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Abstract: In statistical physics, Boltzmann-Shannon entropy provides good understanding
for the equilibrium states of a number of phenomena. In statistics, the entropy corresponds
to the maximum likelihood method, in which Kullback-Leibler divergence connects
Boltzmann-Shannon entropy and the expected log-likelihood function. The maximum
likelihood estimation has been supported for the optimal performance, which is known to be
easily broken down in the presence of a small degree of model uncertainty. To deal with this
problem, a new statistical method, closely related to Tsallis entropy, is proposed and shown
to be robust for outliers, and we discuss a local learning property associated with the method.
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1. Introduction

Consider a practical situation in which a data set {x1, · · · , xn} is randomly sampled from a probability
density function of a statistical model {fθ(x) : θ ∈ Θ}, where θ is a parameter vector and Θ is the
parameter space. A fundamental tool for the estimation of unknown parameter θ is the log-likelihood
function defined by

ℓ(θ) =
1

n

n∑
i=1

log fθ(xi) (1)
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which is commonly utilized by statistical researchers ranging over both frequentists and Bayesians. The
maximum likelihood estimator (MLE) is defined by

θ̂ = argmin
θ∈Θ

ℓ(θ) (2)

The Fisher information matrix for θ is defined by

Iθ =

∫
fθ(x)

∂

∂θ
log fθ(x)

∂

∂θT
log fθ(x)dx (3)

where θT denotes the transpose of θ. As the sample size n tends to infinity, the variance matrix of
√
n(θ̂−

θ) converges to I−1
θ . This inverse matrix exactly gives the lower bound in the class of asymptotically

consistent estimators in the sense of matrix inequality, that is,

AVθ(θ̃) ≥ I−1
θ (4)

for any asymptotically consistent estimator θ̃ of θ, where AVθ denotes the limiting variance matrix under
the distribution with the density fθ(x).

On the other hand, the Boltzmann-Shannon entropy

H0(p) =

∫
p(x) log p(x)dx (5)

plays a fundamental role in various fields, such as statistical physics, information science and so forth.
This is directly related with the MLE. Let us consider an underlying distribution with the density function
p(x). The cross entropy is defined by

C0(p, fθ) = −
∫
p(x) log fθ(x)dx (6)

We note that C0(p, fθ) = Ep{−ℓ(θ)}, where Ep denotes the expectation with respect to p(x). Hence, the
maximum likelihood principle is equal to the minimum cross entropy principle. The Kulback-Leibler
(KL) divergence is defined by

D0(p, q) =

∫
p(x) log

p(x)

q(x)
dx (7)

which gives a kind of information distance between p and q. Note that D0(p, fθ) = C0(p, fθ) −C0(p, p)

An exponential (type) distribution model is defined by the density form

fθ(x) = exp{θTt(x) − ψ(θ)} (8)

where ψ(θ) is the cumulant transform defined by log
∫

exp{θTt(x)}dx. Under the assumption of this
family, the MLE has a number of convenient properties such as minimal sufficiency, unbiasedness,
efficiency [1]. In particular, the MLE for the expectation parameter η = Eθ{t(X)} is explicitly given by

η̂0 =
1

n

n∑
i=1

t(xi)
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which is associated with a dualistic relation of the canonical parameter θ and the expectation parameter
η [2,3]. Thus, the MLE satisfies such an excellent property, which is associated with logarithmic and
exponential functions as in (2) and (8).

The MLE has been widely employed in statistics, in which the properties are supported in theoretical
discussion, for example, as in [4]. However, the MLE has some inappropriate properties when the
underlying distribution does not belong to the model {fθ(x) : θ ∈ Θ}. A statistical model is just
simulation of the true distribution as Fisher pointed in [1]. The model, which is just used as a working
model, is wrong in most practical cases. In such situations, the MLE does not show proper performance
because of model uncertainty. In this paper we explore alternative estimation method than the MLE.

2. Power Divergence

The logarithmic transform for observed values is widely employed in data analysis. On the other
hand, a power transformation defined by

tβ(x) =
xβ − 1

β

often gives more flexible performance to get good approximation to normal distribution [5]. In analogy
with this transform, the power cross entropy is defined by

Cβ(p, q) = −
∫
p(x)

q(x)β − 1

β
dx+

∫
q(x)β+1

β + 1
dx

where β is a positive parameter. Thus, it is defined by the power transform of the density. If we take the
limit of β to 0, then Cβ(p, q) converges to C0(p, q), which is given in (6). In fact, the power parameter
β is not fixed, so that different β’s give different behaviors of the power entropy. The diagonal power
entropy is defined by

Hβ(p) =

∫
(β + 1)p(x) − p(x)β+1

β(β + 1)
dx

which is given by taking Cβ the diagonal. Actually, this is equivalent to Tsallis q-entropy with the
relation β = q − 1.

Let {x1, · · · , xn} be a random sample from unknown density function p(x). Then we define the
empirical mean power likelihood by

ℓβ(θ) =
1

n

n∑
i=1

fθ(xi)
β − 1

β
− κβ(θ) (9)

where κβ(θ) =
∫
fθ(x)

β+1dx/(β + 1). See [6–9] for statistical applications. Accordingly, the minus
expectation value of ℓβ(θ) is equal to Cβ(p, fθ). In general, a relation of cross and diagonal entropy
leads to the inequality Cβ(p, q) ≤ Cβ(p, p), from which we define the power divergence by

Dβ(p, q) = Cβ(p, q) − Cβ(p, p)

We extend power entropy and divergence defined over the space of all density functions, which are not
always assumed to have a total mass one. In particular, this extension is useful for proposing boosting
methods [10–16].
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This derivation can be extended by a generator function U . Assume that U(t) is strictly increasing
and convex. The Fencel duality discussion leads to a conjugate convex function of U(t) defined by

U∗(s) = max
t∈R

{st− U(t)} (10)

which reduces to U∗(s) = sξ(s) − U(ξ(s)), where ξ(s) is the inverse function of the derivation U̇ of U .
Then, U -cross entropy is defined by

CU(µ, ν) = −
∫
µ(x)ξ(ν(x))dx+

∫
U(ξ(ν(x)))dx

Similarly U -divergence is defined by

DU(µ, ν) =

∫
{U∗(µ(x)) + U(ξ(ν(x))) − µ(x)ξ(ν(x))}dx (11)

We note thatDU(µ, ν) = CU(µ, ν)−CU(µ, µ). By the definition ofU∗ in (10) we see that the integrand of
the right-hand side of (11) is always nonnegative. The power divergence is one example of U -divergence
by fixing

Uβ(t) =
1

β + 1
(1 + βt)

β+1
β

The power divergence can be defined on M as

Dβ(µ, ν) =

∫ {
µ(x)

µ(x)β − ν(x)β

β
+
ν(x)β+1 − µ(x)β+1

β + 1

}
dx (12)

for µ and ν of M [17]. Thus Uβ(t) is strictly increasing and convex, which implies that the integrand of
the right-hand side of (12) is nonnegative.

To explore this, it seems sufficient to restrict the definition domain of Dβ to P . However, we observe
that the restriction is not useful for statistical considerations. We discuss the restriction on the projective
space as follows. Fix two functions µ and ν in M. We say that µ and ν are projectively equivalent if
there exists a positive scalar λ such that

ν(x) = λµ(x) (a.e. x)

Thus, we write ν ∼ µ. Similarly, we call a divergence D defined on M projectively invariant if for all
λ > 0, κ > 0

D(λµ, κν) = D(µ, ν) (13)

We can derive a variant of power divergence as

∆β(µ, ν) =
1

β(β + 1)
log

∫
µ(x)β+1dx− 1

β
log

∫
µ(x)ν(x)βdx+

1

β + 1
log

∫
ν(x)β+1dx

See Appendix 1 for the derivation. Immediately, we observe ∆β satisfies (13), or projective invariance.
Hereafter, we call ∆β the projective power divergence. In this way, for p(x) = µ(x)/

∫
µ(x)dx and

q(x) = ν(x)/
∫
ν(x)dx, it is obtained that

∆β(p, q) = ∆β(µ, ν)
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If we take a specific value of β, then

∆β=1(µ, ν) =
1

2
log

∫
µ(x)2dx

∫
ν(x)2dx( ∫

µ(x)ν(x)dx
)2

and

lim
β→0

∆β(µ, ν) = D0

( µ∫
µ(x)dx

,
ν∫

ν(x)dx

)
where D0 is nothing but the KL divergence (7). We observe that the projective power divergence
satisfies information additivity. In fact, if we write p and q as p(x1, x2) = p1(x1)p2(x2) and q(x1, x2) =

q1(x1)q2(x2), respectively, then

∆β(p, q) = ∆β(p1, q1) + ∆β(p2, q2)

which means information additivity. We note that this property is not satisfied by the original power
divergenceDβ . Furthermore, we know that ∆β associates with the Pythagorean identity in the following.
Proposition 1. Assume that there exist three different points p, q and r in M satisfying

∆β(p, r) = ∆β(p, q) + ∆β(q, r) (14)

Define a path {pt}0≤t≤1 connecting p with q and a path {rs}0≤s≤1 connecting r with q as

pt(x) = (1 − t)p(x) + tq(x), {rs(x)}β = (1 − s){r(x)}β + s{q(x)}β

Then

∆β(pt, rs) = ∆β(pt, q) + ∆β(q, rs) (15)

holds for all t (0 < t < 1) and all s (0 < s < 1).
Proof is given in Appendix 2. This Pytahgorean-type identity is also satisfied with the

Dβ [16].

3. Minimum Power Divergence Method

In the previous section we introduce a statistical method defined by minimization of the projective
power divergence discussed. By the definition of ∆β the cross projective power entropy is led to

Γβ(µ, ν) = − 1

β
log

∫
µ(x)ν(x)βdx+ cβ(θ)

where cβ(θ) = (β + 1)−1 log{
∫
fθ(x)

β+1dx}. We see that ∆β(µ, ν) = Γβ(µ, ν)− Γβ(µ, µ). Hence, this
decomposition leads the empirical analogue based on a given data set {x1, · · · , xn} to

Lβ(θ) =
1

β
log

( 1

n

n∑
i=1

fθ(xi)
β
)
− cβ(θ) (16)

which we call the mean power likelihood with the index β. Thus, the minus expectation of Lβ(θ) with
respect to the unknown density function p(x) equals to Γβ(p, fθ). The limit of β to 0 leads that Lβ(θ)
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converges to ℓ0(θ). Assume that {x1, · · · , xn} is a random sample exactly from fθ(x). Then the strong
law of large number yields that

Lβ(θ′) −→ −Γ(fθ, fθ′)

as n increases to infinity. From the property associated with the projective power divergence it follows
that Γ(fθ, fθ′) ≥ Γ(fθ, fθ), which implies that θ = argminθ′∈Θ Γ(fθ, fθ′). Consequently, we conclude
that the estimator θ̂β = argminθ′∈Θ Lβ(θ′) converges to θ almost surely. The proof is similar to that for
the MLE in Wald [18]. In general any minimum divergence estimator satisfies the strong consistency in
the asymptotical sense.

The estimator θ̂β is associated with the estimating function,

sβ(x, θ) = fθ(x)
β
{
s(x, θ) − ∂

∂θ
cβ(θ)

}
(17)

where s(x, θ) is the score vector, (∂/∂θ) log fθ(x). We observe that the estimating function is unbiased
in the sense that Eθ{sβ(x, θ)} = 0. This is because

Eθ{sβ(x, θ)} =

∫
fθ(x)

β+1s(x, θ)dx−
∫
fθ(x)

β+1dx
∂

∂θ
cβ(θ) = 0

Thus the estimating equation is given by

Sβ(θ) =
1

n

n∑
i=1

sβ(xi, θ) = 0

We see that the gradient vector of Lβ(θ) is proportional to Sβ(θ) as

∂

∂θ
Lβ(θ) =

( 1

n

n∑
i=1

fθ(xi)
β
)−1

Sβ(θ)

Hence, the estimating function (17) exactly leads to the estimator θ̂β .
Accordingly, we obtain the following asymptotic normality

√
n(θ̂β − θ) −→D N(0,AVβ(θ))

where −→D denotes convergence in law, and N(µ, V ) denotes a normal distribution with mean vector µ
and variance matrix V . Here, the limiting variance matrix is

AVβ(θ) =
{

E
∂sβ(x, θ)

∂θ

}−T

var(sβ(x, θ))
{

E
∂sβ(x, θ)

∂θ

}−1

The inequality (4) implies AVβ(θ) ≥ I−1
θ for any β, which implies that any estimator θ̂β is not

asymptotically efficient, where Iθ denotes the Fisher information matrix defined in (3). In fact, the
estimator θ̂β becomes efficient only when β = 0, which is reduced to the MLE. Hence, there is no optimal
estimator except for the MLE in the class {θ̂β}β≥0 as far as the asymptotic efficiency is concerned.
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3.1. Super Robustness

We would like to investigate the influence of the estimator θ̂β against outliers. We consider outliers in
a probabilistic manner. An observation xo is called an outlier if fθ(xo) is very small. Let us carefully look
at the estimating equation (17). Then we observe that the larger the value of β is, the smaller ∥sβ(xo, θ)∥
for all outliers xo. The estimator θ̂β is solved as

θ̂β = argsolve
θ∈Θ

{
n∑

i=1

sβ(xi, θ) = 0}

which implies that, for a sufficiently large β, the estimating equation has little impact from outliers
contaminated in the data set because the value of the integral

∫
fβ

θ is hardly influenced by the outliers.
In this sense, θ̂β is robust for such β [19]. From an empirical viewpoint, we know it is sufficient to fix
β ≥ 0.1. In a case that fθ(x) is absolutely continuous in Rp we see that lim|x|→∞ |sβ(x, θ)| = 0, which
is quite contrast with the optimal robust method (cf. [20]). Consider an ϵ-contamination model

fθϵ(x) = (1 − ϵ)fθ(x) + ϵδ(x)

In this context, δ(x) is the density for outliers, which departs from the assumed density fθ(x) with a
large degree. It seems reasonable to suppose that

∫
fθ(x)δ(x)dx ≃ 0. Thus if the true density function

p(x) equals fθ,ϵ(x), then θ̂β becomes a consistent estimator for θ for all ϵ, 0 ≤ ϵ < 1. In this sense we
say θ̂β satisfies super robustness. On the other hand, the mean power likelihood function ℓβ(θ) as given
in (9) associates with the estimating function

fθ(x)
βs(x, θ) − ∂

∂θ
κβ(θ)

which is unbiased, but the corresponding estimator does not satisfy such super robustness.
Let us consider a multivariate normal model N(µ, V ) with mean vector µ and variance matrix V in

which the minimum projective power divergence method by (16) is applicable for the estimation of µ
and V as follows:

(µ̂β, V̂β) = argmax
(µ,V )∈Rp×S

Lβ(µ, V )

where S denotes the space of all symmetric, positive definite matrices.
Noting the projective invariance, we obtain

Lβ(µ, V ) =
1

β
log

[ 1

n

n∑
i=1

exp{−β
2
(xi − µ)TV −1(xi − µ)}

]
− 1

β + 1
log det

( V

β + 1

)
(18)

from which the estimating equation gives the weighted mean and variance as

µ =

∑n
i=1w(xi, µ, V )βxi∑n
i=1w(xi, µ, V )β

, (19)

V = (β + 1)

∑n
i=1w(xi, µ, V )β(xi − µ)(xi − µ)T∑n

i=1w(xi, µ, V )β
(20)

where w(x, µ, V ) is the weight function defined by exp{−1
2
(x− µ)TV −1(x− µ)}. Although we do not

know the explicit solution, a natural iteration algorithm can be proposed that the left-hand sides of (19)
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and (20), say (µt+1, Vt+1) are both updated by plugging (µt, Vt) in the right-hand sides of (19) and (20).
Obviously, for the estimator (µ̂β, V̂β) with β = 0, or the MLE, we need no iteration step but the sample
mean vector and sample variance matrix as the exact solution.

3.2. Local Learning

We discuss a statistical idea beyond robustness. Since the expression (16) is inconvenient to
investigate the behavior of the mean expected power likelihood function, we focus on

Iβ(θ) =
1

β

{∫
fθ(x)

βp(x)dx− 1
}

as a core term, where p(x) is the true density function, that is, the underlying distribution generating
the data set. We consider K mixture model, while p(x) is modeled as ϵ-contaminated density function
fθ,ϵ(x) in the previous section. Thus, p(x) is written by K different density functions pk(x) as follows:

p(x) = π1p1(x) + · · · + πKpK(x) (21)

where πk denotes the mixing ratio. We note that there exists redundancy for this modeling unless pk(x)s
are specified. In fact, the case in which π1 = 1 and p1(x) is arbitrarily means no restriction for p(x).
However, we discuss Iβ(θ) on this redundant model and find that

Iβ(µ, V ) =
1

β

( K∑
k=1

πk{(2π)p det(V )}−
β
2

∫
exp{−β

2
(x− µ)TV −1(x− µ)}pk(x)dx− 1

)
(22)

We confirm

I0(µ, V ) = −1

2

{ K∑
k=1

πk

∫
(x− µ)TV −1(x− µ)pk(x)dx+ log det(V )

}
taking the limit of β to 0. It is noted that I0(µ, V ) has a global maximizer (µ̂, V̂ ) that is a pair of the
mean vector and variance matrix with respect to p(x) since we can write

I0(µ, V ) = −1

2

{
(µ− µ̂)V −1(µ− µ̂) + trace(V̂ V −1) + log det(V )

}
This suggests a limitation of the maximum likelihood method. The MLE cannot change N(µ̂, V̂ ) as the
estimative solution even if the true density function is arbitrarily in (21). On the other hand, if β becomes
larger, then the graph of Iβ(µ, V ) is flexibly changed in accordance with p(x) in (21). For example, we
assume

p(x) = π1g(x, µ1, V1) + · · · + πKg(x, µK , VK) (23)

where g(x, µk, Vk) is a normal density function N(µk, Vk). Then,

Iβ(µ, V ) =
1

β

( K∑
k=1

πk{β−p(2π)p det(V )}
1−β

2

∫
g
(
x, µ, β−1V

)
g(x, µk, Vk)dx− 1

)
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Here, we see a formula ∫
g(x, µ, V )g(x, µ∗, V ∗)dx = g(µ, µ∗, V + V ∗) (24)

as shown in Appendix 3, from which we get that

Iβ(µ, V ) =
1

β

(
β−p{(2π)p det(V )}

1−β
2

K∑
k=1

πkg
(
µ, µk, β

−1V + Vk

)
− 1

)
In particular, when β = 1,

I1(µ, V ) =
K∑

k=1

πkg
(
µ, µk, V + Vk

)
− 1

which implies that I1(µ,O) = p(µ) − 1, where O is a zero matrix and p(·) is defined as in (23). If
the normal mixture model has K modes, I1(µ, V ) has the same K modes for sufficiently small detV .
Therefore, the expected Iβ(µ, V ) with a large β adaptively behaves according to the true density function.
This suggests that the minimum projective power divergence method can improve the weak point of the
MLE if the true density function has much degree of model uncertainty. For example, such an adaptive
selection for β is discussed in principal component analysis (PCA), which enables us to providing
explanatory analysis rather than the conventional PCA.

Consider a problem for extracting principal components in which the data distribution has a density
function with multimodality as described in (21). Then we wish to search all the sets of the principal
vectors for Vk with k = 1, · · · , K. The minimum projective power divergence method can properly
provide the PCA to search the principal vectors for Vk at the centers µk separately for k = 1, · · · , K.
First we determine the first starting point, say (µ(1), V (1)) in which we employ the iteratively reweighted
algorithm (19) and (20) starting from (µ(1), V (1)), so that we get the first estimator (µ̂(1), V̂ (1)). Then
the estimator V̂ (1) gives the first PCA with the center µ̂(1) by the standard method. Next, we updates
the second starting point (µ(2), V (2)) to keep away from the first estimator (µ̂(1), V̂ (1)) by a heuristic
procedure based on the weight function w(x, µ, V ) (see [22] for the detailed discussion). Starting from
(µ(2), V (2)), the same algorithm (19) and (20) leads to the second estimator (µ̂(2), V̂ (2)) with the second
PCA with the center V̂ (2). In this way, we can make this sequential procedure to explore the multimodal
structure with an appropriately determined stopping rule.

4. Concluding Remarks

We focus on that the optimality property of the likelihood method is fragile under model uncertainty.
Such weakness frequently appears in practice when we got a data set typically from an observational
study rather than a purely randomized experimental study. However, the usefulness of likelihood method
is supported as the most excellent method in statistics. We note that the minimum projective power
divergence method reduces to the MLE by taking a limit of the index β to 0 since it has one degree
of freedom of β as a choice of method. A data-adaptive selection of β is possible by cross validation
method. However, an appropriate model selection criterion is requested for faster computation.

Recently novel methods for pattern recognition from machine learning paradigm have been proposed
[23–25]. These approaches are directly concerned with the true distribution in a framework of probability
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approximate correct (PAC) learning in the computational learning theory. We need to employ this
theory for the minimum projective power divergence method. In statistical physics there are remarkable
developments on Tsallis entropy with reference to disequilibrium state, chaos phenomena, scale free
network and econophysics. We should explore these developments from the statistical point of view.
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Appendix 1

We introduce the derivation of ∆β as follows. Consider the minimization for scalar multiplicity as

κ(µ, ν) = argmin
κ>0

Dβ(µ, κν)

The gradient is

∂

∂κ
Dβ(µ, κν) = −κβ−1

∫
ν(x)βµ(x)dx+ κβ

∫
ν(x)β+1dx

which leads to κ(µ, ν) =
∫
ν(x)βµ(x)dx/

∫
ν(x)β+1dx. Hence

min
κ>0

Dβ(µ, κν) =
1

β(β + 1)

{∫
µ(x)β+1dx−

( ∫
µ(x)ν(x)βdx

)β+1

( ∫
ν(x)β+1dx

)β

}
Taking the ratio as

∆β(µ, ν) =
1

β(β + 1)
log

( ∫
µ(x)β+1dx

)( ∫
ν(x)β+1dx

)β

( ∫
µ(x)ν(x)βdx

)β+1

=
1

β(β + 1)
log

∫
µ(x)β+1dx− 1

β
log

∫
µ(x)ν(x)βdx+

1

β + 1
log

∫
ν(x)β+1dx

concludes the derivation of ∆β in (13).
Appendix 2

We give a proof of Proposition 1.
Proof. By definition we get that

∆β(p, r) − {∆β(p, q) + ∆β(q, r)} =
1

β
log

∫
p(x)q(x)βdx

∫
q(x)r(x)βdx∫

q(x)β+1dx
∫
p(x)r(x)βdx

which implies ∫
p(x)q(x)βdx

∫
q(x)r(x)βdx∫

q(x)β+1dx
∫
p(x)r(x)βdx

= 1 (25)

from (14). Similarly,

∆β(pt, rs) − {∆β(pt, q) + ∆β(q, rs)} =
1

β
log

∫
pt(x)q(x)

βdx
∫
q(x)rs(x)

βdx∫
q(x)β+1dx

∫
pt(x)rs(x)βdx
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which is written as

1

β
log

(1 − t)

∫
p(x)q(x)βdx∫
q(x)β+1dx

+ t

(1 − t)

∫
p(x)rs(x)

βdx∫
q(x)rs(x)βdx

+ t

(26)

Furthermore, (26) is rewritten as

1

β
log

(1 − t)

∫
p(x)q(x)βdx∫
q(x)β+1dx

+ t

(1 − t)

∫
{(1 − s)p(x)r(x)β + sp(x)q(x)β}dx∫
{(1 − s)q(x)r(x)β + sq(x)β+1}dx

+ t

which is

1

β
log

(1 − t)

∫
p(x)q(x)βdx∫
q(x)β+1dx

+ t

(1 − t)

∫
p(x)r(x)βdx∫
q(x)r(x)βdx

1 − s+ s

∫
p(x)q(x)βdx∫
p(x)r(x)βdx

1 − s+ s

∫
q(x)β+1dx∫
q(x)r(x)βdx

+ t

¿From (25) we can write

Ξ =

∫
p(x)q(x)βdx∫
q(x)β+1dx

=

∫
p(x)r(x)βdx∫
q(x)r(x)βdx

Then, we conclude that

∆β(pt, rs) − {∆β(pt, q) + ∆β(q, rs)} =
1

β
log

(1 − t)Ξ + t

(1 − t)Ξ
(1 − s) + sΞ

(1 − s) + sΞ
+ t

which vanishes for any s, 0 < s < 1 and t, 0 < t < 1. This completes the proof. �
Appendix 3

By writing a p-variate normal density function by

g(x, µ, V ) = {(2π)p det(V )}−
1
2 exp{−1

2
(x− µ)TV −1(x− µ)}

we have the formula ∫
g(x, µ, V )g(x, µ∗, V ∗)dx = g(µ, µ∗, V + V ∗) (27)

The proof of this formula is immediate. In fact, the left-hand side of (27) is written by

(2π)p{det(V ) det(V ∗)}−
1
2 exp{−1

2
µTV −1µ− 1

2
µ∗TV ∗−1µ∗}

×
∫

exp{−1

2
(x− A−1b)TA(x− A−1b)}dx
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where

A = V −1 + V ∗−1, b = V −1µ+ V ∗−1µ∗

Hence, we get

{(2π)p det(V ) det(V ∗) det(V −1 + V ∗−1)}−
1
2 exp{1

2
bTA−1b− 1

2
µTV −1µ− 1

2
µ∗TV ∗−1µ∗}

Noting that

{(2π)p det(V ) det(V ∗) det(V −1 + V ∗−1)}−
1
2 = {(2π)p det(V + V ∗)}−

1
2 (28)

and

exp{1

2
bTA−1b− 1

2
µTV −1µ− 1

2
µ∗TV ∗−1µ∗}

= exp{1

2
µTV −1(V −1 + V ∗−1)−1{I − (V −1 + V ∗−1)V }V −1µ

+
1

2
µ∗TV ∗−1(V −1 + V ∗−1)−1{I − (V −1 + V ∗−1)V ∗}V ∗−1µ∗

−1

2
µTV −1(V −1 + V ∗−1)−1V ∗−1µ∗}

it is obtained that

exp{−1

2
(µ− µ∗)T(V + V ∗)−1(µ− µ∗)} (29)

because of V −1(V −1 + V ∗−1)−1V ∗−1 = (V + V ∗)−1. Therefore, (28) and (29) imply (24). �
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