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Abstract: The paper addresses the methods of description of friction-induced self-healing 
at the interface between two solid bodies. A macroscopic description of self-healing is 
based on a Turing system for the transfer of matter that leads to self-organization at the 
interface in the case of an unstable state. A microscopic description deals with a kinetic 
model of the process and entropy production during self-organization. The paper provides 
a brief overview of the Turing system approach and statistical kinetic models. The relation 
between these methods and the description of the self-healing surfaces is discussed, as well 
as results of their application. The analytical considerations are illustrated by  
numerical simulations. 
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1. Introduction 

Self-healing of surfaces is one of the most surprising and complex phenomena of biological 
systems. It represents spontaneous disappearing of surface defects and restoring initial structure of a 
surface, and is led and controlled by inner properties of the system. In the last years, self-healing 
ability of biological systems attracted the attention of material engineers [1,2]. The main goal of 
engineering studies in this direction is to create artificial systems and surfaces with self-healing properties. 

In general, the investigations in the field of artificial self-healing materials design follow two 
approaches. The first approach addresses design of self-healing materials such that the disappearance 
of the defects is led by inner abilities of the system and does not require external fields and energy. 
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Such self-healing phenomenon is called autonomic healing, and it is was observed in polymer 
composites [3,4], including nanocomposites [5], and in the other types of engineered materials [1]. The 
second approach deals with the systems in which self-healing processes occur under an influence of 
external fields, while the self-healing process is governed by the system structure and material 
properties [6,7]. Such phenomenon was considered for polymer materials in thermal fields [8] and for 
the surfaces in mechanical systems, in which self-healing is induced by friction [2]. The surfaces that 
have a self-healing property, either without external energy or under the influence of the external 
fields, are known as self-healing surfaces. 

In the last years, a number of methods for modeling and studying of self-healing surfaces both in 
“microscopic” and in “macroscopic” scales were developed. Design of self-healing polymer 
composites deals with molecular structures of materials and encapsulated healing agents that started to 
react with the basic polymer while it was damaged [4]. In contrast, the studies of self-healing in 
external fields or mechanical influence consider macroscopic models of materials [9] and apply 
suitable continuity equations for description of self-healing phenomenon on the surfaces. As a result, 
self-healing is considered as a kind of self-organization phenomenon that leads to the changes of the 
surface state according to the system properties. 

In particular, Gershman and Bushe [10] considered the surfaces with self-healing induced by 
friction, and suggested to apply the methods that are commonly used for analysis of a self-organization 
phenomenon (see e.g., [11,12]). They studied self-healing by the use of thermodynamics of non-linear 
dynamical systems and applied the entropy principles to self-healing [13]. Further progress in this 
direction was achieved by Nosonovsky and Bhushan [6,7], who considered self-healing as a 
hierarchical phenomenon. Analysis of this phenomenon by the methods of non-linear dynamical 
systems theory led to consideration of self-organization that occurs on different hierarchical levels of 
the material: from nanoscale via microscale to macroscale. Later, Fox-Rabinovich, et al. [14] 
suggested a criterion that determines the possibility of self-organization on the basis of entropy. 

The indicated studies present the entropic concepts and methods for consideration of self-healing by 
the use of dynamical systems theory. Nevertheless, qualitative or quantitative models that describe the 
processes on self-healing surfaces in the direct form of self-organizing system have not been reported 
yet. The objective of this paper is to determine such qualitative models using wide assumptions about 
the material properties, and to consider its relevance for quantitative analysis of self-healing. 

In this paper, self-healing processes on the surfaces are considered using Turing system, which is 
widely used for modeling and analysis of self-organizing dynamical systems [15–17]. A macroscopic 
behavior of the surface material is modeled by general two components Turing system in two 
dimensions, while microscopic processes are describes by kinetic equations [13]. Entropy production 
and occurrence of self-organization on the surface are analyzed by the use of methods and models 
suggested by Klimontovich [18,19]. 

In certain cases, analytical considerations of the models are illustrated by numerical simulations. 
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2. Turing System and Self-Organization Processes 

Turing system is a general model that is used for description of the processes in distributed non-
linear dynamical systems. This system, also called reaction-diffusion system, was suggested by Turing 
in 1952 [20] as a method of modeling the processes in distributed chemical media, in which spatial 
patterns of reagents concentrations can appear. In his initial work, Turing applied this system for 
description of morphogenesis, while in further decades Turing system was used as a basis for modeling 
different kinds of non-linear distributed dynamical systems [11,12,17]. 

In general, Turing system is defined as a following system of n partial differential equations [17]: 
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∂
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interpreted as a vector of reagents concentrations, 
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×
= α –as a diffusion matrix. Functions 

),( 21 nffff …=  determine behavior of reagents and their relations, and υ stands for bifurcation 

parameter. It is assumed that the system is defined on a certain domain and that initial and boundary 
conditions are determined, as well. 

In the case of linear functions ),( 21 nffff …= , behavior of the system is rather simple. For 

example, let us consider system (1) that describes a media that consists of connected oscillators [21]. 
In this case, 2=n  and the system is written as follows: 
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where 1α  and 1α  are diffusion coefficients for reagents 1u  and 2u , respectively, and 0>ω is a 
frequency of oscillations. Indeed, if 021 == αα , then system (2) can be transformed to the equation 
that describes a linear oscillator without dissipation. 

If, in opposite, functions ),( 21 nffff …=  in system (1) are non-linear, then the system can 
demonstrate different types of behavior. For such a system there exists a value 0υ  of parameter υ such 
that if 0υυ = , then homogeneous state of the media is unstable, and the system behaves as follows [22]: 

− if 0υυ <  then a short external influence on the system gives a rise to static or pulse auto-waves; 
− if 0υυ >  then auto-waves and wave structures appear without external influence. 

For an example of bifurcation parameter, see Section 3.1, where it defined for a Van-der-Pol oscillator, 
and represents a feedback level while its threshold value 0υ  is given by a level of dissipation. 

Wave structures that appear in the system are known as dissipative structures and also called 
Turing structures or Turing patterns. In special cases, system (1) has also solitary solutions that 
represent single running or static pulse-waves over a homogeneous media. 

To illustrate a behavior of the media that is described by system (1), let us consider an example of 
Turing patterns formation the surface of semiconductor plate [23–25]. In this example, 1u  and 2u  
represent non-stable concentrations of electrons and holes. In this case, the Turing system has the 
following form: 
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( )21111
1 , uufu
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α , (3) 

In such a two-component system, auto-waves can exist if 011 >∂∂ uf  and 022 >∂∂ uf , and 
dissipative structures can appear if 21 αα ≠  [17]. Assume that these requirements hold true, and that 
functions 1f  and 2f   correspond to quadric recombination: 

( ) ( )0
2

0
12111211 , uuuuuuf −−= γδ   ( ) ( ),, 0

2
0
12122212 uuuuuuf −−= γδ  

where 1δ , 2δ  and 1γ , 2γ  are positive constants and 0
1u , 0

2u  determine stationary concentrations. 
A direct numerical simulation of system (3) for parameters of silicon 100

2
0
1 1002.1 ⋅== uu , 

1
1 1063.7 ⋅=α , 1

2 1029.1 ⋅=α , 8
1 1047.8 −⋅=γ , 8

2 1041.1 −⋅=γ  shows that on initially homogeneous 
surface appear running waves and the system does not converge to some steady state. In the 
simulations, it was assumed that the system starts from the state ( ) 00,,1 =yxu , ( ) 00,,2 =yxu , and 
that at the bounds 1u  and 2u  are equivalent to zero. The results of simulations are illustrated by 
Figure 1. 

Figure 1. Results of numerical simulation of system (3) with parameters of silicon. 

  
20=t        80=t  

 
However, for parameters of the system 130

2
0
1 1033.2 ⋅== uu , 1

1 1083.9 ⋅=α , 1
2 1071.4 ⋅=α , 

11
1 1069.1 −⋅=γ , 13

2 1008.8 −⋅=γ  that correspond to germanium, numerical simulation demonstrate its 
fast convergence to the stable state. Such a behavior clarifies the reason of less noise as it is 
demonstrated by germanium electronic devices comparatively to silicon devices. 

In certain cases of engineered systems, system (1) can include both concentrations of reagents and 
velocities of their production that allows to control patterns formation. For example, Balkarey, et al. 
[26,27] implemented such approach for design of self-organizing systems of information storage. The 
model for a two-layer system of distributed Van-der-Pol equations has the following form [26]: 
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where 1v  and 2v , similar to variable 2u  in system (2), have a meaning of velocities of 1u  and 2u . 
Coefficients ijγ , 2,1, =ji , determine connection between the layers, and coefficients ijβ , ijε , 

2,1, =ji , determine relation between the frequencies within the layers. In this system, stable Turing 
patterns exist [26,27], and their formation can be controlled both by boundary conditions [25] and by 
distributed external field [23,24]. 

As indicated above, Turing systems (1) with non-linear functions ),( 21 nffff …=  allow the 

processes of self-organization that, according to definition of the system, occur on the surface of the 
described system. These processes are represented by appearance of spatial running or stable wave 
structures. Recently, Leppänen presented a number of numerical examples of such structures for 
different Turing systems [28,29] and also reported about existence of stable three-dimensional Turing 
patterns. In this case, Laplace operator Δ in system (1) has a three-dimensional form, 

( )222222 zyx ∂∂+∂∂+∂∂=Δ , indeed, and functions f depend on first spatial derivations of u. Last 
years, similar results were obtained by Shoji, et al. [30], and stable solitary solutions in three-
dimensional Turing systems were obtained in the field of non-linear optics [31]. 

3. Kinetic Models and Entropy 

In the above-presented Turing system (1), values iu , ni ,,1 …= , were interpreted as reagents 

concentrations or other macroscopic measures that can be obtained by direct observation. Now let us 
consider a kinetic representation for such systems. 

3.1. Concentrated Turing System 

Let us start with a concentrated Turing system and as an example let us consider a Van-der-Pol 
equation, as it was studied by Klimontovich [18,19]: 
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ud ωβα  

In the form of concentrated Turing system is can be written as follows [19]:  
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where ( )2
1

22
22

1 uuE ω+=  stands for the energy of oscillations with frequency ω and 

ndissipatiofeedback aaa −= ; feedbacka  is a parameter that represents a feedback and ndissipatioa  represents a 

value of linear energy dissipation. System (5) is a kind of system (1) that can be considered as a 
description of behavior of each element in the distributed system of non-interacting oscillators. 

In spite of the existence of the exact solution of system (5), let us consider a distribution μ of 
oscillations energy E. This distribution is presented by a Fokker-Planck equation for system (5) that 
has the following form [19]: 
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where δ stands for intensity of external source of fluctuations. If fluctuations depend on the energy of 
oscillations and do not depend on external sources, as it holds, e.g., for quantum oscillators, then 
( ) ( )kTbEaE +−=δ  and system (6) has a form 
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where k stands for Boltzmann constant and T has a meaning of temperature for the oscillations with 
frequency ω. 

Stationary solution of system (6) is given by the Gibbs distribution [19,32]: 
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where H is a Hamilton function and 0E  stands for free energy. The Shannon entropy of distribution 

aμ  is given by a formula: 
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ln dEEES aaa μμμ  (9) 

Regarding parameter ndissipatiofeedback aaa −= , there exist three cases that, according to formulas (8) and 

(9), give the following distributions μ, entropies S and average energies E  [19, 32]: 

1. Chaotic behavior that holds while 0=feedbacka  and 12 <<ndissipatioabδ . Then 
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For these three cases, it holds true that ( ) ( ) ( )321 μμμ SSS <<  while 321 EEE << . A 

renormalization of entropies S using average energies E  gives the following values of fluctuations: 
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For the renormalized entropies S~ , it holds true that ( ) ( ) ( )321
~~~ μμμ SSS >> , i.e., while a value of 

control parameter feedbacka  increases, its system entropy renormalized by the average energy decreases, 

which represents occurrence of self-organization process in the system. The self-organization in the 
considered systems means that it moves from chaotic behavior (case 1) via threshold state (case 2) to 
generating regime (case 3). This statement is known as Klimontovich S-theorem [19,32] that gives a 
quantitative criterion of self-organization occurrence similar to the value 0υ  of bifurcation parameter 

υ in system (1). In the considered example of Van-der-Pol equation, bifurcation parameter υ 
corresponds to feedbacka  and its bifurcation value is ndissipatioa=0υ . In addition, the construction required 

by S-theorem demonstrates a correspondence between macroscale description (5) and microscale 
description (6) of system behavior in the terms of energy distributions. 

3.2. Distributed Turing System 

Let us apply the above presented approach to the distributed Turing system (1). In such system, 
concentrations  iu , ni ,,1 …= , depend on spatial coordinates, in the considered two-dimensional case 

– on x and y coordinates. Hence, distribution μ of energy E for distributed Turing system is also a two-
dimensional function that is normalized over time and spatial coordinates. 

In system (1), generating regime depend both on inner energy of oscillations ( )Eδ  and on spatial 
diffusion D. Hence, kinetic Fokker-Planck equation (7) for distribution μ obtains the following form: 
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where F is a function that corresponds to the functions f in system (1). In particular, for distributed 
system of Van-der-Pol oscillators (5), equation (10) is similar to equation (7) with an addendum that 
relates to the spatial diffusion [19]: 

( ) ( ) ( )( ) μμμδμ
Δ+−

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂

∂ DEbEa
EE

EE
Et

tE,  1
0

=∫ ∫
∞

dxdydE μ  (11)

The last equation was studied by Klimontovich [18,19], and it was found that the number N of 
distributed oscillators with distribution (11) plays the same role as a bifurcation parameter υ for the 
system. The above-mentioned two-layer system (4) provides an example of such system with 2=N . 
In certain sense, these results correspond with the Fox-Rabinovich, et al. consideration [14] of  
self-organization criterions. 

Since distribution μ depends on spatial coordinates x and y, energy E can be considered as a 
function of x and y. Then Fokker-Planck equation (10) for distribution μ can be written in a general 
form as follows [33]: 
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where ( )μαα ,,, tyxijij =  and ( )μδδ ,,, tyxii = , 2,1, =ji , are some functions that correspond to the 
functions ),( 21 nffff …=  of considered system (1) and that in liner case do not depend on 

distribution μ [34]. As above, in equation (12) indexed α-s correspond to diffusion effects, while their 



Entropy 2010, 12                            
 

 

561

formal definition differs from their definition in systems (2) and (3). An example of density dynamics 
for equation (12) with constant coefficients 001.02211 == aa , 02112 == aa , 01 =δ  and 3.02 =δ  is 
shown in Figure 2. The figure is obtained by direct numerical simulation of equation (12) over square 
domain 1010×  with zero boundary conditions. The steps in spatial coordinates x and y are equivalent 
to 5.0 , and the step in time coordinate is equivalent to 1. Initial state is presented by symmetric  
two-dimensional Gaussian distribution with 01.0== yx σσ  that is concentrated in the center of  

the domain. 

Figure 2. Example of density dynamics for equation (12) with constant coefficients. 

  
0=t        2=t  

  
5=t        8=t  

As in the above-considered example of Van-der-Pol equation, Turing system (1) and Fokker-Planck 
equations (10) or (12) present two forms of system description: the first deals with a description in the 
terms of concentrations and the second – with density. Thus, it can be expected that for these equations 
the consideration of entropy as some criterion of self-organization can be useful as well. 

In general, kinetic equations (10) and (12) that corresponds to the system (1) cannot be solved 
analytically. Nevertheless, an application of entropic measures as measure functions and consideration 
of the equations stability relatively to those measures can provide criteria of self-organization occurrence. 

We will follow the above-considered approach that is based on Shannon entropy for equation (10). 
The considerations of equation (12), which in addition to Shannon entropy include Renyi and Tsalis 
entropies, are presented by Frank [33]. In the implementation of entropic measures as measure 
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functions we follow a direction that was suggested by Klimontovich [19], while in details of the 
methods for studies of distributed systems stability relatively to measure we follow an approach 
presented by Sirazetdinov [35]. 

Similar to formula (9), the Shannon entropy of distribution μ that is governed by equation (10) is 
defined as follows: 

( ) ( ) ( )∫ ∫
∞

−=
0

ln dxdyEEdES μμμ  (13) 

In addition, we will use a Kullback-Leibler distance, also called Boltzmann-Kullback measure [33], 
that determines the distance between distribution ( )Eμμ =  for an energy E and distribution 

( )00 Eμμ = : 

( ) ( ) ( )
( )∫ ∫

∞

=
0 0

ln dxdy
E
EEdEKL

μ
μμμ  (14) 

where 0E  stands for such energy that the entropy ( ) ( ) ( )∫ ∫
∞

−=
0

000 ln dxdyEEdES μμμ  in the sense of 

equation (10) reaches its maximum. 
Notice that both E and 0E  are functions of coordinates x and y, and distribution 0μ  corresponds to 

uniform distribution that, according to maximum of entropy, represents a chaotic regime of the system. 
Such understanding of chaotic regime in distributed systems differs from the understanding of chaotic 
behavior in concentrated systems. In fact, in concentrated systems, stable homogeneous movement 
corresponds to regular behavior, while in distributed systems a uniform spatial distribution means the 
most non-regular concentrations of reagents. 

Kullback-Leibler distance (14) meets the required properties of a processes measure function [35]: 
− ( ) 0≥μKL  for any time-moment t, 
− ( ) 00 =KL , that follows form conventional assumption that 00ln0 = , 
− for any μ, Kullback-Leibler distance is continuous in time, that follows from continuality of 

distribution μ and energy E. 
Formally, these properties do not depend on the choice of distribution 0μ , and the same distance can 
be implemented as a measure function for stability analysis with any distribution 0μ . 

It is easy to certify that the entropy (13) can be considered as a positive functional [35] relatively to 
Kullback-Leibler distance. According to the assumption about 0μ , it is strictly positive. Hence, 
distance ( )μKL  is bounded with a finite upper bound. From general properties of entropy ( ) 0≥μS  for 
any distribution μ and ( ) 00 =S  by the same convention that 00ln0 = . 

Now we are ready to apply a theorem on instability of steady processes [35] that, in the introduced 

terms, states that if ( ) 0<μS
dt
d  then distribution μ is unstable relatively to distance ( )μKL . In the 

light of above-considered Klimontovich’s S-theorem [19,32], this theorem is intuitively obvious, since 
it states that distribution μ becomes non-uniform if its entropy decreases from its maximum that is 
reached for uniform distribution. The simple meaning of the theorem allows certain quantitative 
description of the system behavior. By the use of the entropy definition (13), we obtain: 
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∫ ∫∫ ∫
∞∞

∂
∂

−
∂
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−=
00

ln dxdy
t

dEdxdy
t

dE
dt
dS μμμ  (15) 

Since 1≤μ  for any x and y, the first addendum is positive, while the second addendum is negative. 
Hence the sign of dtdS  is determined by the values of μln  that are defined by distribution μ and by 
the values of t∂∂μ . 

If 0=
∂
∂

t
μ  then 0=

dt
dS  and the state with uniform distribution is stable. However, already for 

distribution μ such that its dependence on E and t is given by a formula: 

( ) ( ) ( ) ( )tyxEtE steady
2coscoscos, =μ  

where steadyE  is a normalization coefficient with the meaning of steady state energy, function dtdS  is 
harmonic and proportional to ( ) ( )tt sincos  (a strict formula for the function dtdS is rather complex 
and we omit it here). Thus, dtdS  periodically becomes negative or positive; while it is negative, 
distribution μ changes, and while it is positive, distribution μ stays unchanged. Such behavior 
corresponds to appearance of running waves that are similar to the waves in the above-presented 
example of Turing system (3). 

The consideration of entropy changing in time can allow certain description of self-organization in 
distributed Turing systems. Nevertheless, because of the complexity of required calculations it can be 
applied for relatively simple systems. Additional information about self-organization and its relation 
with the entropy may be obtained by consideration of two Kolmogorov equations. The first equation is 
equivalent to the Fokker-Planck equation, while the second governs transitions between the states. 
Such representation requires further consideration of the system behavior on microscale level. Some 
possible techniques for such considerations are presented by Klimontovich [18,19] and Landa [21]. 
Below, we will give some remarks on such techniques. 

4. Remarks on Wave Behavior 

As indicated above, analysis of the system behavior at microscale level requires additional 
techniques and methods. Let us consider a possible way of modeling such behavior as it is presented 
by Landa [21]. In particular, let us consider a non-linear Ginzburd-Landau equation that for  
(2+1)-dimensions has the following form: 

02
21 =+Δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂ uuau

y
u

x
u

t
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where 1−=i . If shift velocity 2δ  over y is equivalent zero then this equation obtains a form of 
standard time-dependent Ginzburg-Landau equation: 

02
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+
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∂ uuau

x
u

t
ui δ  

that in the running with velocity 1δ  coordinates is a cubical Schrödinger equation: 
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02 =+Δ+
∂
∂ uuau

t
ui  (16) 

In the case of two-dimensional operator Δ, this equation describes behavior of wave pulses on the 
surface with spatial x and y coordinates. 

Cubical Schrödinger equation (16) allows a number of solution types. Solutions in the form of 
stable and running waves are similar to the waves shown in Figure 1. In addition, this equation allows 
a solitary solution that for (1+1)-dimensional equation (16) has a form [21]: 

( ) ( ) ( )txUetxu kxti ,, −−= ω ,   ( ) ( ) ( ) ( )( )ωω
−−

−
= − 21

2

2cosh2, kktx
a

ktxU   02 >−ωk    0>a  

and is illustrated by Figure 3.a. 
Equation (16) is written in a complex form while in the form of two real equation it can be 

represented by a Turing system (1) as follows [21]. Let igfu += , where f and g, as well as u, are 
functions of spatial coordinates and time. Then equation (16) obtains a form of the following system: 

( ) 022 =++Δ+
∂
∂ ggfag

t
f   ( ) 022 =+−Δ−

∂
∂ fgfaf

t
g  (17) 

where function f can be corresponded to a birth density and function g – to a death density. Behavior 
of these functions is illustrated by Figure 3.b. 

Figure 3. (a) Solitary solution of cubical Schrödinger equation (16) in (1+1)-dimensions. 
(b) Birth f and death g densities for system (17) corresponding to equation (16). 

  
(a)       (b) 

Each of two equations of system (17) is a nonlinear Fokker-Planck equation that describes a 
behavior of the Brown particle in the external field such that its behavior depends on previous states. 
Notice that in system (17) the first equation does not include fΔ  and the second equation does not 
include gΔ , i.e., as it follows from quantum mechanical nature of equation (16), spatial behavior of 
reagents depends on the behavior of each other but does not depend on the reagent behavior itself. In 
the description that includes both macroscale and microscale levels, each equation of system (17) have 
to include both fΔ  and gΔ  with suitable coefficients. Nevertheless, analysis of such system is rather 
complex and remains to future research. 
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5. Friction-Inspired Self-Organization on Surfaces 

Let us implement the above-presented models to the contact surfaces of solid bodies during friction. 
The goal of the next consideration is to give additional illustration of Turing system behavior and to 
introduce such models into the context of self-healing during friction. We consider the simplest case of 
friction of solid bodies without lubrication. For further information on friction and methods of its studies 
see books [36,37], and for consideration of self-organization during friction see monographs [2,6]. 

Assume that there are two solid bodies that contact by their surfaces and that one the bodies is 
moving relatively to the other. Since the contact surfaces have microdefects, the surfaces are rough 
and, under certain pressure, abrasion occurs. That leads to flattening of the contact surfaces, while a 
near-surface structure of the material is disturbed. This process is followed by heating of the bodies 
and by the changes in their electric charges; that in their turn lead to the non-zero flows of the matter 
in near-surface layers. Schematic illustration of the considered process is shown in Figure 4; this figure 
is based on an illustration presented by Garkunov [37]. 

Figure 4. Scheme of two solid bodies and their contact surfaces (based on [37]). 

 z 

y x 

T Contact surfaces 

Moving body 

 

In Figure 4, the bottom body stays still and the upper body moves over the x axis. It is assumed that 
the pressure is applied to the upper body and is directed down over the z axis. In addition, the Figure 
shows a near-surface matter flows and a distribution of temperature T in the bottom body [37]. 

As indicated above, at least three processes govern matter concentrations on the contact surfaces: 
heat flow and corresponding matter flow, abrasion and corresponding changes of matter concentration 
and changes of electric charges of the bodies and corresponding flow of ions. From the macroscale 
point of view, we are interested in first two processes. 

Let us formulate a Turing system that describes these processes. In this formulation, we follow the 
considerations of one-dimensional heat and matter flows that are presented by Berkovich and 
Gromakovsky [36] and by Garkunov [37], and distribute these considerations to the three-dimensional 
case. We apply normalized units for temperature 1u  and for matter concentration 2u , and consider the 
processes in the bottom body (see Figure 4). 

An implementation of one-dimensional equation for a heat flow [37] to the three-dimensional case 
with abrasion gives the following equation: 
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where ( ) ( ) 2
11

22
11

2 yuxu yx ∂∂+∂∂ αα  represents a diffusion of temperature over a surface; 

( ) ( )( ) zuuuzu zz ∂∂−∂∂− 1211
2

11
2 ,δα  corresponds to the diffusion and heat flow via the surface, where 

function z1δ  determines a proportional dependence of tu ∂∂ 1  on the heat flow zu ∂∂− 1  and opposite 
dependence on matter concentration 2u ; and function 1ω  (also called heat ejection [37]) takes into 
account an abrasion that decreases concentration 2u  and effects of temperature changes during friction. 

Formulation of equation for matter concentration 2u  on a surface is based on the Fick diffusion 
equations [38] and takes into account a matter flow over the z axis [36]. The equation is formulated  
as follows: 
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where ( ) ( ) 2
22

22
22

2 yuxu yx ∂∂+∂∂ αα  represents a diffusion of matter on a surface; 
( )( ) zuuuz ∂∂ 2212 ,δ  corresponds to the matter flow via the surface because of abrasion, where function 

z2δ  determines a proportional dependence of tu ∂∂ 2  on the matter flow from the body because of 
temperature and electric charge effects and opposite dependence on matter concentration 2u ; and 
function 2ω  takes into account a dependence of abrasion on temperature 1u . 

Equations (18)-(19) form a Turing system that in the case of non-linear functions α, δ and ω allows 
a self-organization on a contact surface. Strict solutions of equations (18)-(19) can be obtained in 
special cases of these functions, however, effects of self-organization can be observed by numerical 
simulations. In Figure 5, we present results of such simulations for constant diffusion coefficients α, 

( ) 21
0
1211 , uuuuuz −=δ , ( ) 21

0
2212 , uuuuuz −=δ , and ( ) ( ) 12212211 ,, uuuuuu −=−= ωω , where 

100
2

0
1 100.1 −⋅== uu . 

Figure 5. Results of numerical simulation of system (18)–(19) with modeling parameters. 

  
1=t        100=t  

From Figure 5, it follows that initially random defects of surface are flattening out with time, while 
the concentration of the matter at the contact surface increases. During the simulations, it was observed 
that the concentration changes periodically and moves to steady oscillating over the surface. 
Nevertheless, notice again that the simulations were conducted for modeling parameters, while 
consideration of the processes for real materials requires additional research. 
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6. Conclusion 

In the paper, we considered some models that can be applied for description and modeling of  
self-healing surfaces, in particular, of contact surfaces during friction. For modeling of self-healing 
surfaces, Turing systems are considered and their behavior is analyzed. 

It is demonstrated that known entropy methods of self-organization analysis naturally correspond to 
the models based on Turing systems. Moreover, in the case of distributed systems, Turing system can 
be considered as a suitable model both for dynamics of reagent concentrations (macroscale level) and 
for dynamics of matter distribution (microscale level). This fact, in addition to correspondence of Turing 
systems with entropy methods, makes such models r useful in the description of self-healing surfaces. 

In this paper, macroscale Turing system that describes dynamics of matter distribution was 
analyzed by the use of methods of stability by measure, while measure functions were determined by 
entropy measures. This analysis demonstrated an application of entropy criteria of self-organization to 
Turing systems. Nevertheless, this consideration showed that the quantitative consideration of 
distributed self-organizing systems by the use of entropy methods is rather complex and can be applied 
for relatively simple systems. 

Regarding a microscale level, it was demonstrated that the known quantum-mechanical non-linear 
models can be considered as a kind of Turing systems. By adding suitable diffusion coefficients, such 
models can be applied for friction analysis both at microscale and at nanoscale levels. In addition, such 
approach provides a wide context for friction analysis and relates its studies with probabilistic and 
quantum-mechanical models. 

Finally, the paper presents an illustrative example of description of self-healing during simple 
friction. For contact surfaces of solid bodies, a modeling Turing system is formulated, and its behavior 
is considered by direct numerical simulations. It is demonstrated that for certain modeling parameters, 
the system allows a process of self-healing on the contact surface. The further consideration of such 
models and their application to certain materials and friction conditions is remains for further research. 
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