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Abstract: Csiszár’s f -divergence of two probability distributions was extended to the
quantum case by the author in 1985. In the quantum setting, positive semidefinite matrices
are in the place of probability distributions and the quantum generalization is called
quasi-entropy, which is related to some other important concepts as covariance, quadratic
costs, Fisher information, Cramér-Rao inequality and uncertainty relation. It is remarkable
that in the quantum case theoretically there are several Fisher information and variances.
Fisher information are obtained as the Hessian of a quasi-entropy. A conjecture about the
scalar curvature of a Fisher information geometry is explained. The described subjects are
overviewed in details in the matrix setting. The von Neumann algebra approach is also
discussed for uncertainty relation.
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1. Introduction

Let X be a finite space with probability measures p and q. Their relative entropy or divergence

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

was introduced by Kullback and Leibler in 1951 [1]. More precisely, if p(x) = q(x) = 0, then
log(p(x)/q(x)) = 0 and if p(x) ̸= 0 but q(x) = 0 for some x ∈ X , then log(p(x)/q(x)) = +∞.
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A possible generalization of the relative entropy is the f -divergence introduced by Csiszár:

Df (p||q) =
∑
x∈X

q(x)f
(p(x)

q(x)

)
(1)

with a real function f(x) defined for x > 0 [2,3]. For the convex function f(x) = x log x the relative
entropy is obtained.

This paper first gives a rather short survey about f -divergence and we turn to the non-commutative
(algebraic, or quantum) generalization. Roughly speaking this means that the positive n-tuples p and q

are replaced by positive semidefinite n × n matrices and the main questions in the study remain rather
similar to the probabilistic case. The quantum generalization was originally called quasi-entropy, but
quantum f -divergence might be a better terminology. This notion is related to some other important
concepts as covariance, quadratic costs, Fisher information, Cramér-Rao inequality and uncertainty
relation. These subjects are overviewed in details in the matrix setting, but at the very end the von
Neumann algebra approach is sketched shortly. When the details are not presented in the present paper,
the precise references are given.

2. f -Divergence and Its Use

Let F be the set of continuous convex functions R+ → R. The following result explains the
importance of convexity.

Let A be a partition of X . If p is a probability distribution on X , then pA(A) :=
∑

x∈A p(x) becomes
a probability distribution on A

Theorem 1 Let A be a partition of X and p, q be probability distributions on X . If f ∈ F , then

Df (pA||qA) ≤ Df (p||q)

The inequality in the theorem is the monotonicity of the f -divergence. A particular case is

f(1) ≤ Df (p||q)

Theorem 2 Let f, g ∈ F and assume that

Df (p||q) = Dg(p||q)

for every distribution p and q. Then there exists a constant c ∈ R such that f(x) − g(x) = c(x − 1).

Since the divergence is a kind of informational distance, we want Df (p||p) = 0 and require f(1) = 0.
This is nothing else but a normalization,

Df+c(p||q) = Df (p||q) + c

A bit more generally, we can say that if f(x) − g(x) is a linear function, then Df and Dg are essentially
the same quantities.

It is interesting to remark that qf(p/q) can be considered also as a mean of p and q. In that case the
mean of p and p should be p, so in the theory of means f(1) = 1 is a different natural requirement.

Set f∗(x) = xf(x−1). Then Df (p||q) = Df∗(q||p). The equality f ∗ = f is the symmetry condition.
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Example 1 Let f(x) = |x − 1|. Then

Df (p, q) =
∑

x

|p(x) − q(x)| =: V (p, q)

is the variational distance of p and q.

Example 2 Let f(x) = (1 −
√

x)2/2. Then

Df (p, q) =
∑

x

(
√

p(x) −
√

q(x))2 =: H2(p, q)

is the squared Hellinger distance of p and q.

Example 3 The function

fα(t) =
1

α(1 − α)
(1 − tα)

gives the relative α-entropy

Sα(p∥q) =
1

α(1 − α)

(
1 −

∑
x

p(x)αq(x)1−α
)

(2)

The limit α → 0 gives the relative entropy.

Several other functions appeared in the literature, e.g.,

f (s)(x) =
1

s(1 − s)
(1 + x − xs − x1−s) 0 < s ̸= 1 (3)

fβ(x) =


1

1−1/β

(
(1 + xβ)1/β − 21/β−1(1 + x)

)
if 0 < β ̸= 1

(1 + x) log 2 + x log x − (1 + x) log(x + 1) if β = 1

(4)

(The references are [4,5].)
The following result of Csiszár is a characterization (or axiomatization) of the f -divergence [6].

Theorem 3 Assume that a number C(p, q) ∈ R is associated to probability distributions on the same
set X for all finite sets X . If

(a) C(p, q) is invariant under the permutations of the basic set X .

(b) if A is a partition of X , then C(pA, qA) ≤ C(p, q) and the equality holds if and only if

pA(A)q(x) = qA(A)p(x)

whenever x ∈ A ∈ A,

then there exists a convex function f : R+ → R which is continuous at 0 and C(p, q) = Df (p||q) for
every p and q.
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3. Quantum Quasi-Entropy

In the mathematical formalism of quantum mechanics, instead of n-tuples of numbers one works with
n × n complex matrices. They form an algebra and this allows an algebraic approach. In this approach,
a probability density is replaced by a positive semidefinite matrix of trace 1 which is called density
matrix[7]. The eigenvalues of a density matrix give a probability density. However, this is not the only
probability density provided by a density matrix. If we rewrite the matrix in a certain orthonormal basis,
then the diagonal element p1, p2, . . . , pn form a probability density.

Let M denote the algebra of n × n matrices with complex entries. For positive definite matrices
ρ1, ρ2 ∈ M, for A ∈ M and a function f : R+ → R, the quasi-entropy is defined as

SA
f (ρ1∥ρ2) := ⟨Aρ

1/2
2 , f(∆(ρ1/ρ2))(Aρ

1/2
2 )⟩

= Tr ρ
1/2
2 A∗f(∆(ρ1/ρ2))(Aρ

1/2
2 ) (5)

where ⟨B, C⟩ := Tr B∗C is the so-called Hilbert-Schmidt inner product and ∆(ρ1/ρ2) : M → M is
a linear mapping acting on matrices:

∆(ρ1/ρ2)A = ρ1Aρ−1
2

This concept was introduced in [8,9], see also Chapter 7 in [10] and it is the quantum generalization of
the f -entropy of Csiszár used in classical information theory (and statistics) [11,12].

The monotonicity in Theorem 1 is the consequence of the Jensen inequality. A function f : R+ → R
is called matrix concave (or operator concave) if one of the following two equivalent conditions holds:

f(λA + (1 − λ)B) ≥ λf(A) + (1 − λ)f(B) (6)

for every number 0 < λ < 1 and for positive definite square matrices A and B (of the same size). In the
other condition the number λ is (heuristically) replaced by a matrix:

f(CAC∗ + DBD∗) ≥ Cf(A)C∗ + Df(B)D∗ (7)

if CC∗ + DD∗ = I .
A function f : R+ → R is called matrix monotone (or operator monotone) if for positive definite

matrices A ≤ B the inequality f(A) ≤ f(B) holds. It is interesting that a matrix monotone function is
matrix concave and a matrix concave function is matrix monotone if it is bounded from below [13].

Let α : M0 → M be a mapping between two matrix algebras. The dual α∗ : M → M0 with respect
to the Hilbert-Schmidt inner product is positive if and only if α is positive. Moreover, α is unital if and
only if α∗ is trace preserving. α : M0 → M is called a Schwarz mapping if

α(B∗B) ≥ α(B∗)α(B) (8)

for every B ∈ M0.
The quasi-entropies are monotone and jointly convex [9,10].

Theorem 4 Assume that f : R+ → R is an operator monotone function with f(0) ≥ 0 and α : M0 →
M is a unital Schwarz mapping. Then

SA
f (α∗(ρ1), α

∗(ρ2)) ≥ S
α(A)
f (ρ1, ρ2) (9)

holds for A ∈ M0 and for invertible density matrices ρ1 and ρ2 from the matrix algebra M.
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Proof: The proof is based on inequalities for operator monotone and operator concave functions. First
note that

SA
f+c(α

∗(ρ1), α
∗(ρ2)) = SA

f (α∗(ρ1), α
∗(ρ2)) + c Tr ρ1α(A∗A))

and
S

α(A)
f+c (ρ1, ρ2) = S

α(A)
f (ρ1, ρ2) + c Tr ρ1(α(A)∗α(A))

for a positive constant c. Due to the Schwarz inequality (8), we may assume that f(0) = 0.
Let ∆ := ∆(ρ1/ρ2) and ∆0 := ∆(α∗(ρ1)/α

∗(ρ2)). The operator

V Xα∗(ρ2)
1/2 = α(X)ρ

1/2
2 (X ∈ M0) (10)

is a contraction:

∥α(X)ρ
1/2
2 ∥2 = Tr ρ2(α(X)∗α(X))

≤ Tr ρ2(α(X∗X) = Tr α∗(ρ2)X
∗X = ∥Xα∗(ρ2)

1/2∥2

since the Schwarz inequality is applicable to α. A similar simple computation gives that

V ∗∆V ≤ ∆0 . (11)

Since f is operator monotone, we have f(∆0) ≥ f(V ∗∆V ). Recall that f is operator concave,
therefore f(V ∗∆V ) ≥ V ∗f(∆)V and we conclude

f(∆0) ≥ V ∗f(∆)V (12)

Application to the vector Aα∗(ρ2)
1/2 gives the statement.

It is remarkable that for a multiplicative α we do not need the condition f(0) ≥ 0. Moreover,
V ∗∆V = ∆0 and we do not need the matrix monotonicity of the function f . In this case the only
condition is the matrix concavity, analogously to Theorem 1.

If we apply the monotonicity (9) to the embedding α(X) = X ⊕ X of M into M⊕M and to the
densities ρ1 = λE1 ⊕ (1 − λ)F1, ρ2 = λE2 ⊕ (1 − λ)F2, then we obtain the joint concavity of the
quasi-entropy:

λSA
f (E1, E2) + (1 − λ)SA

f (F1, F2) ≤ SA
f (λE1 + (1 − λ)E2) + SA

f (λF1 + (1 − λ)F2)

The case f(t) = tα is the famous Lieb’s concavity theorem: Tr AραA∗ρ1−α is concave in ρ [14].
The concept of quasi-entropy includes some important special cases. If ρ2 and ρ1 are different and

A = I , then we have a kind of relative entropy. For f(x) = x log x we have Umegaki’s relative entropy
S(ρ1∥ρ2) = Tr ρ1(log ρ1 − log ρ2). (If we want a matrix monotone function, then we can take f(x) =

log x and then we get S(ρ2∥ρ1).) Umegaki’s relative entropy is the most important example, therefore
the function f will be chosen to be matrix convex. This makes the probabilistic and non-commutative
situation compatible as one can see in the next argument.

Let ρ1 and ρ2 be density matrices in M. If in certain basis they have diagonal p = (p1.p2, . . . , pn)

and q = (q1, q2, . . . , qn), then the monotonicity theorem gives the inequality

Df (p∥q) ≤ Sf (ρ1∥ρ2) (13)
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for a matrix convex function f . If ρ1 and ρ2 commute, them we can take the common eigenbasis and in
(13) the equality appears. It is not trivial that otherwise the inequality is strict.

If ρ1 and ρ2 are different, then there is a choice for p and q such that they are different as well. Then

0 < Df (p∥q) ≤ Sf (ρ1∥ρ2)

Conversely, if Sf (ρ1∥ρ2) = 0, then p = q for every basis and this implies ρ1 = ρ2. For the relative
entropy, a deeper result is known. The Pinsker-Csiszár inequality says that

(∥p − q∥1)
2 ≤ 2D(p∥q) (14)

This extends to the quantum case as

(∥ρ1 − ρ2∥1)
2 ≤ 2S(ρ1∥ρ2) (15)

see [15], or [7, Chap. 3].

Problem 1 It would be interesting to extend Theorem 3 of Csiszár to the quantum case. If we require
monotonicity and specify the condition for equality, then a function f is provided by Theorem 3, but for
non-commuting densities the conclusion is not clear.

Example 4 The function

fα(x) =
1

α(1 − α)
(1 − xα)

is matrix monotone decreasing for α ∈ (−1, 1). (For α = 0, the limit is taken and it is − log x.) Then
the relative entropies of degree α are produced:

Sα(ρ2∥ρ1) :=
1

α(1 − α)
Tr (I − ρα

1 ρ−α
2 )ρ2

These quantities are essential in the quantum case.

If ρ2 = ρ1 = ρ and A,B ∈ M are arbitrary, then one can approach to the generalized covariance
[16].

qCovf
ρ(A,B) := ⟨Aρ1/2, f(∆(ρ/ρ))(Bρ1/2)⟩ − (Tr ρA∗)(Tr ρB) (16)

is a generalized covariance. If ρ,A and B commute, then this becomes f(1)Tr ρA∗B−(Tr ρA∗)(Tr ρB).
This shows that the normalization f(1) = 1 is natural. The generalized covariance qCovf

ρ(A,B) is a
sesquilinear form and it is determined by qCovf

ρ(A,A) when {A ∈ M : Tr ρA = 0}. Formally, this is
a quasi-entropy and Theorem 4 applies if f is matrix monotone. If we require the symmetry condition
qCovf

ρ(A, A) = qCovf
ρ(A

∗, A∗), then f should have the symmetry xf(x−1) = f(x).
Assume that Tr ρA = Tr ρB = 0 and ρ = Diag (λ1, λ2, . . . , λn). Then

qCovf
ρ(A,B) =

∑
ij

λif(λj/λi)A
∗
ijBij (17)

A matrix monotone function f : R+ → R+ will be called standard if xf(x−1) = f(x) and f(1) = 1.
A standard function f admits a canonical representation

f(t) =
1 + t

2
exp

∫ 1

0

(1 − t2)
λ2 − 1

(λ + t)(1 + λt)(λ + 1)2
h(λ) dλ (18)
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where h : [0, 1] → [0, 1] is a measurable function [17].
The usual symmetrized covariance corresponds to the function f(t) = (t + 1)/2:

Covρ(A,B) :=
1

2
Tr (ρ(A∗B + BA∗)) − (Tr ρA∗)(Tr ρB)

The interpretation of the covariances is not at all clear. In the next section they will be called
quadratic cost functions. It turns out that there is a one-to-one correspondence between quadratic
cost functions and Fisher information.

4. Fisher Information

4.1. The Cramér-Rao inequality

The Cramér-Rao inequality belongs to the basics of estimation theory in mathematical statistics. Its
quantum analog was discovered immediately after the foundation of mathematical quantum estimation
theory in the 1960’s, see the book [18] of Helstrom, or the book [19] of Holevo for a rigorous summary
of the subject. Although both the classical Cramér-Rao inequality and its quantum analog are as trivial
as the Schwarz inequality, the subject takes a lot of attention because it is located on the highly exciting
boundary of statistics, information and quantum theory.

As a starting point we give a very general form of the quantum Cramér-Rao inequality in the simple
setting of finite dimensional quantum mechanics. For θ ∈ (−ε, ε) ⊂ R a statistical operator ρ(θ) is given
and the aim is to estimate the value of the parameter θ close to 0. Formally ρ(θ) is an n × n positive
semidefinite matrix of trace 1 which describes a mixed state of a quantum mechanical system and we
assume that ρ(θ) is smooth (in θ). Assume that an estimation is performed by the measurement of a
self-adjoint matrix A playing the role of an observable. A is called locally unbiased estimator if

∂

∂θ
Tr ρ(θ)A

∣∣∣
θ=0

= 1 (19)

This condition holds if A is an unbiased estimator for θ, that is

Tr ρ(θ)A = θ (θ ∈ (−ε, ε)) (20)

To require this equality for all values of the parameter is a serious restriction on the observable A and we
prefer to use the weaker condition (19).

Let φ0[K, L] be an inner product (or quadratic cost function) on the linear space of self-adjoint
matrices. When ρ(θ) is smooth in θ, as already was assumed above, then

∂

∂θ
Tr ρ(θ)B

∣∣∣
θ=0

= φ0[B,L] (21)

with some L = L∗. From (19) and (21), we have φ0[A,L] = 1 and the Schwarz inequality yields

φ0[A,A] ≥ 1

φ0[L, L]
(22)

This is the celebrated inequality of Cramér-Rao type for the locally unbiased estimator.
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The right-hand-side of (22) is independent of the estimator and provides a lower bound for the
quadratic cost. The denominator φ0[L,L] appears to be in the role of Fisher information here. We
call it quantum Fisher information with respect to the cost function φ0[ · , · ]. This quantity depends on
the tangent of the curve ρ(θ). If the densities ρ(θ) and the estimator A commute, then

L = ρ−1
0

dρ(θ)

dθ
and φ0[L,L] = Tr ρ−1

0

(
dρ(θ)

dθ

)2

= Tr ρ0

(
ρ−1

0

dρ(θ)

dθ

)2

(23)

We want to conclude from the above argument that whatever Fisher information and generalized
variance are in the quantum mechanical setting, they are very strongly related. In an earlier work [20,21]
we used a monotonicity condition to make a limitation on the class of Riemannian metrics on the state
space of a quantum system. The monotone metrics are called Fisher information quantities in this paper.

Since the sufficient and necessary condition for the equality in the Schwarz inequality is well-known,
we are able to analyze the case of equality in (22). The condition for equality is

A = λL

for some constant λ ∈ R. Therefore the necessary and sufficient condition for equality in (22) is

ρ̇0 :=
∂

∂θ
ρ(θ)

∣∣∣
θ=0

= λ−1J0(A) (24)

Therefore there exists a unique locally unbiased estimator A = λJ−1
0 (ρ̇0), where the number λ is chosen

in such a way that the condition (19) should be satisfied.

Example 5 Let
ρ(θ) := ρ + θB

where ρ is a positive definite density and B is a self-adjoint traceless operator. A is locally unbiased
when Tr AB = 1. In particular,

A =
B

Tr B2

is a locally unbiased estimator and in the Cramér-Rao inequality (22) the equality holds when
φ0[X,Y ] = Tr XY , that is, J0 is the identity.

If Tr ρB = 0 holds in addition, then the estimator is unbiased.

4.2. Coarse-graining and monotonicity

In the simple setting in which the state is described by a density matrix, a coarse-graining is an affine
mapping sending density matrices into density matrices. Such a mapping extends to all matrices and
provides a positivity and trace preserving linear transformation. A common example of coarse-graining
sends the density matrix ρ12 of a composite system 1 + 2 into the (reduced) density matrix ρ1 of
component 1. There are several reasons to assume completely positivity about a coarse graining and
we do so.

Assume that ρ(θ) is a smooth curve of density matrices with tangent A := ρ̇ at ρ. The quantum
Fisher information Fρ(A) is an information quantity associated with the pair (ρ,A), it appeared in the
Cramér-Rao inequality above and the classical Fisher information gives a bound for the variance of a
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locally unbiased estimator. Let now β be a coarse-graining. Then β(ρ(θ)) is another curve in the state
space. Due to the linearity of β, the tangent at β(ρ0) is β(A). As it is usual in statistics, information
cannot be gained by coarse graining, therefore we expect that the Fisher information at the density matrix
ρ0 in the direction A must be larger than the Fisher information at β(ρ0) in the direction β(A). This is
the monotonicity property of the Fisher information under coarse-graining:

Fρ(A) ≥ Fβ(ρ)(β(A)) (25)

Although we do not want to have a concrete formula for the quantum Fisher information, we require
that this monotonicity condition must hold. Another requirement is that Fρ(A) should be quadratic in
A, in other words there exists a non-degenerate real bilinear form γρ(A,B) on the self-adjoint matrices
such that

Fρ(A) = γρ(A,A) (26)

The requirements (25) and (26) are strong enough to obtain a reasonable but still wide class of possible
quantum Fisher information.

We may assume that
γρ(A,B) = Tr AJ−1

ρ (B∗) (27)

for an operator Jρ acting on matrices. (This formula expresses the inner product γD by means of the
Hilbert-Schmidt inner product and the positive linear operator Jρ.) In terms of the operator Jρ the
monotonicity condition reads as

β∗J−1
β(ρ)β ≤ J−1

ρ (28)

for every coarse graining β. (β∗ stand for the adjoint of β with respect to the Hilbert-Schmidt product.
Recall that β is completely positive and trace preserving if and only if β∗ is completely positive and
unital.) On the other hand the latter condition is equivalent to

βJρβ
∗ ≤ Jβ(ρ) (29)

We proved the following theorem in [20].

Theorem 5 If for every invertible density matrix ρ ∈ Mn(C) a positive definite sesquilinear form γρ :

Mn(C) × Mn(C) → C is given such that

(1) the monotonicity
γρ(A,A) ≥ γβ(ρ)(β(A), β(A))

holds for all completely positive coarse grainings β : Mn(C) → Mm(C),

(2) γρ(A,A) is continuous in ρ for every fixed A,

(3) γρ(A,A) = γρ(A
∗, A∗),

(4) γρ(A,A) = Tr ρ−1A2 if A is self-adjoint and Aρ = ρA,
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then there exists a unique standard operator monotone function f : R+ → R such that

γf
ρ (A,A) = Tr AJ−1

ρ (A) and Jρ = R1/2
ρ f(LρR−1

ρ )R1/2
ρ

where the linear transformations Lρ and Rρ acting on matrices are the left and right multiplications,
that is

Lρ(X) = ρX and Rρ(X) = Xρ

The above γρ(A,A) is formally a quasi-entropy, SAρ−1

1/f (ρ, ρ), however this form is not suitable to
show the monotonicity. Assume that ρ = Diag (λ1, λ2, . . . , λn). Then

γf
ρ (A,A) =

∑
ij

1

λif(λj/λi)
|Aij|2 (30)

It is clear from this formula that the Fisher information is affine in the function 1/f . Therefore,
Hansen’s canonical representation of the reciprocal of a standard operator monotone function can be
used [22].

Theorem 6 If f : R+ → R+ be a standard operator monotone function, then

1

f(t)
=

∫ 1

0

1 + λ

2

(
1

t + λ
+

1

1 + tλ

)
dµ(λ)

where µ is a probability measure on [0, 1].

The theorem implies that the set {1/f : f is standard operator monotone} is convex and gives the
extremal points

gλ(t) :=
1 + λ

2

(
1

t + λ
+

1

1 + tλ

)
(0 ≤ λ ≤ 1) (31)

One can compute directly that

∂

∂λ
gλ(x) = −(1 − λ2)(x + 1)(x − 1)2

2(x + λ)2(1 + xλ)2

Hence gλ is decreasing in the parameter λ. For λ = 0 we have the largest function g0(t) = (t + 1)/(2t)

and for λ = 1 the smallest is g1(t) = 2/(t+1). (Note that this was also obtained in the setting of positive
operator means [23], harmonic and arithmetic means.)

Via the operator Jρ, each monotone Fisher information determines a quantity

φρ[A,A] := Tr AJρ(A) (32)

which is a quadratic cost functional. According to (29) (or Theorem 4) this possesses the monotonicity
property

φρ[β
∗(A), β∗(A)] ≤ φβ(ρ)[A,A] (33)

Since (28) and (29) are equivalent we observe a one-to-one correspondence between monotone Fisher
information and monotone quadratic cost functions.

Theorem 7 If for every invertible density matrix ρ ∈ Mn(C) a positive definite sesquilinear form φρ :

Mn(C) × Mn(C) → C is given such that
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(1) the monotonicity (33) holds for all completely positive coarse grainings β : Mn(C) → Mm(C),

(2) φρ[A,A] is continuous in ρ for every fixed A,

(3) φρ[A,A] = φρ[A
∗, A∗],

(4) φρ[A,A] = Tr ρA2 if A is self-adjoint and Aρ = ρA,

then there exists a unique standard operator monotone function f : R+ → R such that

φf
ρ [A,A] = Tr AJρ(A)

with the operator Jρ defined in Theorem 5.

Any such cost function has the property φρ[A,B] = Tr ρA∗B when ρ commutes with A and B. The
examples below show that it is not so generally.

Example 6 Among the standard operator monotone functions, fa(t) = (1 + t)/2 is maximal. This
leads to the fact that among all monotone quantum Fisher information there is a smallest one which
corresponds to the function fa(t). In this case

Fmin
ρ (A) = Tr AL = Tr ρL2, where ρL + Lρ = 2A (34)

For the purpose of a quantum Cramér-Rao inequality the minimal quantity seems to be the best, since the
inverse gives the largest lower bound. In fact, the matrix L has been used for a long time under the name
of symmetric logarithmic derivative, see [19] and [18]. In this example the quadratic cost function is

φρ[A,B] = 1
2
Tr ρ(AB + BA) (35)

and we have
Jρ(B) = 1

2
(ρB + Bρ) and J−1

ρ (A) =
∫ ∞

0
e−tρ/2Ae−tρ/2 dt (36)

for the operator J of the previous section.
To see the second formula of (36), set A(t) := e−tρ/2Ae−tρ/2. Then

d

dt
A(t) = −1

2
(ρA(t) − A(t)ρ)

and ∫ ∞

0

1
2
(ρA(t) + A(t)ρ) dt = [ − A(t)]∞0 = A

Hence
Jρ

( ∫ ∞

0

A(t) dt
)

= A

Let T = T ∗ and ρ0 be a density matrix. Then D(θ) := exp(θT/2)ρ0 exp(θT/2) satisfies the
differential equation

∂

∂θ
D(θ) = JD(θ)T (37)

and
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ρ(θ) =
D(θ)

Tr D(θ)
(38)

is a kind of exponential family.
If Tr ρ0T = 0 and Tr ρ0T

2 = 1, then

∂

∂θ
Tr ρ(θ)T

∣∣∣
θ=0

= 1

and T is a locally unbiased estimator (of the parameter θ at θ = 0). Since

∂

∂θ
ρ(θ)

∣∣∣
θ=0

= J0(T )

we have equality in the Cramér-Rao inequality, see (24).

Example 7 The function

fβ(t) = β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
(39)

is operator monotone if 0 < |β| < 1.
When A = i[ρ,B] is orthogonal to the commutator of the foot-point ρ in the tangent space, we have

F β
ρ (A) =

1

2β(1 − β)
Tr ([ρβ, B][ρ1−β, B]) (40)

Apart from a constant factor this expression is the skew information proposed by Wigner and Yanase
some time ago ([24]). In the limiting cases β → 0 or 1 we have

f0(x) =
x − 1

log x

and the corresponding Fisher information

γρ(A,B) :=

∫ ∞

0

Tr A(ρ + t)−1B(ρ + t)−1 dt (41)

is named after Kubo, Mori, Bogoliubov, etc. The Kubo-Mori inner product plays a role in quantum
statistical mechanics (see [25], for example). In this case

J−1(B) =

∫ ∞

0

(ρ + t)−1B(ρ + t)−1 dt and J(A) =

∫ 1

0

ρtAρ1−t dt (42)

Therefore the corresponding quadratic cost functional is

φρ[A,B] =

∫ 1

0

Tr AρtBρ1−t dt (43)

Let

ρ(θ) :=
exp(H + θT )

Tr exp(H + θT )
(44)

where ρ = eH . Assume that Tr eHT = 0. The Frechet derivative of eH is
∫ 1

0
Tr etHTe(1−t)H dt. Hence

A is locally unbiased if ∫ 1

0

Tr ρtTρ1−tAdt = 1
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This holds if
A =

T∫ 1

0
Tr ρtTρ1−tT dt

In the Cramér-Rao inequality (22) the equality holds when J0(K) =
∫ 1

0
DtKD1−t dt.

Note that (44) is again an exponential family, the differential equation for

D(θ) = exp(H + θT )

has the form (37) with

JD(θ)(K) =

∫ 1

0

D(θ)tKD(θ)1−t dt

Problem 2 It would be interesting to find more exponential families. This means solution of the
differential equation

∂

∂θ
D(θ) = JD(θ)T, D(0) = ρ0

If the self-adjoint T and the positive ρ commute, then the solution is D(θ) = exp(θT )ρ0. A concrete
example is

∂

∂θ
D(θ) = D(θ)1/2TD(θ)1/2

4.3. Manifolds of density matrices

Let M := {ρ(θ) : θ ∈ G} be a smooth m-dimensional manifold of invertible density matrices. When
a quadratic cost function φ0 is fixed, the corresponding Fisher information is a Riemannian metric on
the manifold. This gives a possibility for geometric interpretation of statistical statements [26,27].

Fisher information appears not only as a Riemannian metric but as an information matrix as well. The
quantum score operators (or logarithmic derivatives) are defined as

Li(θ) := J−1
ρ(θ)(∂θi

ρ(θ)) (1 ≤ i ≤ m) (45)

and
IQ
ij (θ) := Tr Li(θ)Jρ(θ)(Lj(θ)) (1 ≤ i, j ≤ m) (46)

is the quantum Fisher information matrix.
The next result is the monotonicity of Fisher information matrix.

Theorem 8 [16] Let β be a coarse-graining sending density matrices on the Hilbert space H1 into those
acting on the Hilbert space H2 and let M := {ρ(θ) : θ ∈ G} be a smooth m-dimensional manifold
of invertible density matrices on H1. For the Fisher information matrix I1Q(θ) of M and for Fisher
information matrix I2Q(θ) of β(M) := {β(ρ(θ)) : θ ∈ G} we have the monotonicity relation

I2Q(θ) ≤ I1Q(θ) (47)
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Assume that Fj are positive operators acting on a Hilbert space H1 on which the family M :=

{ρ(θ) : θ ∈ G} is given. When
∑n

j=1 Fj = I , these operators determine a measurement. For any ρ(θ)

the formula
β(ρ(θ)) := Diag (Tr ρ(θ)F1, . . . , Tr ρ(θ)Fn)

gives a diagonal density matrix. Since this family is commutative, all quantum Fisher information
coincide with the classical (23) and the classical Fisher information stand on the left-hand-side of
(47). The right-hand-side can be arbitrary quantum quantity but it is minimal if based on the symmetric
logarithmic derivative, see Example 6. This particular case of the Theorem is in the paper [28].

Assume that a manifold M := {ρ(θ) : θ ∈ G} of density matrices is given together a statistically
relevant Riemannian metric γ. Given two points on the manifold, their geodesic distance is interpreted
as the statistical distinguish-ability of the two density matrices in some statistical procedure.

Let ρ0 ∈ M be a point on our statistical manifold. The geodesic ball

Bε(ρ0) := {ρ ∈ M : d(ρ0, ρ) < ε}

contains all density matrices which can be distinguished by an effort smaller than ε from the fixed
density ρ0. The size of the inference region Bε(ρ0) measures the statistical uncertainty at the density ρ0.
Following Jeffrey’s rule the size is the volume measure determined by the statistical (or information)
metric. More precisely, it is better to consider the asymptotics of the volume of Bε(ρ0) as ε → 0. It is
known in differential geometry that

V ol(Bε(ρ0)) = Cmεm − Cm

6(m + 2)
Scal (ρ0)ε

m+2 + o(εm+2) (48)

where m is the dimension of our manifold, Cm is a constant (equals to the volume of the unit ball
in the Euclidean m-space) and Scal means the scalar curvature, see [29, 3.98 Theorem]. In this way,
the scalar curvature of a statistically relevant Riemannian metric might be interpreted as the average
statistical uncertainty of the density matrix (in the given statistical manifold). This interpretation
becomes particularly interesting for the full state space endowed by the Kubo-Mori inner product as
a statistically relevant Riemannian metric.

The Kubo-Mori (or Bogoliubov) inner product is given by

γρ(A,B) = Tr (∂Aρ)(∂B log ρ) (49)

or (41) in the affine parametrization. On the basis of numerical evidences it was conjectured in [30] that
the scalar curvature which is a statistical uncertainty is monotone in the following sense. For any coarse
graining α the scalar curvature at a density ρ is smaller than at α(ρ). The average statistical uncertainty
is increasing under coarse graining. Up to now this conjecture has not been proven mathematically.
Another form of the conjecture is the statement that along a curve of Gibbs states

e−βH

Tr e−βH

the scalar curvature changes monotonously with the inverse temperature β ≥ 0, that is, the scalar
curvature is monotone decreasing function of β. (Some partial results are in [31].)
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Let M be the manifold of all invertible n × n density matrices. If we use the affine parametrization,
then the tangent space Tρ consists of the traceless self-adjoint matrices and has an orthogonal
decomposition

Tρ = {i[ρ,B] : B ∈ M sa
n } ⊕ {A = A∗ : Tr A = 0, Aρ = ρA} (50)

We denote the two subspaces by T q
ρ and T c

ρ , respectively. If A2 ∈ T c
ρ , then

F (∆(ρ/ρ))(A2ρ
±1/2) = A2ρ

±1/2

implies

qCovf
ρ(A1, A2) = Tr ρA∗

1A2 − (Tr ρA∗
1)(Tr ρA2), γf

ρ (A1, A2) = Tr ρ−1A∗
1A2

independently of the function f . Moreover, if A1 ∈ T q
ρ , then

γf
ρ (A1, A2) = qCovf

ρ(A1, A2) = 0

Therefore, the decomposition (50) is orthogonal with respect to any Fisher information and any quadratic
cost functional. Moreover, the effect of the function f and the really quantum situation are provided by
the components from T q

ρ .

4.4. Skew information

Let f be a standard function and X = X∗ ∈ Mn. The quantity

If
ρ (X) :=

f(0)

2
γf

ρ (i[ρ,X], i[ρ,X])

was called skew information in [22] in this general setting. The skew information is nothing else but
the Fisher information restricted to T q

ρ , but it is parametrized by the commutator.
If ρ = Diag (λ1, . . . , λn) is diagonal, then

γf
ρ (i[ρ,X], i[ρ,X]) =

∑
ij

(λi − λj)
2

λjf(λi/λj)
|Xij|2

This implies that the identity

f(0)γf
ρ (i[ρ,X], i[ρ,X]) = 2Covρ(X, X) − 2qCovf̃

ρ(X, X) (51)

holds if Tr ρX = 0 and

f̃(x) :=
1

2

(
(x + 1) − (x − 1)2 f(0)

f(x)

)
(52)

The following result was obtained in [32].

Theorem 9 If f : R+ → R is a standard function, then f̃ is standard as well.

The original proof is not easy, even matrix convexity of functions of two variables is used. Here
we sketch a rather elementary proof based on the fact that 1/f 7→ f̃ is linear and on the canonical
decomposition in Theorem 6.
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Lemma 1 Let 0 ≤ λ ≤ 0 and fλ : R+ → R be a function such that

1

fλ(x)
:=

1 + λ

2

(
1

x + λ
+

1

1 + xλ

)
= gλ(x)

Then the function f̃ : R+ → R defined in (52) is an operator monotone standard function.

The proof of the lemma is elementary. From the lemma and Theorem 6, Theorem 9 follows
straightforwardly [33].

The skew information is the Hessian of a quasi-entropy:

Theorem 10 Assume that X = X∗ ∈ Mn and Tr ρX = 0. If f is a standard function such that
f(0) ̸= 0, then

∂2

∂t∂s
SF (ρ + ti[ρ,X], ρ + si[ρ, X])

∣∣∣
t=s=0

= f(0)γf
ρ (i[ρ,X], i[ρ,X])

for the standard function F = f̃ .

The proof is based on the formula

d

dt
h(ρ + ti[ρ,X])

∣∣∣
t=0

= i[h(ρ), X]

see [33].
The next example seems to be new, the author does not know a direct application presently.

Example 8 We compute the Hessian of the relative entropy of degree α in an exponential
parametrization:

∂2

∂t∂s
Sα(eH+tA||eH+sB)

∣∣∣
t=s=0

=

∫ 1

0

Tr e(1−u)HBeuHAgα(u) du ,

where

gα(u) =
1

α(1 − α)


u if 0 ≤ u ≤ α,
α if α ≤ u ≤ 1 − α,
1 − u if 1 − α ≤ u ≤ 1

(53)

for α ≤ 1/2 and for α ≥ 1/2 gα = g1−α.
Since

∂2

∂t∂s
Sα(eH+tA||eH+sB) =

1

α(1 − α)

∂2

∂t∂s
Tr exp α(H + sB) exp(1 − α)(H + tA)

we calculate as follows:

− 1

α(1 − α)
Tr

∂

∂s
exp α(H + sB)

∂

∂t
exp(1 − α)(H + tA)

= Tr

∫ 1

0

∫ 1

0

exp(xαH)B exp(1 − x)αH exp(y(1 − α)H)A exp(1 − y)(1 − α)H dxdy

= Tr

∫ 1

0

∫ 1

0

exp
(
(xα + (1 − y)(1 − α))H

)
B exp

(
((1 − x)α + y(1 − α))H

)
Adxdy
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= Tr

∫ 1

0

∫ 1

0

exp
(
(xα − y + yα − α + 1)H

)
B exp

(
− xα + y − yα + α)H

)
Adxdy

=

∫ 1

0

∫ 1

0

F (−xα + y − yα + α) dxdy

for the functional
F (t) = e(1−t)HBetHA

We continue ∫ 1

0

∫ 1

0

F (−xα + y − yα + α) dxdy

=

∫ 1

0

∫ 1

0

F (−xα + y(1 − α) + α) dxdy

=

∫ 1

x=0

1

1 − α

∫ 1−α

z=0

F (−xα + z + α) dzdx

=
1

α

∫ 0

w=−α

1

1 − α

∫ 1−α

z=0

F (z − w) dzdw

=

∫ 1

0

F (u)gα(u) du

where gα is as above.

∂2

∂t∂s
Sα(eH+tA+sB||eH) =

1

α(1 − α)
Tr

(
∂2

∂t∂s
exp(1 − α)(H + tA + sB)

)
exp(αH)

We know that

∂2

∂t∂s
exp(H + tA + sB) =

∣∣∣
t=s=0

=

∫ 1

0

∫ s

0

e(1−s)HBe(s−u)HAeuH duds

therefore

∂2

∂t∂s
exp(1 − α)(H + tA + sB) = (1 − α)2

∫ 1

0

∫ s

0

e(1−s)(1−α)HBe(s−u)(1−α)HAeu(1−α)H duds

therefore we obtain∫ 1

0

∫ s

0

Tr e[1−(s−u)](1−α)HBe(s−u)(1−α)HAduds =

∫ 1

0

(1 − x)Tr e[1−x](1−α)HBex(1−α)HAdx

If α = 0, then we have the Kubo-Mori inner product.

5. Von Neumann Algebras

Let M be a von Neumann algebra. Assume that it is in standard form, it acts on a Hilbert space H,
P ⊂ H is the positive cone and J : H → H is the modular conjugation. Let φ and ω be normal states
with representing vectors Φ and Ω in the positive cone. For the sake of simplicity, assume that φ and ω

are faithful. This means that Φ and Ω are cyclic and separating vectors. The closure of the unbounded
operator AΦ 7→ A∗Ω has a polar decomposition J∆(ω/φ)1/2 and ∆(ω/φ) is called relative modular
operator. AΦ is in the domain of ∆(ω/φ)1/2 for every A ∈ M.
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For A ∈ M and f : R+ → R, the quasi-entropy

SA
f (ω∥φ) := ⟨AΦ, f(∆(ω/φ))AΦ⟩ (54)

was introduced in [8], see also Chapter 7 in [10]. Of course, (5) is a particular case.

Theorem 11 Assume that f : R+ → R is an operator monotone function with f(0) ≥ 0 and α : M0 →
M is a Schwarz mapping. Then

SA
f (ω ◦ α∥φ ◦ α) ≥ S

α(A)
f (ω∥φ) (55)

holds for A ∈ M0 and for normal states ω and φ of the von Neumann algebra M.

The relative entropies are jointly convex in this setting similarly to the finite dimensional case. Now
we shall concentrate on the generalized variance.

5.1. Generalized covariance

To deal with generalized covariance, we assume that f : R+ → R is a standard operator monotone
(increasing) function. The natural extension of the covariance (from probability theory) is

qCovf
ω(A,B) = ⟨

√
f(∆(ω/ω))AΩ,

√
f(∆(ω/ω))BΩ⟩ − ω(A)ω(B) (56)

where ∆(ω/ω) is actually the modular operator. Although ∆(ω/ω) is unbounded, the definition works.
For the function f , the inequality

2x

x + 1
≤ f(x) ≤ 1 + x

2

holds. Therefore AΩ is in the domain of
√

f(∆(ω/ω)).
For a standard function f : R+ → R+ and for a normal unital Schwarz mapping β : N → M the

inequality
qCovf

ω(β(X), β(X)) ≤ qCovf
ω◦β(X, X) (X ∈ N ) (57)

is a particular case of Theorem 11 and it is the monotonicity of the generalized covariance under
coarse-graining. The common symmetrized covariance

Covω(A,B) := 1
2
ω(A∗B + BA∗) − ω(A)ω(B)

is recovered by the particular case f(t) = (1 + t)/2.
Since

qCovf
ω(A,B) = γf

ω(A − ω(A)I, B − ω(B)I),

it is enough to consider these sesquilinear forms on the subspace Tω := {A ∈ M : ω(A) = 0}.

5.2. The Cramér-Rao Inequality

Let {ωθ : θ ∈ G} be a smooth m-dimensional manifold in the set of normal states of the von Neumann
algebra M and assume that a collection A = (A1, . . . , Am) of self-adjoint operators is used to estimate
the true value of θ. The subspace spanned by A1, A2, . . . , Am is denoted by V .
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Given a standard matrix monotone function f , we have the corresponding cost function

φθ[A,B] ≡ qCovωθ
f (A,B)

for every θ and the cost matrix of the estimator A is a positive semidefinite matrix, defined by

φθ[A]ij = φθ[Ai, Aj]

The bias of the estimator is

b(θ) = (b1(θ), b2(θ), . . . , bm(θ))

:= (ωθ(A1 − θ1I), ωθ(A2 − θ2I), . . . , ωθ(Am − θmI))

For an unbiased estimator we have b(θ) = 0. From the bias vector we form a bias matrix

Bij(θ) := ∂θi
bj(θ)

For a locally unbiased estimator at θ0, we have B(θ0) = 0.
The relation

∂θi
ωθ(H) = φθ[Li(θ), H] (H ∈ V )

determines the logarithmic derivatives Li(θ). The Fisher information matrix is

Jij(θ) := φθ[Li(θ), Lj(θ)]

Theorem 12 Let A = (A1, . . . , Am) be an estimator of θ. Then for the above defined quantities the
inequality

φθ[A] ≥ (I + B(θ))J(θ)−1(I + B(θ)∗)

holds in the sense of the order on positive semidefinite matrices.

Concerning the proof we refer to [16].

5.3. Uncertainty relation

In the von Neumann algebra setting the skew information (as a sesquilinear form) can be defined as

If
ω(X,Y ) := Covω(X, Y ) − qCovf̃

ω(X, Y ) (58)

if ω(X) = ω(Y ) = 0. (Then If
ω(X) = If

ω(X, X).)

Lemma 2 Let K be a Hilbert space with inner product ⟨⟨ · , · ⟩⟩ and let ⟨ · , · ⟩ be a sesquilinear form on
K such that

0 ≤ ⟨f, f⟩ ≤ ⟨⟨f, f⟩⟩

for every vector f ∈ K. Then
[ ⟨fi, fj⟩ ]mi,j=1 ≤ [ ⟨⟨fi, fj⟩⟩ ]mi,j=1 (59)

holds for every f1, f2, . . . , fm ∈ K.
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Proof: Consider the Gram matrices G := [ ⟨⟨fi, fj⟩⟩ ]mi,j=1 and H := [ ⟨fi, fj⟩ ]mi,j=1, which are
symmetric and positive semidefinite. For every a1, . . . , am ∈ R we get

m∑
i,j=1

(⟨⟨fi, fj⟩⟩ − ⟨fi, fi⟩)aiaj = ⟨⟨
m∑

i=1

aifi,

m∑
i=1

aifi⟩⟩ − ⟨
m∑

i=1

aifi,

m∑
i=1

aifi⟩ ≥ 0

by assumption. This says that G − H is positive semidefinite, hence it is clear that G ≥ H .

Theorem 13 Assume that f, g : R+ → R are standard functions and ω is a faithful normal state on
a von Neumann algebra M. Let A1, A2, . . . , Am ∈ M be self-adjoint operators such that ω(A1) =

ω(A2) = . . . = ω(Am) = 0. Then the determinant inequality

det
(
[qCovg

D(Ai, Aj)]
m
i,j=1

)
≥ det

([
2g(0)If

ω(Ai, Aj)
]m

i,j=1

)
(60)

holds.

Proof: Let E( · ) be the spectral measure of ∆(ω, ω). Then for m = 1 the inequality is∫
g(λ) dµ(λ) ≤ g(0)

(∫
1 + λ

2
dµ(λ) −

∫
f̃(λ) dµ(λ)

)
where dµ(λ) = d⟨AΩ, E(λ)AΩ⟩. Since the inequality

f(x)g(x) ≥ f(0)g(0)(x − 1)2 (61)

holds for standard functions [34], we have

g(λ) ≥ g(0)

(
1 + λ

2
− f(0)f̃(λ)

)
and this implies the integral inequality.

Consider the finite dimensional subspace N generated by the operators A1, A2, . . . , Am. On N we
have the inner products

⟨⟨A, B⟩⟩ := Covg
ω(A,B)

and
⟨A,B⟩ := 2g(0)If

ω(A,B).

Since ⟨A,A⟩ ≤ ⟨⟨A,A⟩⟩, the determinant inequality holds, see Lemma 2.
This theorem is interpreted as quantum uncertainty principle [32,35–37]. In the earlier works the

function g from the left-hand-side was (x + 1)/2 and the proofs were more complicated. The general g

appeared in [34].
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