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Abstract: In several socioeconomic applications, matrices containing information on  
flows-trade, income or migration flows, for example–are usually not constructed from 
direct observation but are rather estimated, since the compilation of the information 
required is often extremely expensive and time-consuming. The estimation process takes as 
point of departure another matrix which is adjusted until it optimizes some divergence 
criterion and simultaneously is consistent with some partial information-row and column 
margins–of the target matrix. Among all the possible criteria to be considered, one of the 
most popular is the Kullback-Leibler divergence [1], leading to the well-known  
Cross-Entropy technique. This paper proposes the use of a composite Cross-Entropy 
approach that allows for introducing a mixture of two types of a priori information–two 
possible matrices to be included as point of departure in the estimation process. By means 
of a Monte Carlo simulation experiment, we will show that under some circumstances this 
approach outperforms other competing estimators. Besides, a real-world case with a matrix 
of interregional trade is included to show the applicability of the suggested technique.  

Keywords: cross-entropy estimation; data-weighted priors; matrices of flows; economic 
applications 

 

1. Introduction 

Research on socio-economic problems in general, and economic modeling in particular, often has to 
deal with information about the flows contained in a matrix of interaction between agents. Just to 
mention a couple of examples, international economists frequently analyze the flows of bilateral trade 
between a group of countries in order to measure the level of integration and demographers take data 
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from matrices of international or interregional migration flows and sociologists. The problem is that 
the compilation of the information required to build this type of matrices is often extremely expensive 
and time-consuming for the statistical agencies or research institutes. In this context, the use of 
estimation methods for recovering the cells of these matrices is becoming more and more popular; 
especially the estimation techniques based on information measures (see Golan et al., [2] or Kapur  
and Kesavan [3]).  

Basically, these techniques take as point of departure an initial matrix (the prior), which is assumed 
to be similar to the one we want to estimate, together with some limited information of the actual 
matrix, usually aggregated data -row and column margins-. The basic idea of the estimation process is 
to choose as solution the matrix that, fulfilling the constraints imposed by the known information, is 
the closest to the prior according to some divergence criterion. One of the most used adjusting 
procedures is the Cross-Entropy (CE) technique, which is based on the Kullback-Leibler  
divergence criterion.  

This paper explores from a new viewpoint the role played by the initial information in an estimation 
process based on information measures. Traditionally, the estimation problem takes as point of 
departure one single prior; for example, a previous matrix from a past period or a contemporaneous 
matrix for other geographical area. The novelty of our proposal is that it considers the possibility of 
including several initial matrices in the estimation process, instead of choosing only one of them. By 
means of a numerical simulation, we illustrate that the proposed technique that uses a composite of two 
priors obtain comparative better results than an adjustment from only one of them, provided that none 
of them is preferable to the other for all the probability distributions contained in the target matrix. 

The paper is organized in the following sections. Section 2 presents the basis of the CE solution to 
the estimation problem of a matrix with unknown cells but with information on its margins. In  
Section 3, the details of the composite CE technique proposed in this paper is introduced. Section 4 
shows a numerical Monte Carlo experiment where the performance of the proposed method is 
compared with other competing techniques. In Section 5 an empirical application with a real-world 
example is included, where a matrix of interregional trade for the Spanish regions is estimated. Finally, 
Section 6 concludes the paper. 

2. The Ce Solution for the Matrix Balancing Problem 

We will base our explanations on the matrix-balancing problem depicted in Golan ([4], page 105), 
where the goal is to fill the (unknown) cells of a matrix of dimension  using the information that 
is contained in the aggregate data of the row and column sums. This is a familiar situation in the 
context of economics, where the cells of some matrices containing information on flows between 
several agents are usually not observable directly. Instead, the researchers often limit to observe 
aggregate information (total sales or purchases per agent, for example), because these aggregates are 
much quicker and easier to obtain.  

The  cells of the matrix are the unknown quantities we would like to estimate, where the 
aggregates ∑ , ∑ , and ∑ ∑  are known. Note that the  elements 
can be expressed as sets of (column) probability distributions, simply dividing the quantities of the 
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matrix by the corresponding column sums . In such a case, the previous matrix can be rewritten in 
terms of a new matrix  that is composed by a set of M probability distributions (Table 1). 

Table 1. The matrix balancing problem. 

11 … 1  … 1  1 

…  …  … … 

1 …  …   

…  …  … … 

1 …  …   

1 …  …   

 
Where the ′  (shaded in grey) are defined as the proportions , and the new row and column 

margins as  and  respectively. Consequently, the followings equalities are fulfilled by 
the  elements: 

       ∑ 1 ; 1, … ,  (1)

     ∑ ; 1, … ,  (2)

These two sets of equations reflect all we know about the elements of matrix . Equation (2) shows the 
cross-relationship between the (unknown) ′  in the matrix and the (known) sums of each row and 
column. Additionally, equation (1) indicates that the ′  can be viewed as (column) probability 
distributions. Note that we have only  pieces of information to estimate the  elements of 
matrix , which makes the problem ill-posed. The solution to this type of problems can be obtained by 
minimizing a divergence measure with a prior probability matrix  subject to the set of constraints (1) 
and (2). This is called a Cross-Entropy (CE) problem, which can be written in the following terms: 

Min  (3)

Subject to the same restrictions given by the set of equations (1) and (2). The divergence measure 
 is the Kullback-Liebler entropy divergence between the posterior and prior distributions. The 

Lagrangian function for the CE problem is: 

              ∑ λ ∑ ∑ 1 ∑  (4)

And the solutions are: 

             λ
∑ λ

; 1, … ; 1, …  (5)
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where λ  are the Lagrangian multipliers associated with the constraints (2). The CE estimation 
procedure can be seen as an extension of the Maximum Entropy (ME) principle, given that the 
solutions of both approaches are the same when the  a priori probability distribution contained in  
are all uniform. The accuracy of the solution obtained for this matrix adjusting problem will depend on 
the choice made when specifying  (see, for example, Hewings [5] for a detailed discussion on the 
role played by the prior information in such estimation problems in a socio-economic context). In 
some cases there is no room for this choice, simply because only one possible prior is available. But it 
may well be that for some cases we have the possibility of using two alternative matrices  or  as 
prior. For example, if the objective was to estimate inter-industry trade flows for a country in a specific 
year, it would be possible to take as prior the observed flows for the same country in a past year or, 
alternatively, to take as prior the distribution of inter-industry flows for a simultaneous year but in a 
different country. The next section of the paper deals with situations where we include both priors at 
the same time to the estimation process. 

3. A Composite Ce Method: The Dwp Estimation Technique 

The above sketched CE procedure can be extended in order to develop a more flexible estimator 
that allows for including in the estimation process both prior matrices  and . Related to the 
Bayesian Method of Moments (see Zellner, [6,7]), the technique has been proposed in Golan [8] as a 
data-based method of estimation that uses both sample and non-sample information in determining a 
basis for coefficient reduction and extraneous variable identification in regression linear models. 
Another recent empirical application of this method to the field of empirical economic analysis can 
also be found in Bernadini [9]. The point of departure of the estimation technique proposed in Golan 
[8] it is to consider two alternative priors for each coefficient in a linear model. One of the prior is a 
uniform distribution centered on zero and the other is a spike distribution with a unit mass prior on 
zero. When the spike prior takes over the uniform one, the coefficient is shrunk and the corresponding 
variable is classified as extraneous. 

This idea will be adapted to a matrix balancing problem of a target matrix  from two possible 
priors  and  and our objective in this context will be twofold: a) to identify which of the two 
priors would be preferable for each column of the matrix and, simultaneously, b) to estimate the target 
matrix. If we denote with  and  the two options we have for the a priori (column) distributions 
respectively, the objective proposed can be achieved by modifying the previous CE program in the 
following way: 

                                Min , , , , ∑ 1 ∑  

 

 

(6)
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subject to: 

            ∑ 1, … ,  (7)

             ∑ 1 ; 1, … ,  (8)
              ∑ 1 ; 1, … ,  (9)

The  parameters are estimated simultaneously with the unknown probabilities  of the matrix. 
Each  measures the weight given to the prior  for each column and it is defined as  

∑ , where 0 and 1 are respectively the lower and upper bound defined as 
the support of these parameters (note that this implies that 0 1; 1, . . , ). The a priori 
probability distributions fixed for them are uniform ;  1, . . ,  .This means that the a 
priori value for each  parameter is 0.5, but the sample information contained in constraint (7) allows 
for estimates that deviate from this initial point. 

To understand the logic of this data-weighted prior (DWP) estimator some further explanations on 
the objective function of the previous minimization program is required. Note that equation (6) is 
divided in three terms. The first term quantifies the divergence between the recovered probabilities and 
the a priori probabilities where matrix  is chosen as prior, being this divergence weighted by 

1  for each column. On the contrary, the second element of (6) measures the divergence with the 
prior  and it is weighted by . The third element in (6) quantifies the Kullback divergence for the 
weighting parameters . 

The solutions of this minimization program are: 

                  
λ

∑ λ
; 1, … , ; 1, … , (10)

where: 

                         ∑ ,

                     1 1 ∑ ∑⁄ ,  

and λ  are the Lagrangian multipliers associated with restrictions (7). The properties of this DWP 
estimator in the context of classical linear regression models have been tested in Golan [8] (under 
some mild assumptions, see Golan [8], page 177, the consistency and asymptotic normality of the 
DWP estimates can be ensured. Additionally, these assumptions also guarantee that the approximate 
variances of the DWP estimator is lower than the approximate variance of the generalized CE 
estimator, which in turn is lower than the approximate variance of a ML-LS estimator (see Golan, [8], 
page 179). 

Simultaneously to the estimation of the  cells of the matrix, the DWP estimator discriminates for 
each column j between the two priors considered. The proposed estimation strategy provides estimates 
of the weighting parameters , obtained as: 

                                 ∑ , (11)

which can be used as a tool for this purpose. Without any sample information [i.e., without the set of 
constraints (7) the estimates of these parameters would be 0.5 for each and every column. The 
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more informative the constrains (7), the larger the deviation with this initial value of the parameter. 
Note that as 0 the prior  gains weight for column j and the estimates approach those of the CE 
updating process from . On the contrary, large values of , the CE estimation from prior  takes 
over. Consequently, relatively large values of  ( 0.5 ) will be an indication of a column j 
characterized by a high weight of prior . In other words, in this specific column j it would be 
preferable to use an adjustment from the a priori matrix  rather than updating . On the contrary, 
comparatively small values of  (when 0.5) are a signal of an column j where the updating 
process should be preferred. 

4. Testing the Dwp Estimation Technique with a Numerical Experiment 

In order to test the performance of the proposed estimation technique, we have carried out a 
numerical simulation exercise where the DWP estimation is compared with a more traditional 
adjusting process where only one prior matrix is considered.  

For the sake of simplicity, let us assume that we want to estimate a symmetric matrix ( ). In 
the experiment we have fixed a target matrix  with dimensions 15 15  where the only known 
information is the column and row margins. This matrix has been fixed as the actual matrix of annual 
interregional trade (in millions of €) for the 15 Spanish inland regions in 2006. The matrix was 
constructed by the Lawrence Klein Institute (from the Autonomous University of Madrid) inside the 
C-Intereg project (for more details, visit http://www.c-intereg.es). Such a matrix is normally quite 
difficult to construct, given the huge amount of information that it requires, being available matrices 
only for the short period from 2002 to 2006 constructed annually. This matrix  has been transformed 
into a matrix of column coefficients  to be estimated from the information contained in vectors  and 
y. The information contained in the margin vectors of the matrix (total imports and export per region) 
is much more accessible, given that it can be obtained from the Regional Accounts regularly published 
by the Spanish Statistical Institute (see http://www.ine.es/en/inebmenu/mnu_cuentas_en.htm for more 
details on the Spanish Regional Accounts).  

We also defined several a priori matrices  to be used in the estimation of . Firstly, we have 
generated a possible a priori matrix , being the values of this matrix obtained as ·  
where  is a perturbation term that distributes as ~ 1,  and 0.1. Note that the value of 
scalar  reflects the level of deviation between the prior and the posterior: the smaller its value, the 
more similar the a priori and the target matrix. 

Additionally to this a priori matrix, we have also generated a matrix  whose elements have been 
obtained as: 

     
· and ~ 1,2 ;  1 1, … ,10 

·  and ~ 1,0.5 ;  2 11, … ,15.
 

In other words, this new a priori matrix is characterized by having ten of their columns (from 
column number 1 to number 10) more dissimilar to the target matrix  than the competing prior ; 
which means that in these cases it is not a very informative prior and consequently would be preferable 
taking  as initial matrix for the adjusting process of these specific columns. However, for the 
remaining five columns (number 11 to 15) it happens the opposite, given that the distribution is closer 
to the target matrix than the prior .  
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Under these conditions we have estimated matrix  by three different ways: updating the a priori 
matrix , updating the a priori matrix  and using the proposed DWP estimation technique that 
construct a composite of both matrices as possible priors. These three estimation strategies correspond 
respectively with the minimization of the three following divergence measures: 

                  Min ∑ ∑  (12a)

                 Min ∑ ∑  (12b)

          Min , , , , ∑ 1 ∑  

   ∑ ∑  

   ∑ ∑  

(12c)

subject to the same type of constraints explained before.  
To evaluate the performance of these alternative estimation approaches, 1,000 trials have been 

carried out and we have computed the average of three measures of overall deviation between the 
target matrix and the estimates. Specifically, we obtained the total absolute error (TAE), the total 
squared error (TSE) and the total Kullback divergence (TKL), being respectively defined as: 

                        ∑ ∑ ̂  (13a)

                        ∑ ∑ ̂  (13b)

                        ∑ ∑ ̂  (13c)

where the ̂  elements denote the estimated probabilities under the three different approaches. Table 2 
summarizes the average results obtained: 

Table 2. Deviation measures between the target and estimated matrices in the numerical 
experiments. 

Technique (prior used) 
Deviation measures 

TSE TAE TKL 
Adjusting from  0.014 0.936 0.052 
Adjusting from  0.037 1.425 0.142 
DWP (mixture of , ) 0.013 0.882 0.049 

 
The deviation measures shown on Table 2 provide some interesting results. Firstly, we can see the 

estimation of matrix  taking  as point of departure presents a comparatively worse performance 
than an adjustment from . Not surprisingly, the comparatively more dissimilar distributions from 
matrix  we specified for ten out of the fifteen columns contained in  cause this result. But this does 
not necessarily mean that all the information contained in this matrix should be neglected. Note that in 
the remaining columns the elements of  distribute closer to the target matrix than their counterparts 
in the competing prior . Therefore, matrix  contains also valuable a priori information that could 
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be useful in the estimation problem. If we incorporate both matrices of a priori information in the 
adjusting process by using the DWP estimation, we let the data speak for themselves and choose the 
most appropriate prior for each column, which in the end obtains smaller deviation measures.  

The average results obtained for the weighting parameters  also show how the DWP estimation 
works. Under the conditions described in the experiment, the DWP estimation technique identifies the 
columns where the distribution of the coefficients should be taken from one specific prior of the two 
initial matrices considered. Without any sample information the a priori expected value is  = 0.5, but 
the information included into the estimation process leads the DWP technique to give on average 
smaller weights to the first group of columns (column from 1 to 10) in matrix . The weights 
estimated for this first group are in all the cases not larger than 0.5; which means that in this case the 
priors contained in  take over. On the contrary, for the second group of columns (from 11 to 15) the 
estimates of  are in all the cases equal or larger than 0.5, pointing out that for these columns prior  
should be preferred. 

The relative performance of the DWP technique depends to a great extent on the degree of 
comparative similarity of the auxiliary prior  with the target matrix  . If the prior is closer for 
every column than the prior , there would not be gains from using the composite prior between both 
because it would be always better to use as prior  than the competing  and it would be also 
preferable to any possible combination of  and  (unless that the estimate of  for every column 
equals exactly one). A similar conclusion would be obtained in a symmetric case when for each 
column  is more similar to  than . It is on intermediate situations when the DWP estimator 
outperforms the adjustment form one single prior, given that takes the specific columns for each one 
that should be selected. In other words, when the number of column that behave like j1 (more 
dissimilar to  than their counterparts in ) in the numerical experiment takes intermediate values 
between 0 and 15. Figure 1 illustrates this idea extending the definition of the column of matrix  to 
all the possible cases in the terms of the previous numerical simulation. 

The horizontal axis of the figure contains different numbers of columns that behave like 
 · and ~ 1,2  in the prior . The vertical axis shows the mean of the absolute 
errors of the three competing adjusting technique that have been obtained along 1,000 simulations. The 
discontinuous line shows the average absolute deviation between the target matrix and the estimates 
when they are obtained by and adjustment from . Obviously, this deviation does not depend on the 
characteristics of , so it is a constant value. The dotted line represents the absolute deviations 
between the cells of  and the estimates obtained from prior . Not surprisingly, it takes very low 
values when all the columns are more similar to  than the other prior  and it grows as long as the 
number of more dissimilar columns also increases. 

The solid line represents the deviation measures for the estimates obtained by the DWP technique. 
When the prior  has very few columns (less than two) more dissimilar to  than , the estimation 
with the DWP yields worse result than an adjustment from . Conversely, if  has many columns 
(twelve or more) more dissimilar to  than , although the DWP technique outperforms a CE 
estimation from , it yields comparative higher deviations than and adjustment from . It is on 
intermediate situations where the DWP approach obtains better results than the CE estimation from 
only one of the priors, given that in such situations taking a composite of both priors allows for 
choosing the most valuable information contained in each one.  
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Figure 1. Absolute deviations between the target and estimates matrices under different 
levels of similarity between  and . 

 
5. An Empirical Application: Estimating the Interregional Trade Matrix in Spain, 2006 

As a complement to the numerical simulation made in the previous section, this section presents an 
empirical application of the DWP technique and compares the results obtained with other competing 
techniques. For this purpose, we took again the matrix of interregional trade for fifteen Spanish regions 
in 2006. Let us assume that the only known information of this matrix are the row and column margins 
(total sales and purchases per region respectively), and from this partial information we want to 
estimate the inter-industry flows matrix Z. For this purpose, we will apply an adjusting process to 
obtain the column-coefficients matrix P from two different initial matrices. Moreover, we also assume 
that we have some information on the expected structure of this matrix, obtained from the observed 
matrices of interregional trade column coefficients for two consecutive years in the past, specifically 
2004 and 2005 ( and  respectively).  

Although intuitively one could think that taking the closest matrix (i.e., the 2005 matrix) as prior 
would be always preferable, it might also happen that for some uncontrolled reasons the structure of 
interregional trade in 2006 was more similar to a more distant a priori matrix in time. For example, it 
could happen that some unnoticed phenomenon happened in 2005 that disrupted the usual 
configuration of the matrix for some of the columns – for example, a massive strike in one region, a 
natural disaster that spoils the crops in a specific place, etc. - but the normality returns in 2006. In such 
a case, taking all the columns of this matrix as point of departure could be not the best option, and 
alternative previous matrix could be preferable as initial distribution in the estimation of the 
coefficients for some regions.  

Consequently, we include as alternative prior in the estimation problem the matrix for 2004 and 
again we compare the performance of three estimation techniques of the target matrix P: an adjustment 
considering from , from the prior  and the DWP estimator that takes both possible priors. Table 
3 summarizes the results obtained in this study case, applying the same criteria as before for comparing 
the estimated and the target matrix: 
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Table 3. Deviation measures between the target and estimated matrices in the empirical 
application. 

Technique (prior used) 
Deviation measures 

TSE TAE TKL 
Adjusting from  0.063 2.424 1.096 
Adjusting from  0.083 2.428 0.783 
DWP (mixture of , ) 0.047 1.999 0.672 

 
In the estimation problem studied here, the results seem to be in line with the results obtained in the 

numerical experiment. Firstly, we can see that there is not an a priori matrix always superior to the 
other, but it depends on the deviation criterion applied: an adjustment from  would be preferred to 
an estimation from  under the Kulback divergence, but the opposite decision would be concluded if 
we pay attention to the squared or absolute divergence criterion. However, the results obtained 
applying the DWP estimation yields the smallest deviations under the three. The comparatively better 
performance of the DWP estimation is a consequence of a situation like the explained above: matrix 

 contains a priori information that should be preferred to the prior contained in  for some 
regions, but the contrary situation happens in the remaining cases. In such a case, if we incorporate 
both matrices by using the DWP estimation, we let the data speak for themselves and choose the most 
appropriate prior for each column, which in the end obtains smaller deviation measures (the use of the 
DWP estimator does not imply a significant difference in terms of time cost. Using an average 
personal computer and the CONOPT solver of the GAMS 2.0 software, the estimations made in this 
section took less than five seconds).  

The estimates of the parameters  in this empirical application measures the respective weights 
given to the columns of prior , and their graphical representation can be useful to understand how 
the DWP discriminates between the two priors in this problem:  

Figure 2 shows how the DWP estimator discriminates between the two priors: for all the regions 
(columns) in the matrix the initial guess of parameter  is 0.5. From this a priori value, the technique 
manages to identify some regions where the prior contained in the respective column of the matrix  
(region 4, Cantabria; region 9, Extremadura; and region 11, Madrid) where this prior is more strongly 
weighted in the estimation process. Oppositely, there are other regions where the a priori matrix  is 
clearly preferred and the estimated value of the corresponding weighting parameter  is smaller than 
0.5 (region 3, Asturias; and region 15, La Rioja). This discrimination between priors allows for 
optimizing the use of the two priors and yields smaller deviations between the estimated matrix and the 
actual values of interregional trade.  
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Figure 2. Estimates of the weighting parameters  . 
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6. Conclusions 

Economic analysis and modeling often requires using some non-survey method for estimating 
matrices of economic flows. Traditionally, these techniques take an initial matrix that is considered 
somehow similar to the one to be estimated. This a priori matrix is adjusted until it fulfills the 
constraints imposed by the known information and at the same time minimizes some divergence 
criterion with respect to the initial values. The Cross Entropy technique is a well-known example of 
such a procedure, when the divergence measure used is the Kullback-Leibler divergence. 

This paper suggests a new approach of dealing with this initial information. Based on previous 
work by Golan, the so-called DWP estimation strategy considers the possibility of including several a 
priori matrices in the estimation process of the cells of an unknown matrix. By means of a Monte 
Carlo simulation, the performance of the proposed DWP method is compared with the CE technique 
when only one prior is considered. The findings of this experiment highlights this proposed technique 
as a useful tool in situations where we have several possible a priori matrices and none of them is 
preferable to the other for all the cases (columns). The empirical application with a real-world 
example, where a matrix of interregional trade for the Spanish region in 2006 is estimated, seems to 
confirm this conclusion. 

References and Notes 

1. Kullback, J. Information Theory and Statistics; Wiley: New York, NY, USA, 1959. 
2. Golan, A.; Judge, G.; Miller, D. Maximum Entropy Econometrics: Robust Estimation with 

Limited Data; John Wiley & Sons: New York, NY, USA, 1996. 
3. Kapur, J.N.; Kesavan, H.K. Entropy Optimization Principles with Applications; Academic Press: 

New York, NY, USA, 1992. 
4. Golan, A. Information and entropy econometrics—A review and synthesis. FnT. in Econometrics 

2006, 2, 1–145. 



Entropy 2010, 12              
 

 

527

5. Hewings, G.J.D. The role of prior information in updating input-output models. Socio-Econ. 
Plann. Sci. 1984, 18, 319–339 

6. Zellner A. Models, prior information and Bayesian analysis. J. Econometrics 1996, 75, 51–68. 
7. Zellner A. The Bayesian method of moments (BMOM): Theory and applications. Adv. Econom. 

1997, 12, 85–105. 
8. Golan A. A simultaneous estimation and variable selection rule. J. Econometrics 2001, 101,  

165–193. 
9. Bernardini R.A Composite generalized cross entropy formulation in small samples estimation. 

Econometric Rev. 2008, 27, 596–609.  

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


