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Abstract: Chemical kinetic systems are modeled by dissipative ordinary differential
equations involving multiple time scales. These lead to a phase flow generating anisotropic
volume contraction. Kinetic model reduction methods generally exploit time scale
separation into fast and slow modes, which leads to the occurrence of low-dimensional
slow invariant manifolds. The aim of this paper is to review and discuss a computational
optimization approach for the numerical approximation of slow attracting manifolds based
on entropy-related and geometric extremum principles for reaction trajectories.

Keywords: model reduction; slow invariant manifolds; chemical kinetics; extremum
principles; entropy concepts

1. Introduction

Model reduction in chemical kinetics is an important issue in numerical simulations of reactive
flows involving high-dimensional detailed reaction mechanisms with multiple time scales [1]. Also,
for complexity reduction of chemical reaction mechanisms [2] and biochemical networks [3], insight
into the multiple time scale structure is often useful.
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Figure 1. Illustration of trajectories relaxing onto a 2-D manifold and successively a 1-D
manifold while converging to stable equilibrium point. Figure courtesy of A.N. Al-Khateeb,
J.M. Powers, S. Paolucci (private communication).

In dissipative ordinary differential equation (ODE) systems modeling chemical reaction kinetics,
different time scales cause anisotropic phase volume contraction along solution trajectories. This leads
to a bundling of trajectories near “manifolds of slow motion” of successively lower dimension as time
progresses (see Figure 1). Model reduction methods exploit a time scale separation into fast and slow
modes by computing a dimension-reduced model via elimination of fast modes enslaving them to the
slow ones and projecting the system dynamics from the full state space to a slow manifold.

Prominent numerical techniques are the ILDM-method [4,5], computational singular perturbation
(CSP) [6,7], Fraser’s algorithm [8–10], the method of invariant grids [11,35], the zero derivative
principle (ZDP) [13,14], the rate-controlled constrained equilibrium (RCCE) method [15], the invariant
constrained equilibrium edge pre-image curve (ICE-PIC) method [16,17], flamelet-generated manifolds
[18,19] and finite time Lyapunov exponents [20].

Dissipation and the bundling of trajectories on slow manifolds are closely related to the concept of
entropy. The term “entropy” is used in various contexts in chemistry, physics and dynamical systems
theory, but all definitions follow the same basic idea related to information loss or gain and increase or
decrease in complexity. Here, we will refer to the chemical definition of entropy production rate and the
general concepts of topological and metric entropy of dynamical systems which measure the increase
in dynamical complexity during time evolution. At the core of the thermodynamic point of view of
entropy is Gibbs’ variational principle and Boltzmann’s microscopic interpretation of the entropy S as
S = kB lnW with the thermodynamic probability W measuring the number of microscopic states being
consistent with a macroscopic property of a system. Postulating equal a priori probabilities of each
microstate the thermodynamic probability of a macroscopic state to be implemented in this picture is
proportional to the number of microstates being consistent with that macrostate.
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Here, we review and discuss the recently proposed use of entropy-related concepts to formulate a
variational principle suitable to characterize trajectories on, respectively near, slow invariant manifolds
of chemical kinetic systems. In analogy to the classical thermodynamic point of view the slow manifold
can be interpreted as a “macroscopic” view of the system and a variational principle is supposed to
distinguish this “slow” macrostate from all other possible macrostates being consistent with a chosen
parameterization of a low-dimensional manifold.

2. Entropy Concepts

For an elementary reaction step with reaction rates Rf
j and Rr

j for forward and backward reactions the
chemical entropy production rate can be calculated from

diSj
dt

= R(Rf
j −Rr

j) ln

(
Rf
j

Rr
j

)
(1)

where R is the universal gas constant. Since the total entropy production rate is additive for several
elementary steps, it can be computed from purely kinetic information for arbitrary reaction systems using
(1) if the detailed elementary step mechanism is known and the kinetic rate coefficients are available.
For isolated systems with constant internal energy and volume, the entropy is a Lyapunov function of
the dynamical system following the Second Law of Thermodynamics.

In [21,22], numerical approximations of slow attracting manifolds are obtained by computation of
trajectories along which the total (time integral over entropy production rate) entropy production (1)
summing over all elementary reaction steps is minimal while chemical equilibrium is approached as time
progresses. The approach yields approximations of slow manifolds, however, they lack invariance. Here,
we will discuss the extension and improvement of this fundamental idea to more general entropy-related
extremum principles tracing trajectories of a dissipative dynamical system backwards in time and point
out relations to entropy concepts in dynamical systems theory. In the latter context, entropy can generally
be interpreted as a measure of the rate of increase in dynamical complexity, e.g., the rate of dissipation.
We propose that an extremum principle suitable to characterize trajectories on slow attracting manifolds
should incorporate in some sense the idea of minimum dissipativeness (in the sense of “maximum
slowness”) of a dynamical system along these trajectories.

In this section, we provide an overview of relevant entropic concepts in dynamical systems theory
and in the next section we will try to illustrate how these general concepts qualitatively relate to and
provide a motivation for the criteria we choose for the purpose of computing slow attracting manifold by
proposing an entropy-related extremum principle for trajectories.

A standard reference for the following definitions and theorems is [23]. Our presentation partially
follows that of Young [24].

Definition 1 [Topological entropy] [23] Let X be a compact metric space and g : X → X, g(x(t)) =

x(t + 1) be the time-one map associated with the flow of the dynamical system defined by the vector
field f(x) of the ODE ẋ = f(x), f ∈ C∞. U ⊂ X is called a (n, ε)-separated set, n ∈ Z+, ε > 0, if

∃ i, 0 ≤ i < n, ∀ x, y ∈ U : d(gi(x), gi(y)) > ε.
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The topological entropy htop(g) of g is defined as

htop(g) := lim
ε→0

{
lim sup
n→∞

1

n
N(n, ε)

}
with N(n, ε) denoting the maximum cardinality of all (n, ε)-separated sets.

The illustrative meaning of this entropy concept is the following: ε determines the resolution scale
above which two points are considered separated. N(n, ε) counts the number of n-orbits (an orbit of
“length n” corresponds to the time-n map gn) through x, y whose end points gn(x), gn(y) are separated
in the sense of Definition 1. Thus the limit ε → 0, n → ∞ characterizes the overall divergence of
trajectories. According to Definition 1 the number of (on the ε-scale) distinguishable orbits grows with
n like ∼ enhtop .

It follows directly from Definition 1 that htop(g) ∈ [0,∞] and if g is a differentiable map of a compact
d-dimensional manifold htop(g) ≤ d log ‖Dg‖ with the differential Dg.

Definition 2 [Metric entropy] [23] Let (X,B, µ) be a probability space with the σ-algebra B ⊂
P(X), an appropriately chosen probability measure µ such that g : X → X, g(x(t)) = x(t + 1) is
a measure-preserving, i.e. µ(A) = µ(g−1(A)), time-one map diffeomorphism induced by the flow of
the dynamical system defined by ẋ = f(x), f ∈ C∞. Let α := {A1, ..., Ak} be a finite partition
of X, g−1(α) := {g−1(A1), ..., g−1(Ak)} and j is called the α-address of x ∈ X if x ∈ Aj . For
two partitions α, β we define α ∨ β := {A ∩B : A ∈ α,B ∈ β}, so that elements of

∨n−1
i=0 g

−iα are
sets of the form

{
x : x ∈ Ai0 , g1(x) ∈ Ai1 , ..., gn−1(x) ∈ Ain−1

}
for index tuples (i0, ..., in−1) which are

called the α-addresses of the n-orbit through x. With H(α) := −
∑
µ(Ai) log µ(Ai) the metric (or

measure-theoretic) entropy hµ(g) is defined as

hµ(g, α) := lim
n→∞

1

n
H

(
n−1∨

0

g−iα

)
, hµ(g) := sup

α
hµ(g, α).

From an illustrative point of view H(α) can be interpreted as a measure of “average uncertainty” in
trying to predict the α-addresses of an arbitrary point in phase space. The following variational principle
makes the connection between topological and metric entropy.

Theorem 1 [25] Let g : X → X be a continuous map of a compact metric space X . Then
htop(g) = supµ hµ(g) over all g-invariant probability measures µ.

Metric entropy can also be interpreted as the rate of “loss of information” on the proximity of nearby
orbits:

Theorem 2 [24] Let (g, µ) be ergodic. Then for µ-almost every x it holds

hµ(g) = lim
ε→0

{
lim sup
n→∞

− 1

n
log µ(B(x, n, ε))

}
with B(x, n, ε) := {y ∈ X : d(gi(x), gi(y) < ε, 0 ≤ i < n}.
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There is an interesting relation between the above entropy definitions and the concept of Lyapunov
exponents characterizing the divergence of trajectories:

Theorem 3 [Ruelle’s Inequality] [26] Let g : M → M be a C2-diffeomorphism of a compact
Riemannian manifold M and µ a g-invariant ergodic probability measure. With the r distinct Lyapunov
exponents λi, i = 1, ..., r of (g, µ) and the linear subspaces Ui corresponding to λi with the dimension
dimUi of the multiplicity of λi, it holds

hµ(g) ≤
∑

λ+
i dimUi.

Theorem 4 [Pesin’s Formula] [27] If µ is equivalent to the Riemannian measure on M it holds

hµ(g) =
∑

λ+
i dimUi.

Finally, topological entropy is related to volume growth caused by the phase flow. LetM be a compact
m-dimensional C∞ manifold and g : M → M a C1-mapping and let Σ(k, l) with k, l ≥ 1 be the set
of Ck mappings σ : Ql → M with the l-dimensional unit cube Ql and ω(σ) the l-dimensional volume
of the image of σ in M counted with multiplicity (if σ is not a one-to-one mapping and the images of
several parts coincide, then the set will be counted as many times as it is covered by the image of σ). For
n = 1, ..., k ≤ ∞, l ≤ m define

Vl,k(g) := sup
σ∈Σ(k,l)

lim sup
n→∞

1

n
logω(gn ◦ σ), V (g) := max

l
Vl,∞(g)

and
R(g) := lim

n→∞

1

n
log max

x∈M
‖Dgn(x)‖.

Theorem 5

a) [28] If g is C1+ε, ε > 0, then htop(g) ≤ V (g)

b) [29] For g ∈ Ck, k = 1, ...,∞ it holds

Vl,k(g) ≤ htop(g) +
2l

k
R(g).

For g ∈ C∞ a) and b) imply htop(g) = V (g).

In the case g ∈ C∞, htop(g) is related to the rate of growth of volumes of gn-images of embedded
sub-manifolds. Reduced models of chemical kinetics (generally approximating slow attracting invariant
manifolds) are represented by such embedded sub-manifolds and intuitively their slowness property
should be related to minimum growth of volumes when projected into the tangent bundle of these
manifolds. This conceptual point of view will be taken when discussing extremum principles for
trajectories supposed to be on, respectively close to, slow invariant manifolds.
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3. Extremum Principle for Trajectories Approximating Slow Manifolds

The key of our model reduction approach is based on the goal to exploit non-local phase space
information on dissipativeness contained in the behavior of trajectories in time parameterization.
This information can be used in a variational problem formulation aimed at a characterization of
suitable reaction trajectories approximating slow invariant manifolds (SIM) in terms of an appropriate
interpretation of minimum dissipativeness. The formulation of this idea as an ODE-constrained
optimization problem allows the use of sophisticated and efficient optimization software for the
numerical solution of the problem. The central issue is an objective functional implementing a variational
principle for the identification of suitable trajectories which should reflect in a suitable sense minimum
dissipation along the slow manifold. We suggest either time-integrated chemical entropy production rate
(1) or the norm of velocity change with time (see section 3.1.) as a measure for the degree of dissipation.
The latter is conceptually close to the notion of a slow manifold.

We consider autonomous ODE systems of the form ẋ = f(x), x(0) = x0, f ∈ C∞ modeling chemical
reaction kinetics that have an asymptotically stable fixed point corresponding to chemical equilibrium.
The variational problem can be formulated as

min
x(t)

∫ tf

t0
Φ (x(t)) dt (2a)

subject to

dx(t)

dt
= f (x(t)) (2b)

0 = g (x(t)) , x(t) ≥ 0 (2c)

xj(t
f ) = xt

f

j , j ∈ Irpv, t
0 < tf . (2d)

The variable x = (xi)
n
i=1 denotes the state vector and Irpv is an index set that contains the indices

of state variables (denoted as reaction progress variables in chemical kinetics) with (at time tf ) fixed
values chosen to parameterize the reduced model, i.e., the slow attracting manifold to be computed. The
cardinality of the index set Irpv equals the dimension of the slow manifold to be computed and has to be
set a priori by the user. Thus, those state variables representing the actual degrees of freedom within the
optimization problem are xj(tf ), j /∈ Irpv. The process of determining xtfj , j /∈ Irpv from xt

f

j , j ∈ Irpv

is known as species reconstruction in model reduction of chemical kinetics and represents a function
mapping the reaction progress variables to the full species composition by determining a point on the
slow attracting manifold. The system dynamics (e.g., chemical kinetics determined by the reaction
mechanism) are described by (2b) and enter the optimization problem as equality constraints. Hence
an optimal solution of (2) always satisfies the system dynamics of the full ODE system and therefore
represents a solution trajectory of (2b). Additional constraints (e.g. chemical element mass conservation
relations in the case of chemical kinetics that have to be obeyed due to the law of mass conservation)
are collected in the linear function g in (2). The state variables chosen as parameterization of the SIM
are fixed via the equality constraint (2d) at tf . The function Φ(x(t)) in (2a) characterizes the variational
principle that will be discussed in the next section.

The approximated SIM obtained by pointwise solution of problem (2) on a suitable grid of reaction
progress variable values can be used as a reduced model of the underlying ODE model, for example
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via a look-up table for points on the slow manifold. This reduced model is parameterized by the
reaction progress variables (coordinate system of the manifold) chosen to be an arbitrary set of variables
that allow a unique parameterization of the manifold. Unfortunately, there is no systematic way to
check for global uniqueness, however, in many applications physical insight into the system suggests
an appropriate choice. In combustion chemistry, usually reaction products and/or intermediates with
monotonic behavior during approach of equilibrium are chosen.

For continuously differentiable Φ it is easy to prove existence of a solution to (2) since the constraints
(2b) and (2d) make the problem a finite-dimensional one with the initial values x(t0) as free optimization
variables and the linear constraint 0 = g (x(t)) together with the inequality constraint x(t) ≥ 0 define
a closed and bounded subset of Rn for the feasible initial values. Using the standard compactness
argument, the existence of a solution follows. In order to prove uniqueness, convexity is required which
cannot generally be assured for nonlinear Φ.

3.1. Optimization Criterion

In the original work [21] the entropy production rate (1) has been chosen as a criterion Φ in (2a) and
following the fundamental idea to search for an entropy-related extremum principle that characterizes
trajectories on or near slow attracting manifolds we discuss geometric criteria in [31]. In Section 4.
we show that the latter are superior to the previously used entropy production rate and yield accurate
approximations of slow invariant manifolds for an example model of chemical kinetics. We propose
an appropriate characterization of maximum “slowness” in terms of an integral over suitably defined
curvature (velocity change) of trajectories measured in the Euclidean norm. An attracting SIM is
characterized by the property that all trajectories in its neighborhood converge faster (with exponential
rates) to the manifold than to the attractor, the chemical equilibrium point. Adrover et al. [30] recently
argued that this might be expressed as a ratio r > 1 of the local stretching (contraction) rate of vectors
orthogonal to the manifold compared to those tangent to the manifold. Their local point of view comes
close to our reasoning on the basis of a variational principle for trajectories.

The corresponding geometric objective functional (time integral over Φ(t)) to be minimized in (2a) is
supposed to incorporate essential characteristics of slow attracting manifolds. The successive relaxation
of chemical forces causes curvature in the reaction trajectories (in the sense of velocity change along the
trajectory). Therefore, in [31,32]

Φ(x) := ‖Jf (x) · f‖2 (1)

is proposed as a suitable criterion in (2a) with Jf (x) being the Jacobian of the right hand side f evaluated
at x(t) and ‖ · ‖2 denoting the Euclidean norm.

The term Jf (x) · f represents the rate of change of the reaction velocity vector in its own direction
along a trajectory and can be interpreted as a specific definition of curvature in time parameterization of
the curve:

ẍ =
dẋ

dt
=

dẋ

dx
· dx

dt
= Jf (x) · f.

The minimization of the time integral over Φ in (2a) incorporates the “maximum slowness” respectively
“minimum dissipation” issue in terms of an average over suitably measured local curvature (in time
parameterization) of a trajectory. The qualitative relation to the entropy concepts in dynamical systems
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theory reviewed in section 2. becomes obvious when considering the time evolution of two nearby points
A and B lying ε-close to each other on the same trajectory defined by the optimal solution of (2) with (1)
in the objective functional (2a) . Imagine now a phase flow field with constant velocity, i.e., ẍ(t) ≡ 0,
along the trajectory. It follows f = const and the two points A and B are transported by the phase
flow in backward time direction for some time ∆t = tf − t0 such that the end points after time ∆t have
the same distance as the initial points when measured in arc length of the trajectory piece connecting
the two points. Increase in that distance between two ε-close points A and B under this time-∆t map
is obviously related to ẍ(t). Along a trajectory with small

∫ tf
t0
‖ẍ(t)‖dt (a measure for velocity change

in the interval [t0, tf ]) the increase in distance between the two points A and B should be small as
well along this particular trajectory. This relates to the ideas contained in the topological and metric
entropy Definitions 1 and 2 in section 2. implementing concepts to measure divergence, dissipation or
information loss respectively and thus our criterion allows for a minimum entropy interpretation in terms
of small distance growth between two points on the optimal trajectory for a given time horizon ∆t. A
stringent theoretical justification of the curvature criterion and its use for approximating slow attracting
manifolds of 2-dimensional linear and nonlinear test models is provided in [38] and beyond the scope of
the present paper. Here, we restrict ourselves to the qualitative motivation related to entropy concepts.

3.2. Numerical Methods

Optimization problem (2) can be solved as a standard nonlinear programming problem (NLP), for
example via the sequential quadratic programming (SQP) method [33] or interior point methods (e.g.,
[34]). However, one has to decide how to treat the differential equation constraint and the objective
functional. The easiest way is a decoupled iterative approach, a full numerical integration of the ODE
model with the current values of the variables subject to optimization. This is called the sequential (or
single shooting) approach since it fully decouples simulation of the model and optimization. However,
it is often beneficial to have an “all at once” approach that couples simulation and optimization via
discretization of the ODE constraint. This simultaneous approach has the advantage of introducing more
freedom into the optimization problem since the differential equation model does not have to be solved
exactly in each iteration of the optimization. A fully discrete collocation approach and a numerical
quadrature formula are appropriate for the treatment of the ODE constraints and the objective functional
respectively. On a predefined time grid the collocation method constructs polynomials obeying the
differential equation at a certain number of nodes depending on its degree. For the numerical solutions
presented in this paper we use a Radau collocation method with linear, quadratic, or cubic polynomials,
respectively. The resulting NLP is solved by use of the interior point algorithm implemented in the
IPOPT-package [34]. As in [32] we use the invariance defect (see [35,36] and references therein) as
a measure of “goodness” of the slow manifolds computed numerically. Restarting the optimization
algorithm for parameter values corresponding to a point on a previously computed solution trajectory
should yield the same trajectory in the case of invariance of the computed manifold.
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4. Results: Application to Model Hydrogen Combustion Reaction Mechanism

In this section we consider a small test mechanism, which has already been used for model reduction
purposes in [31,36,37]. It consists of six chemical species involved in six elementary reactions
constrained by two element mass conservation relations for hydrogen and oxygen:

H2

k±1


 2 H

O2

k±2


 2 O

H2O
k±3


 H + OH

H2 + O
k±4


 H + OH

O2 + H
k±5


 O + OH

H2 + O
k±6


 H2O.

(2)

With the rate constants
k1 = 2.0, k−1 = 216.0

k2 = 1.0, k−2 = 337.5

k3 = 1.0, k−3 = 1400.0

k4 = 1000.0, k−4 = 10800.0

k5 = 1000.0, k−5 = 33750.0

k6 = 100.0, k−6 = 0.7714

and the mass conservation relations

2 cH2 + 2 cH2O + cH + cOH = C1

2 cO2 + cH2O + cO + cOH = C2

this mechanism yields a system with four degrees of freedom. For our computations C1 = 2.0 and
C2 = 1.0 are chosen.

4.1. Computation of One-Dimensional Manifolds

We present results for the computation of one-dimensional manifolds in composition space. The
chemical species cH2O is chosen as reaction progress variable. It is varied on a grid between 0.1 and
0.5 with step size 0.1. In Figure 2, the values of the free variables of the optimization problem with the
entropy production rate objective functional are plotted versus the value of cH2O. Obviously, the manifold
generated by the blue circles is a fair approximation of the SIM but lacks invariance.

Figure 3 shows the results for the curvature objective functional. A significant improvement towards
invariance is achieved compared to corresponding results for chemical entropy production rate presented
in Figure 2.
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Figure 2. One-dimensional manifold numerically computed as solution of problem (2) with

Φ(t) =
∑6

j=1
diSj

dt
= R(Rf

j −Rr
j) ln

(
Rf

j

Rr
j

)
(chemical entropy production rate criterion) with

reaction ratesRf
j , R

r
j for the six forward and backward reactions of mechanism (2) computed

according to mass action kinetics. cH2O is chosen as reaction progress variable and varied
between 0.1 and 0.5, t0 = −0.03, tf = 0. Open blue circles represent the final values
at tf = 0 of trajectories (blue lines are their continuations to equilibrium) for t ∈ [t0, tf ]

computed by solving optimization problem (2), the red dot represents the equilibrium point.
Dotted trajectories are started from arbitrary initial values and illustrate the attractiveness of
the computed 1-D manifold.
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4.2. Computation of Two-Dimensional Manifolds

Since the hydrogen combustion model has four degrees of freedom, also two-dimensional manifolds
can be computed. In the presented examples, cH2O and cH2 serve as reaction progress variables. We show
three-dimensional plots of the computed two-dimensional manifold and the relaxation of trajectories
started from arbitrary initial values onto this 2-D manifold.

The remaining free variables are plotted versus the reaction progress variables in Figures 4 and 5.
Trajectories started from arbitrary initial values relax on the 2-D manifold spanned by the computed
trajectories before relaxing onto the 1-D manifold.

Computation times for a single point on the 1-D or 2-D manifolds are between 0.5 and 2.5 seconds,
dependence on initial values for the iteration of the optimization algorithm is small.
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Figure 3. Φ(t) = ‖Jf (x) · f‖2
2 (curvature criterion). cH2O chosen as reaction progress

variable and varied between 0.1 and 0.5, t0 = −0.03, tf = 0, figure components and
notations as in Figure 2.
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Figure 4. Chemical entropy production rate criterion as in Figure 2, reaction progress
variables cH2O and cH2 varied between 0.01 and 0.69, respectively 0.01 and 0.26, t0 =

−10−6, tf = 0. Blue circles represent final values of trajectories (at tf = 0) computed
as solutions of optimization problem (2), blue lines the corresponding trajectories starting in
these points and converging to equilibrium, colored trajectories are started from arbitrary
initial values to illustrate attractiveness of the computed manifold spanned by the blue
trajectories.
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Figure 5. Curvature criterion, conditions, notations and figure components as in Figure 4.
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5. Summary and Conclusions

We reviewed and discussed extremum principles related to entropy concepts and their use for
numerical approximations of slow invariant manifolds in chemical kinetics by solution of a trajectory
optimization problem. The results demonstrate that a geometric curvature-based objective functional
related to entropy concepts in dynamical systems theory is superior to the formerly used chemical entropy
production rate and yields in a “backward in time”-formulation highly accurate approximations of slow
invariant manifolds in application to a six-species reaction mechanism as a test case. In [38] we prove
that the curvature-based variational principle yields exact results for the slow invariant manifold in the
limiting case of infinite-time horizon (−∞, tf ] for a linear 2-D dynamical system and the nonlinear
Davis-Skodje [8] model widely used for testing model reduction techniques in chemical kinetics.
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