale exhibits the concentration of U, 0.0 (black) to 1.0 (white). (a) The case the 
reversible reaction rate constants are 0.001. The black line shows the saddle node 
bifurcation line and the red line shows the Hopf bifurcation line. (b) The case the reversible 
reaction rate constants are 0.01. The line shows the saddle node bifurcation line. 
Calculations were conducted with the 4th-Runge-Kutta method. Time and space 
resolutions are dt = 0.25 and dx, dy = 0.01, respectively. The finite difference method was 
applied for the diffusion terms. The system is composed of 1,024 × 1,024 grids, and the 
Neumann boundary conditions were applied. 

 
4. Entropy Production and Pattern Formation 

In this section, the relations between the pattern formation and the entropy production are 
described. These relations are discussed in the cases of self-replicating spots and line pattern 
formation. Figure 2 shows the self-replicating process of a spot. A circular spot becomes unstable to 
become a peanut shape [15]. Then, the spot is divided into two. The number of spots doubles: 1,2,4, 
and so on. Finally, spots fill the whole space, and the system becomes static. At the beginning, the 
entropy production increases rapidly during the self-replicating process. On the other hand, this 
quantity increases slowly when the spots looks static. It means that the entropy production increases 
almost proportional to the number of the spots. Finally, it becomes stable when the system shows static 
pattern [30].  

Figure 3 shows the process in which a line develops from a spot. As same in the previous example, 
a spot becomes unstable to be a peanut shape; however, it does not self-replicate. The heads of the 
peanut move apart from the each other and a line remains between them. The stretching speed of the 
line is constant, and the entropy production increases constant velocity while there is no obstacles  
(the boundary and other patterns). Finally, the line fills the system, and the system becomes static, and 
the entropy production becomes constant. 
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Figure 2. Time series of the entropy production and pattern when the system shows self-
replicating spots. The parameters: f = 0.025 k = 0.064, and kr = 0.001. (a) Time series of 
the entropy production. Line: entropy production, dotted line: the number of the minima of 
U (~ spots). (b) Initial spot pattern at t = 0.0. (c) The spot becomes a peanut shape which 
has two minima (t = 3,700.0). (d) The peanut shape becomes two spots, t = 4,000.0. (e) The 
two spots becomes four spots, t = 5000.0. (f) The spots fill the system (the final state,  
t = 20,000.0). Time and space resolutions are dt = 0.25 and dx,dy = 0.005, respectively. 
The system size is 256 x 256 grids and the periodic boundary conditions are applied. 

  
 

From the above results, we conclude that the value of the entropy production is proportional to the 
pattern density, and the entropy production can be an index of pattern formation. Because of this 
feature, the entropy production is a smooth function of the parameters in the parameter region where 
pattern morphology is preserved. On the other hand, the entropy production changes in a discontinuous 
manner when the pattern morphology changes drastically, e.g., the spot pattern changes to the line 
pattern. Therefore, we can show the parameter regions of the patterns by using the entropy production. 
Here, we show these parameter regions with this quantity when the system has bistability. Figure 4 
shows the change of the entropy production as the parameter k is incremented and decremented. The 
system shows the spot pattern in the parameter region 0.077 � k � 0.082 and the line pattern in the 
parameter region 0.0825 � k � 0.091 as k is incremented. In this case, the entropy production changes 
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discontinuously at the parameter k = 0.0825. On the other hand, the system shows only the spot pattern 
in the region 0.077 � k � 0.091 as k decreases. Then the entropy production increases smoothly in this 
case. As a result, the entropy production shows two values in the parameter region 0.077 � k � 0.082 
where the system shows bistability. Therefore, the entropy production can be an indicator to 
distinguish the parameter regions of the patterns [31].  

These results suggest that the minimum value of entropy production does not necessarily mean the 
implementation of the most stable state. The r-GS model shows bistability of patterns, so the entropy 
production shows different values even under the same parameter conditions. Thus the entropy 
production is not an index of pattern selection and does not play the role of a global thermodynamic 
potential, i.e., a Lyapunov function. It is probably because the entropy production is the time 
derivative of the entropy that is produced inside the system only, and the interaction between the 
system and its environment is not taken into account.  

Figure 3. Time series of the entropy production and pattern when a line is stretching. The 
parameters: f = 0.048 k = 0.066 kr = 0.001. (a) Time series of the entropy production. (b) A 
spot at the initial state, t = 0.0. (c) The spot becomes a peanut shape, t = 1,100.0. (d) The 
heads of the peanut move apart from each other and the line is stretching, t = 2,000.0.  
(e) The final state where the line fills the system, t = 200,000.0. The calculation conditions 
are the same in Figure 2. 
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Figure 4. Entropy production is shown as a function of the parameter: k at f = 0.04 and  
kr = 0.01. The bistability region of the lines and the spots pattern. Open square: The 
parameter k is incremented from k = 0.077. The initial stripe pattern is inserted as (a),  
at k = 0.077. The pattern changes into spots pattern (b) at k= 0.0825. Dot: The parameter k 
is decreased from k = 0.091. The initial pattern is inserted as (c). The pattern morphology 
does not change in this case. 

5. Calculation of Entropy Balance Equation 

5.1. Definition of the Entropy Flow 

For calculation of the entropy balance equation, the divergence of the entropy flow should be 
calculated. This term can be written as an integral over the system surface����with the divergence 
theorem:  
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where n is the unit vector normal on the system surface. �j and jj are the chemical potential and the 
flux vector of the jth chemical species, respectively. The chemical potential of the jth chemical species 
is defined as:  

,ln*
jBjj cTk�� ��  (7) 

where �j
* is the standard chemical potential and cj is the concentration of the jth chemical species 

[1,2]. The standard chemical potential has a constant value characteristic for each chemical species. 
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5.2. Description of the Flux Vector and the Chemical Potential 

For the calculation of the entropy flow, the flow vector j and the chemical potential � in Equation 6 
should be described concretely. Here, descriptions of these quantities in the present model will  
be given. 

The mass flow vectors are derived from the system configurations. Here, we consider a  
one-dimensional reaction-diffusion system for simplicity [31]. Spatial imhomogeneity in 
concentrations appears along one direction x only (In Figure 5, the system lines along the vertical 
direction). From the equations of the system, the flow vector j is described; Inward flows of chemical 
species are given as: 

,0,0, ���� PWzU f jjej  (8) 

and the outbound flows are given as:  

,,, zPzWzU fPfWfU ejejej ���  (9) 

where ez is the unit vector directed parallel to the surface normal vector. Here, the direction of this 
vector is perpendicular to the direction x. The flow terms are set to zero at the Neumann boundary 
conditions [31].  

The chemical potential is described with the concentrations of the chemical species and its standard 
chemical potential. However, we face a problem that the values of the standard chemical potentials are 
unknown in our model. This fact means that it is impossible to calculate the entropy flow from 
Equations 6 and 7. To avoid this inconvenience, we introduce an alternative chemical potential, �r, 
which is called the relative chemical potential [31].  

The relative chemical potential is defined as: 
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where ce,j is the concentration of the jth chemical species at the equilibrium state. This potential means 
that the base of the potential is moved from the constant value (the standard chemical potential which 
is defined by Gibbs) to the equilibrium state of the system. This equilibrium state is defined as the 
steady state to which the non-equilibrium system should reach if the system is suddenly isolated from 
its environment.  

For the calculation of the relative chemical potentials in the present system, the equilibrium state  
ce,j (=ce,j(t)) is calculated from the following three equations. These equations are obtained by 
assuming that the system is isolated, i.e., f = 0.0: 

� 	 � 	 ,� ����� VPWUdVPWU eee  (11) 

,32
eree WkWU �  (12) 

,ere PkkW �  (13) 

where V is the volume of the system; Ue, We and Pe are the equilibrium concentrations of chemical 
species U, W and P, respectively. The first equation means that the total number of molecules is 
preserved in the r-GS model. 
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5.3. Results 

In order to discuss the relation between the entropy balance and pattern, the thermodynamic 
quantities are calculated for a propagating and reflecting pulse wave in the one-dimensional system.  

Figure 5. Time series of the pattern and the thermodynamic quantities: the entropy 
production, the entropy flow and the entropy change. The parameters: f = 0.01 k = 0.047  
kr = 0.001. The top panel shows the propagating pulse. The horizontal and the vertical axes 
represent time and space, respectively. A black pulse reflects at the Neumann boundary. 
The second, the third and the forth panels show the entropy production, the divergence of 
entropy flow and the entropy change, respectively. Time and space resolutions are dt = 0.1 
and dx = 0.005, and the system size is 800dx. 

 
 
The time series of the system is shown in the upper panel of Figure 5. The system is set to the fixed 

point (U,V, P) = (1.0, 0.0, 0.0) homogeneously, then perturbed initially to (0.5, 0.25, 0.0) at the upper 
side (10 calculation grids) of the system. A pulse wave propagates to the other side from the perturbed 
area with a constant velocity. When the pulse reaches the bottom side, the pulse reflects to propagate 
back to the upper side. As this pulse reflection occurs repeatedly at the Neumann boundaries, the pulse 
propagates back and forth between the boundaries.  
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The time series of the thermodynamic quantities are shown in Figure 5 (lower panel). The entropy 
production shows a constant value after the pulse is initiated. This value does not change until the 
pulse reaches the boundary. It decreases when the pulse reaches near the boundary and goes back to 
the constant value after the reflection. Thus, it behaves like a damping oscillation. 

The absolute value of the entropy flow is the same as that of the entropy production while the pulse 
is propagating steadily. This quantity begins to increase when the pulse reaches near the boundary. 
Similar to the previous case, this quantity goes back to the constant value with a damping oscillating 
behavior after the reflection. After that, this value becomes the constant value, too. It looks that the 
absolute value of this quantity follows the value of the entropy production except that the amplitude of 
the dumping oscillation is smaller than that of the entropy production.  

The entropy change converges to zero initially and it becomes zero while the pulse propagates 
constantly. This quantity decreases and becomes negative values when the pulse reaches near the 
boundary. The entropy change goes up to be a positive value at the moment of the reflection. After 
that, it reaches to the zero constant with the dumping oscillating behavior. This quantity becomes zero 
again and the pulse propagates with a constant velocity to the opposite side.  

5.4. Discussion 

The entropy production is roughly proportional to the black region in the pattern, as shown in 
Section 3. The entropy change shows a constant value when the pulse propagates with constant 
velocity and when its profile is kept constant. It means that the entropy production is constant if the 
shape of the pattern is independent of time, i.e., it does not depend whether the pattern is static or 
traveling constantly. On the other hand, the entropy production slightly changes while the pulse is 
reflecting. The reason for this change is that the shape of the pulse is deforming during the reflection 
process. Actually, the minimum value of the pulse profile slightly increases from 0.259 to 0.289 at the 
moment when the pulse reflects. After the reflection, the pulse shows breathing behavior with damping 
and then the thermodynamic quantities show some fluctuations during the reflecting process.  

The negative value of the entropy flow represents that the excess amount of the entropy is thrown 
out to the environment through the mass flow. The absolute value of the entropy flow is almost the 
same as that of the entropy production. Therefore, the absolute value of the entropy change is smaller 
than 1/10 of these values. This means that most of the entropy produced inside the system is thrown 
out to the environment. Especially when the system shows a propagating pulse with a constant 
velocity, the entropy change is zero. This property is the same as that when the system shows a static 
pattern [31]. Therefore the entropy production balances with the entropy flow if the profile of the 
pattern is kept constant and then this property does not depend whether the pattern stays or moves 
constantly.  

The entropy change shows non-zero values during the pattern development [22]. It shows also  
non-zero values while the pulse is reflecting, i.e., the shape of the pulse is deforming. It shows both 
negative and positive values during this process. The time integration of the entropy change over this 
process becomes zero. This means that the entropy shows the same values before and after the 
reflection of pulse. In this case, both the velocity and the shape of the pulse are preserved before and 
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after the reflection. This calculation indicates that the entropy of the system shows the same value if 
the system shows the same pattern profile.  

The entropy change is calculated with the relative chemical potentials. These potentials are based 
on the state of the system and not on the standard chemical potentials, which are unique constants for 
each chemical species. Despite this, the properties of the entropy change in our calculation coincide 
with the two properties of the entropy which are deduced from the intrinsic property of the entropy as 
a state function of the system. One is that the entropy change becomes zero, i.e., the entropy shows a 
constant value if the state (pattern shape) of the system is not time dependent. The behavior is evident 
by the above-mentioned calculations for of the pulse propagating with a constant velocity. The other is 
that the entropy is a unique function of the state of the system. This property is shown by the fact that 
the entropy of the system is the same before and after the pulse reflection. Therefore, we expect the 
thermodynamic quantity calculated with the relative chemical potential can be useful to discuss the 
thermodynamic behavior of the non-equilibrium system and its properties are consistent with the 
established properties of entropy.  

6. Summary 

In this review, the relations between the thermodynamic quantities and pattern formation are 
investigated in a reaction-diffusion system composed of the reversible Gray-Scott model. First it is 
shown the relation between the entropy production and the pattern formations. The results of two 
examples indicate that the entropy production is proportional to the area of the black region of the 
system. Thus, the entropy production could be used as a quantitative index of patterns. An example is 
give to show the existence of the parameter region where the system has a bistability by using this 
quantity as a measure.  

The relative chemical potential is introduced in order to calculate the entropy balance in a  
non-equilibrium dissipative system. The entropy balance of the propagating pulse is calculated with 
this potential in the one-dimensional reaction-diffusion system. The thermodynamic quantities show 
constant values while the profile of the pulse is time independent. This thermodynamic feature is the 
same as in the case where the system shows a static pattern [31]. Therefore, the thermodynamic 
quantities should be constant if the pattern profile is independent of time, even though it moves 
constantly. This feature coincides with a property of entropy that it does not change while the state of 
the system does not change. We also calculate the time integration of the entropy change during the 
reflection of pulse and deduce that the entropy before and after the pulse reflection takes the same 
value. This fact is coincident with such an attribute of entropy that the entropy is a unique function of 
the state of the system. Therefore, we believe that the thermodynamic quantities can be calculated 
appropriately by using the relative chemical potential. 
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