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Abstract: Given iid samples drawn from a distribution with known parametric form, we
propose the minimization of expected Bregman divergence to form Bayesian estimates
of differential entropy and relative entropy, and derive such estimators for the uniform,
Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for
a log gamma Bregman divergence and the differential entropy and relative entropy for the
Wishart and inverse Wishart. The results, as always with Bayesian estimates, depend on the
accuracy of the prior parameters, but example simulations show that the performance can be
substantially improved compared to maximum likelihood or state-of-the-art nonparametric
estimators.
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1. Introduction

Estimating differential entropy and relative entropy is useful in many applications of coding, machine
learning, signal processing, communications, chemistry, and physics. For example, relative entropy
between maximum likelihood-fit Gaussians has been used for biometric identification [1], differential
entropy estimates have been used for analyzing sensor locations [2], and mutual information estimates
have been used in the study of EEG signals [3].

In this paper we present Bayesian estimates for differential entropy and relative entropy that are
optimal in the sense of minimizing expected Bregman divergence between the estimate and the uncertain
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true distribution. We illustrate techniques that may be used for a wide range of parametric distributions,
specifically deriving estimates for the uniform (a non-exponential example), Gaussian (perhaps the most
popular distribution), and the Wishart and inverse Wishart (the most commonly used distributions for
positive definite matrices).

Bayesian estimates for differential entropy and relative entropy have previously been derived for
the Gaussian [4], but our estimates differ in that we take a distribution-based approach, and we
use a prior that results in numerically stable estimates even when the number of samples is smaller
than the dimension of the data. Performance of the presented estimates will depend on how well
the user is able to choose the prior distribution’s parameters, and we do not attempt a rigorous
experimental study here. However, we do present simulated results for the uniform distribution
(where no prior is needed), that show that our approach to forming these estimates can result in
significant performance improvements over maximum likelihood estimates and over the state-of-the-art
nearest-neighbor nonparametric estimates [5].

First we define notation that will be used throughout the paper. In Section II we review related work
in estimating differential entropy and relative entropy. In Section III we show that the proposed Bayesian
estimates are optimal in the sense of minimizing expected Bregman divergence loss. In the remaining
sections, we present differential entropy and relative entropy estimates for the uniform, Gaussian,
Wishart and inverse Wishart distributions given iid samples drawn from the underlying distributions.

All proofs and derivations are in the Appendix.

1.1. Notation and Background

If P andQ were the known parametric distributions of two random variables with respective densities
p and q, then the differential entropy of P is

h(P ) = −
∫
x

p(x) ln p(x)dx

and the relative entropy between P and Q is

KL(P ||Q) =

∫
x

p(x) ln
p(x)

q(x)
dx

For estimating differential entropy, we assume that one has drawn iid samples {x1, x2, . . . , xn} from
distribution P where xi ∈ Rd is a d×1 vector, and the samples have mean x̄ and scaled sample covariance
S =

∑n
j=1(xj − x̄)(xj − x̄)T . The notation xj[i] will be used to refer to the value of the ith component

of vector xj .
For estimating relative entropy, we assume that one has drawn iid d-dimensional samples from both

distributions P andQ, and we denote the samples drawn from P as {x1,1, x1,2, . . . , x1,n1} and the samples
drawn from Q as {x2,1, x2,2, . . . , x2,n2}. The empirical means are denoted by x̄1 and x̄2, and the scaled
sample covariances are denoted by S1 =

∑n1

j=1(x1,j − x̄1)(x1,j − x̄1)T and S2 =
∑n2

j=1(x2,j − x̄2)

(x2,j − x̄2)T .
In some places, we treat variables such as the covariance Σ as random, and we consistently

denote realizations of random variables with a tilde, e.g., Σ̃. Expectations are always taken with
respect to the posterior distribution unless otherwise noted. The digamma function is denoted by
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ψ(z)
4
= d

dz
ln Γ(z), where Γ is the standard gamma function; and Γd denotes the standard

multi-dimensional gamma function.
Let W be distributed according to a Wishart distribution with scalar degree of freedom parameter

q ≥ d and positive definite matrix parameter Σ ∈ Rd×d if

p(W = W̃ ) =
|W̃ | q−d−1

2 exp
(
−1

2
tr(W̃Σ−1)

)
2
qd
2 Γd

(
q
2

)
|Σ| q2

(1)

Let V be distributed according to an inverse Wishart distribution with scalar degree of freedom
parameter q ≥ d and positive definite matrix parameter Σ ∈ Rd×d if

p(V = Ṽ ) =
|Σ| q2 exp

(
−1

2
tr(Ṽ −1Σ)

)
2
qd
2 Γd(

q
2
)|Ṽ | q+d+1

2

(2)

Note that V −1 is then distributed as a Wishart random matrix with parameters q and Σ−1.

2. Related Work

First we review related work in parametric differential entropy estimation, then in nonparametric
differential entropy estimation, and then in estimating relative entropy.

2.1. Prior Work on Parametric Differential Entropy Estimation

A common approach to estimate differential entropy (and relative entropy) is to find the maximum
likelihood estimate for the parameters and then substitute them into the differential entropy formula.
For example, for the multivariate Gaussian distribution, the maximum likelihood differential entropy
estimate of a d-dimensional random vector X drawn from the Gaussian N (µ,Σ) is

ĥML =
d

2
+
d ln(2π)

2
+

ln |ΣML|
2

Similarly, if samples {xi} are drawn iid from a one-dimensional uniform distribution, the maximum
likelihood differential entropy estimate is ĥML = ln(maxi({xi})−mini({xi})), which will always be an
under-estimate of the true differential entropy.

Ahmed and Gokhale investigated uniformly minimum variance unbiased (UMVU) differential
entropy estimators for parametric distributions [6]. They stated that the UMVU differential entropy
estimate for the Gaussian is:

d

2
+
d lnπ

2
+

ln |S|
2
− 1

2

d∑
i=1

ψ

(
n+ 1− i

2

)
(3)

However, they treated the random sample covariance of n IID Gaussian samples as if it were drawn from
a Wishart with n degrees of freedom, when in fact it is drawn from a Wishart of n−1 degrees of freedom,
and thus the UMVU estimator they derived should be stated:

d

2
+
d ln π

2
+

ln |S|
2
− 1

2

d∑
i=1

ψ

(
n− i

2

)
(4)
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Bayesian differential entropy estimation was first proposed for the multivariate normal in 2005 by
Misra et al. [4]. They formed an estimate of the multivariate normal differential entropy by substituting
l̂n |Σ| for ln |Σ| in the differential entropy formula for the Gaussian, where their l̂n |Σ| minimizes the
expected squared-difference of the differential entropy estimate:

l̂n |Σ| = arg min
δ∈R

Eµ,Σ
[
(δ − ln |Σ|)2] (5)

They also considered different priors with support over the set of positive definite matrices. Using the
prior p(µ̃, Σ̃) = 1

|Σ̃|
d+1

2
to solve (5) results in the same estimate as the correct UMVU estimate [4], given

in (4). Misra et al. show that (4) is dominated by a Stein-type estimator ln |S+nx̄x̄T |− c1, where c1 is a
function of d and n [4]. In addition, they show that (4) is dominated by a Brewster-Zidek-type estimator
ln |S+nx̄x̄T |−c2, where c2 is a function of |S| and x̄x̄T that requires calculating the ratio of two definite
integrals, stated in full in (4.3) of [4]. Misra et al. found that on simulated numerical experiments their
Stein-type and Brewster-Zidek-type estimators achieved roughly only 6% improvement over (4), and
thus they recommend using the computationally much simpler (4) for applications.

There are two practical problems with the previously proposed parametric differential entropy
estimators. First, the estimates given by (3), (4), and the other estimators investigated by Misra
et al. require calculating the determinant of S or S + x̄x̄T , which is problematic if n < d. Second, the
estimate (4) uses the digamma function of n− d which requires n > d samples so that the digamma has
a non-negative argument. Thus, although the knowledge that one is estimating the differential entropy
of a Gaussian should be of use, for the n ≤ d case one must currently turn to nonparametric differential
entropy estimators.

2.2. Prior Work on Nonparametric Differential Entropy Estimation

Nonparametric differential entropy estimation up to 1997 has been thoroughly reviewed by Beirlant
et al. [7], including density estimation approaches, sample-spacing approaches, and nearest-neighbor
estimators. Recently, Nilsson and Kleijn show that high-rate quantization approximations of Zador and
Gray can be used to estimate Renyi entropy, and that the limiting case of Shannon entropy produces a
nearest-neighbor estimate that depends on the number of quantization cells [8]. The special case that
best validates the high-rate quantization assumptions is when the number of quantization cells is as
large as possible, and they show that this special case produces the nearest-neighbor differential entropy
estimator originally proposed by Kozachenko and Leonenko in 1987 [9]:

ĥNN =
d

n

n∑
j=1

ln ρ(j) + ln(n− 1) + γ + lnVd for ρ(j) = min
k=1,...,n,k 6=j

‖xj − xk‖2 (6)

where γ is the Euler-Mascheroni constant, and Vd is the volume of the d-dimensional hypersphere with
radius 1: Vd = πd/2

Γ(1+d/2)
. Other variants of nearest-neighbor differential entropy estimators have also

been proposed and analyzed [10,11]. A practical problem with the nearest-neighbor approach is that
data samples are often quantized, for example, image pixel data are usually quantized to eight bits or ten
bits. Thus, it can happen in practice that two samples xj and xk have the exact same measured value so
that ρ(j) = 0 and the differential entropy estimate is ill-defined. Though there are various fixes, such
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as pre-dithering the quantized data, it is not clear what effect such fixes could have on the estimated
differential entropy.

A different approach is taken by Hero et al. [12–14]. They relate a result of
Beardwood-Halton-Hammersley on the limiting length of a minimum spanning graph to Renyi entropy,
and form a Renyi entropy estimator based on the empirical length of a minimum spanning tree of data.
Unfortunately, how to use this approach to estimate the special case of Shannon entropy remains an
open question.

In other recent work on differential entropy estimation, Van Hulle took a semiparametric approach to
nonparametric differential entropy estimation for a continuous density by using a 5th-order Edgeworth
expansion about the maximum likelihood multivariate normal given the data samples drawn from a
non-normal distribution [15].

2.3. Prior Work on Relative Entropy Estimation

There is relatively little work on estimating relative entropy for continuous distributions. Wang
et al. explored a number of data-dependent partitioning approaches for relative entropy between any two
absolutely continuous distributions [16]. Nguyen et al. took a variational approach to relative entropy
estimation [17], which was reported to work better for some cases than the data-partitioning estimators.

In more recent work [5,18], Wang et al. proposed a nearest-neighbor estimator based on
nearest-neighbor density estimation:

K̂LNN = ln
n2

n1 − 1
+

d

n1

n1∑
j=1

ln
ν(j)

ρ(j)
(7)

where
ν(j) = min

k=1,...,n2

‖x1,j − x2,k‖2 and ρ(j) = min
k=1,...,n1,k 6=j

‖x1,j − x1,k‖2

They showed that (7) significantly outperforms their best data-partitioning estimators [5,18]. Peréz-Cruz
has contributed additional convergence analysis for these estimators [19]. In practice, like the
nearest-neighbor entropy estimate, K̂LNN may be ill-defined if samples are quantized.

The nearest-neighbor relative entropy estimator can perform quite poorly for Gaussian distributed data
given a reasonable number of finite samples, particularly in high-dimensions. For example, consider
the case of two high-dimensional Gaussians each with identity covariance and a finite iid sample of
points from the two distributions. Their true relative entropy is a function of ‖µ1 − µ2‖2, whereas the
nearest neighbor estimated relative entropy is better approximated (though roughly so) as a function of
ln ‖µ1 − µ2‖2.

3. Functional Estimates that Minimize Expected Bregman Loss

Here we propose to form estimators of functionals (such as differential entropy and relative entropy)
that are optimal in the sense that they minimize the expected Bregman loss, and that are always
computable (assuming an appropriate prior is used).
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Consider samples x1, x2, . . . , xn ∈ Rd drawn iid from some unknown distributionA, where we model
A as a random distribution drawn from a distribution over distributions PA that has density pA. We use
Ã to denote a realization of the random distribution A.

The goal is to estimate some functional (such as differential entropy or relative entropy) ξ, where ξ
maps a distribution or set of distributions (e.g., relative entropy is a functional on pairs of distributions)
to a real number ξ : A → R, where A is the Cartesian product of finite distributions A = A1 × A2 ×
. . . × AM , and we denote a realization of A as Ã. For example, the functional relative entropy maps a
pair of distributions A = A1 × A2 to a non-negative number.

We are interested in the Bayesian estimate of ξ that minimizes an expected loss L : R×R→ R [20]:

ξ∗ = argmin
ξ̂∈R

∫
Ã
L(ξ(Ã), ξ̂)dPÃ

≡ argmin
ξ̂∈R

EA

[
L(ξ(A), ξ̂)

]
(8)

In this paper, we will focus on Bregman loss functions (Bregman divergences), which include squared
error and relative entropy [21–24]. For any twice differentiable strictly convex function φ : R×R→ R,
the corresponding Bregman divergence is dφ(z, ẑ) = φ(z)− φ(ẑ)− φ(ẑ)′(z − ẑ) for z, ẑ,∈ R.

The following proposition will aid in solving (8):

Proposition 1. The expected functional EA[ξ(A)] minimizes the expected Bregman loss such that

EA[ξ(A)] = arg min
z∈R

EA [dφ(ξ(A), z)]

if EA[ξ(A)] exists and is finite.

One can view this proposition as a special case of Theorem 1 of Banerjee et al. [22]; we provide a
proof in the appendix for completeness.

In this paper we focus on estimating differential entropy and relative entropy, which by applying
Proposition 1 we calculate respectively as:

ĥBayesian = EA[h(A)] and K̂LBayesian = EA1,A2 [KL(A1‖A2)]

assuming the expectations are finite.

4. Bayesian Differential Entropy Estimate of the Uniform Distribution

We present estimates of the differential entropy of an unknown uniform distribution over a
hyperrectangular domain for two cases: first, that there is no prior knowledge about the uniform
distribution; and second, that there is prior knowledge about the uniform given in the form of a
Pareto prior.

4.1. No Prior Knowledge About the Uniform

Given n d-dimensional samples {x1, x2, . . . , xn} drawn from a hyperrectangular d-dimensional
uniform distribution, let ∆i be the difference between the maximum and minimum sample in the
ith dimension:

∆i = max
j,k

xj[i]− xk[i]
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Then because a hyperrectangular uniform is the product of independent marginal uniforms, its
differential entropy is the sum of the marginal entropies. Given no prior knowledge about the uniform, we
take the expectation with respect to the (normalized) likelihood, or equivalently using a non-informative
flat prior. Then, the proposed differential entropy estimate is the sum over dimensions of the differential
entropy estimate for each marginal uniform:

EU [h(U)] =
d∑
i=1

(
ln ∆i +

1

n− 1
+

1

n

)
(9)

To illustrate the effectiveness of the proposed Bayesian estimates, we show example results from two
representative experiments in Figure 1.

Figure 1. Example comparison of differential entropy estimators. Left: For each of 10,000
runs of the simulation, n samples were drawn iid from a uniform distribution on [−5, 5].
The proposed estimate (9) is compared to the maximum likelihood estimate, and to the
nearest-neighbor estimate given in (6). Right: For each of 10,000 runs of the simulation,
n samples were drawn iid from a Gaussian distribution. For each of the 10,000 runs, a new
Gaussian distribution with diagonal covariance was randomly generated by drawing each of
the variances iid from a uniform on [0, 1]. The Bayesian estimator prior parameters were
q = d and B = .5qI . The proposed estimate (12) is compared to the only feasible estimator
for this range of n, the nearest-neighbor estimate given in (6).
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4.2. Pareto Prior Knowledge About the Uniform

We consider the case that one has prior knowledge about the random uniform distribution U , where
that prior knowledge is formulated as an independent Pareto prior for each dimension such that the prior
probability of the marginal ith-dimension uniform Ũδ with support of length δ is:

pi(Ũδ) =


αi`

αi
i

δαi+1 for δ ≥ `i

0 otherwise
(10)

where αi ∈ R+ and `i ∈ R+ are the Pareto distribution prior parameters for the ith dimension.
The parameter `i defines the minimum length one believes the uniform’s support could be in the ith
dimension, and the parameter αi specifies the confidence that `i is the right length; a larger αi means one
is more confident that `i is the correct length.

Then the differential entropy estimate for the ith dimension’s one-dimensional uniform is:

EU [h(U)]i =

ln ∆i + 1
n+αi

+ 1
n+αi+1

, for ∆i ≥ `i

ln `i + 1

(n+αi)+(n+αi)2
(
`i−∆i
`i

) + 1
n+αi+1

for ∆i < `i
(11)

Note that the two cases given above do coincide for the boundary case that `i = ∆i, so that this
differential entropy estimate is a continuous function of ∆i. For the full d-dimensional uniform,
the differential entropy estimate is the sum of the one-dimensional differential entropy estimates:∑d

i=1EU [h(U)]i.

5. Gaussian Distribution

The Gaussian is a popular model and often justified by central limit theorem arguments and because
it is the maximum entropy distribution given fixed mean and covariance. In this section we assume
d-dimensional samples have been drawn iid from an unknown GaussianN , which we model as a random
Gaussian and we take the prior to be an inverse Wishart distribution with scalar parameter q ∈ R and
parameter matrix B ∈ Rd×d.

We use the Fisher information metric to define a measure over the Riemannian manifold formed by
the set of Gaussian distributions [25–27]. We found these choices for prior and measure worked well for
estimating Gaussian distributions for Bayesian quadratic discriminant analysis [27].

The performance of the proposed Gaussian entropy and relative entropy estimators will depend
strongly on the choice of the prior. Generally, prior knowledge or subjective guesses about the data
are used to set the parameters of the prior. Another choice to form a prior is to use a coarse estimate of
the data, for example, in previous work we found that setting B equal to the identity matrix times the
trace of the sample covariance worked well as a data-adaptive prior in the context of classification [27].
Since the trace times the identity is the extremal case of maximum entropy Gaussian for a given trace,
this specific approach is problematic as a coarse estimate for setting the prior for differential entropy
estimation, but other coarse estimates based on a different statistic of the eigenvalue may work well.
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5.1. Differential Entropy Estimate of the Gaussian Distribution

Assume n samples {x1, x2, . . . , xn} have been drawn iid from an unknown d-dimensional normal
distribution. Per Proposition 1, we estimate the differential entropy as: EN [h(N)], where the expectation
is taken with respect to the posterior distribution over N and the prior is taken to be inverse Wishart with
matrix parameter B ∈ Rd×d and scale parameter q ∈ R. See the appendix for full details and derivation.
The resulting estimate is,

EN [h(N)] =
d lnπ

2
+

ln |S +B|
2

− 1

2

d∑
i=1

ψ

(
n+ q + i+ 1

2

)
(12)

This estimate is well-defined for any number of samples n.

5.2. Relative Entropy Estimate between Gaussian Distributions

Assume n1 samples have been drawn iid from an unknown d-dimensional normal distributionN1, and
n2 samples have been drawn iid from another d-dimensional distribution N2, assumed independent from
the first. Then following Proposition 1, we estimate the relative entropy as EN1,N2 [KL(N1‖N2)] where
N1 and N2 are independent random Gaussians, the expectation is taken with respect to their posterior
distributions, and the prior distributions are taken to be inverse Wisharts with scale parameters q1 and
q2 and matrix parameters B1 and B2. See the appendix for full details and derivation. The resulting
estimate is,

EN1,N2 [KL(N1‖N2)] =
1

2

n2 + q2 + d+ 1

n1 + q1

tr((S1 +B1)(S2 +B2)−1)− 1

2
log
|S1 +B1|
|S2 +B2|

+
1

2

d∑
i=1

(
ψ

(
n2 + q2 + 1 + i

2

)
− ψ

(
n1 + q1 + 1 + i

2

))
− d

2

+
1

2
(n2 + q2 + d+ 1)tr((S2 + B2)−1(x̄1 − x̄2)(x̄1 − x̄2)T) (13)

This estimate is well-defined for any number of samples n1, n2. If the prior scalar parameters are taken
to be the same, that is q1 = q2, then the digamma terms cancel.

6. Wishart and Inverse Wishart Distributions

The Wishart and inverse Wishart distributions are arguably the most popular distributions for
modeling random positive definite matrices. Moreover, if a random variable has a Gaussian distribution,
then its sample covariance is drawn from a Wishart distribution. The relative entropy between Wishart
distributions may be a useful way to measure the dissimilarity between collections of covariance matrices
or Gram (inner product) matrices.

We were unable to find expressions for differential entropy or relative entropy of the Wishart and
inverse Wishart distributions, so we first present those, and then present Bayesian estimates of these
quantities.
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6.1. Wishart Differential Entropy and Relative Entropy

The differential entropy of W is

h(W ) = ln Γd

(q
2

)
+
qd

2
+
d+ 1

2
ln |2Σ| − q − d− 1

2

d∑
i=1

ψ

(
q − d+ i

2

)
(14)

The relative entropy between two Wishart distributions p1 and p2 with parameters (q1,Σ1) and (q2,Σ2)

respectively is,

KL(p1||p2) = ln

(
Γd
(
q2
2

)
Γd
(
q1
2

))+
q1

2
tr
(
Σ1Σ−1

2

)
− q1d

2
− q2

2
ln |Σ1Σ−1

2 | −
q2 − q1

2

d∑
i=1

ψ

(
q1 − d+ i

2

)
(15)

For the special case of q1 = q2 = q, we note that the relative entropy given in (15) is q/2 times Stein’s
loss function, which is itself a common Bregman divergence.

For the special case of Σ1 = Σ2, we find that the relative entropy between two Wisharts can also be
written in the form a Bregman divergence [21] between q2 and q1. Consider the strictly convex function
φ(q) = ln Γd(q/2) for q ∈ Rd

+, and let ψd be the derivative of the Γd. Then (15) becomes,

= ln Γd

(q2

2

)
− ln Γd

(q1

2

)
− q2 − q1

2
ψd

(q2

2

)
= φ(q2)− φ(q1)− (q2 − q1)φ′(q1)

= dφ(x, y). (16)

We term (16) the log-gamma Bregman divergence. We have not seen this divergence noted before, and
hypothesize that this divergence may have physical or practical significance because of the widespread
occurrence of the gamma function and its special properties [28].

6.2. Inverse Wishart Differential Entropy and Relative Entropy

Let V be distributed according to an inverse Wishart distribution with scalar degree of freedom
parameter q ≥ d and positive definite matrix parameter Σ ∈ Rd×d as per (2).

Then V has differential entropy

h(V ) = ln Γd

(q
2

)
+
qd

2
+
d+ 1

2
ln

∣∣∣∣Σ2
∣∣∣∣− q + d+ 1

2

d∑
i=1

ψ

(
q − d+ i

2

)
(17)

The relative entropy between two inverse Wishart distributions with parameters Σ1, q1 and Σ2, q2 is

ln

(
Γd
(
q2
2

)
Γd
(
q1
2

))+
q1

2
tr(Σ−1

1 Σ2)− q1d

2
− q2

2
ln |Σ−1

1 Σ2| −
q2 − q1

2

d∑
i=1

ψ

(
q1 − d+ i

2

)
(18)

One sees that the relative entropy between two inverse Wishart distributions is the same as the relative
entropy between two Wishart distributions with inverse matrix parameters S−1

1 and S−1
2 respectively.

Like the Wishart distribution relative entropy, the inverse Wishart distribution relative entropy has special
cases that are the Stein loss and the log-gamma Bregman divergence.
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6.3. Bayesian Estimation of Wishart Differential Entropy

We present a Bayesian estimate of the differential entropy of a Wishart distribution p where we make
the simplifying assumption that the scalar parameter q is known or estimated (for example, it is common
to assume that q = d). We estimate the differential entropyEΣ[h(p)] where the estimation is with respect
to the uncertainty in the matrix parameter Σ. We assume the prior p(Σ = Σ̃) is inverse Wishart with
scale parameter r and parameter matrix U , which reduces to the non-informative prior when r and U are
chosen to be zeros.

Then given sample d × d matrices S1, S2, . . . , Sn drawn iid from the Wishart W , the normalized
posterior distribution p(Σ̃|S1, S2, . . . , Sn) is inverse Wishart with matrix parameter

∑n
j=1 Sj + U and

scalar parameter nq + r (details in Appendix).
Then our differential entropy estimateEΣ[h(W )] where the expectation is with respect to the posterior

p(Σ̃|{Sj}) is:

ln Γd

(q
2

)
+
qd

2
+
d+ 1

2
ln

∣∣∣∣∣U +
n∑
j=1

Sj

∣∣∣∣∣− d+ 1

2

d∑
i=1

ψ

(
nq + r − d+ i

2

)

− q − d− 1

2

d∑
i=1

ψ

(
q − d+ i

2

)
(19)

6.4. Bayesian Estimation of Relative Entropy between Two Wisharts

We present a Bayesian estimate of the relative entropy between two Wishart distributions p1 and
p2 where we make the simplifying assumption that the respective scalar parameters q1, q2 are known or
estimated (for example, that q1 = q2 = d), and then we estimate the relative entropy KL(p1||p2) where the
estimation is with respect to the uncertainty in the respective matrix parameters Σ1,Σ2. To this end, we
treat the unknown Wishart parameters Σ1,Σ2 as random, and compute the estimate EΣ1,Σ2 [KL(p1||p2)].
For Σ1 and Σ2 we use independent inverse Wishart conjugate priors with respective scalar parameters
r1, r2 and parameter matrices U1, U2, which reduces to non-informative priors when r1, r2 and U1, U2 are
chosen to be zeros.

Then given n1 sample d × d matrices {Sj} drawn iid from the Wishart p1, and n2 sample d × d

matrices {Sk} drawn iid from the Wishart p2, the normalized posterior distribution p(Σ̃1|{Sj}) is inverse
Wishart with matrix parameter

∑n1

j=1 Sj+U1 and scalar parameter n1q+r1, and the normalized posterior
distribution p(Σ̃2|{Sk}) is inverse Wishart with matrix parameter

∑n2

k=1 Sk + U2 and scalar parameter
n2q + r2.
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Then our relative entropy estimate EΣ1,Σ2 [KL(p1||p2)] (where the expectation is with respect to the
posterior distributions) is

ln

(
Γd
(
q2
2

)
Γd
(
q1
2

))− q2 − q1

2

d∑
i=1

ψ

(
q1 − d+ i

2

)
− q1d

2

+
q1(r1 + n1q1)

2(r2 + n2q2 − d− 1)
tr

(
(U1 +

n1∑
j=1

Sj)(U2 +

n2∑
k=1

Sk)
−1

)
− q2

2
ln |U1 +

n1∑
j=1

Sj|

+
q2

2
ln |U2 +

n2∑
k=1

Sk| −
q2

2

d∑
i=1

(
ψ

(
n2q2 + r2 − d+ i

2

)
− ψ

(
n1q1 + r1 − d+ i

2

))

6.5. Bayesian Estimation of Inverse Wishart Differential Entropy

Let Si denote the ith of n random iid draws from an inverse unknown Wishart distribution p with
parameters (Σ, q). Taking the prior p(Σ̃) to be a Wishart distribution with parameter r and U , our
Bayesian estimate of the inverse Wishart differential entropy is

ln Γd

(q
2

)
+
qd

2
+
d+ 1

2
ln |U−1 +

∑
j

S−1
j |+

d+ 1

2

d∑
i=1

ψ

(
nq + r − d+ i

2

)

− q + d+ 1

2

d∑
i=1

ψ

(
q − d+ i

2

)
(20)

6.6. Bayesian Estimation of Relative Entropy between Two Inverse Wisharts

Given q1, q2, and assuming independent Wishart priors with respective scalar parameters r1, r2 and
parameter matrices U1, U2, and given n1 sample d× d matrices {Sj} drawn iid from the inverse Wishart
p1, and n2 sample d× d matrices {Sk} drawn iid from the inverse Wishart p2, our Bayesian estimate of
the relative entropy is

ln

(
Γd
(
q2
2

)
Γd
(
q1
2

))+
q1

2

n2q2 + r2

n1q1 + r1 − d− 1
tr

(U−1
1 +

n1∑
j=1

S−1
j

)−1(
U−1

2 +

n2∑
k=1

S−1
k

)− q1d

2

− q2

2
ln

(
|U−1

2 +
∑n2

k=1 S
−1
k |

|U−1
1 +

∑n1

j=1 S
−1
j |

)
− q2 − q1

2

d∑
i=1

ψ

(
q1 − d+ i

2

)

− q2

2

d∑
i=1

(
ψ

(
n2q2 + r2 − d+ i

2

)
− ψ

(
n1q1 + r1 − d+ i

2

))
(21)

7. Discussion

We have presented Bayesian differential entropy and relative entropy estimates for four standard
distributions, and in doing so illustrated techniques that could be used to derive such estimates for other
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distributions. For the uniform case with no prior, the given estimators perform significantly better than
previous estimators, and this experimental evidence validates our approach. However given a prior
over distributions, the performance will depend heavily on the accuracy of the prior, and a thorough
experimental study would be useful to practitioners but was outside the scope of this investigation.

In practice, there may not be a priori information available to determine a prior, and an open question
is how to design appropriate data-dependent priors for differential entropy estimation. For example, for
Bayesian quadratic discriminant analysis classification [27], we have shown that setting the prior matrix
parameter for the Gaussian to be a coarse estimate of the data’s covariance (the identity times the trace
of the sample covariance) works well. However, for differential entropy estimation the trace forms an
extreme estimate, and is thus not (by itself) suitable for forming a data-dependent prior for this problem.

Another open area is forming estimators for more complicated parametric models, for example
estimating the differential entropy and relative entropy of Gaussian mixture models. Estimating the
differential entropy of Gaussian processes is also an important problem [29] that may be amenable to the
present approach.

Lastly, the new estimators have been motivated by their expected Bregman loss optimality and by the
practical consideration of producing estimates even when there are fewer samples than dimensions, but
there are a number of theoretical questions about these estimators that are open, such as domination.
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A. Appendix

A.1. Proof of Proposition 1

The proof is by contradiction. Let ξ∗ = EA[ξ(A)], and assume the true minimizer of
EA

[
dφ(ξ(A), ξ̂)

]
occurs instead at some other value s. Then a contradiction occurs:

EA [dφ(ξ(A), s)]−EA [dφ(ξ(A), ξ∗)]

(a)
= φ(ξ∗)− φ(s)− dφ(s)

ds
(EA[ξ(A)]− s) +

dφ(ξ∗)

dξ∗
(EA[ξ(A)]− ξ∗)

(b)
= φ(ξ∗)− φ(s)− dφ(s)

ds
(EA[ξ(A)]− s)

(c)
= dφ(ξ∗, s)

(d)

≥ 0

where in (a) we expanded dφ and simplified, in (b) we used the fact that ξ∗ = EA[ξ(A)], in (c) we
substituted ξ∗ = EA[ξ(A)] and used the definition of the Bregman divergence, and in (d) we used the
non-negativity of the Bregman divergence. Thus ξ∗ = EA[ξ(A)] must be the minimizer.

A.2. Derivation of Uniform Differential Entropy Estimate

In this section we will repeatedly use the integral:∫
lnu

um
du = − lnu

(m− 1)um−1
− 1

(m− 1)2um−1
(22)

To estimate the differential entropy of a multidimensional uniform distribution one only needs to
consider the differential entropy for a one-dimensional uniform, because a multidimensional uniform
can be written as a product of independent univariate distributions, and thus the differential entropy of
the multidimensional uniform is the sum of the univariate entropies.

Thus we model the n samples {x1, x2, . . . , xn} as being drawn from a random one-dimensional
uniform distribution U . Let M be the two-dimensional statistical manifold composed of uniform
distributions {Ũa,b}, where Ũa,b has support on [a, b] for b > a, a, b,∈ R. The measure should depend
on the length δ = b − a of the uniform and be invariant to shifts in the support. To that end, we use the
Fisher information metric [25,26] based on the length,

dM = |I(δ)|1/2dδ =
dδ

δ

where I is the Fisher information matrix,

I(δ) = −EX
[
d2 log 1

δ

dδ2

]
= − 1

δ2
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Using dM as a differential element and the normalized likelihood of the samples for p(Ũa,b), the uniform
differential entropy estimate is

EU [h(U)] =

∫
M
h(Ũa,b)p(Ũa,b)dM∫
M
p(Ũa,b)dM

=
1

γ

∫ xmin

a=−∞

∫ ∞
b=xmax

ln(b− a)

(b− a)n
da db

(b− a)

=
1

γn(n− 1)(xmax − xmin)n−1

(
ln(xmax − xmin) +

1

n− 1
+

1

n

)
(23)

where the normalization factor γ is

γ =

∫ xmin

a=−∞

∫ ∞
b=xmax

1

(b− a)n
da db

(b− a)

=
1

(n− 1)n(xmax − xmin)n−1

Canceling terms in (23) due to the normalization factor γ yields the one-dimensional uniform
differential entropy ln(xmax − xmin) + 1

n−1
+ 1

n
. For the multidimensional uniform, one sums these

marginal entropy terms over the dimensions, as given in (9).

A.3. Derivation of Uniform differential Entropy Given Pareto Prior

As explained for the no-prior derivation, we need only consider a one-dimensional uniform. Although
the Pareto distribution is a conjugate prior for the uniform with respect to its length, one must be careful
because the data restrict b > xmax and a < xmin, and these restrictions are not taken into account if one
integrates with respect to the variable δ. Throughout this section we use various flavors of γ to denote
normalization constants, and ∆ = xmax − xmin. We consider two cases separately.

Case I: ` ≤ ∆:

p(Ũa,b|{xi}) =
1

γ1

p({xi}|Ũa,b)p(Ũa,b)

=

 1
γ1

α`α

(b−a)n+α+1 for a ≤ xmin, b ≥ xmax

0 otherwise,
(24)

where the normalizer is

γ1 =

∫ xmin

a=−∞

∫ ∞
b=xmax

p({xi}|Ũa,b)p(Ũa,b)
dadb

b− a
=

∫ xmin

a=−∞

∫ ∞
b=xmax

α`α

(b− a)n+α+1

dadb

b− a

=
α`α

(n+ α + 1)(n+ α)∆n+α

Then the posterior (24) becomes,

p(Ũa,b|{xi}) =


(n+α)(n+α+1)∆n+α

(b−a)n+α+1 for a ≤ xmin, b ≥ xmax

0 otherwise.
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Using (22), it is straightforward to derive the differential entropy estimate given in the text as:

EU [h(U)] = (n+ α)(n+ α + 1)∆n+α

∫ xmin

a=−∞

∫ ∞
b=xmax

ln(b− a)

(b− a)n+α+1

dadb

b− a

= ln ∆ +
1

n+ α
+

1

n+ α + 1

Case II: ` > ∆:
In this case, the posterior has an additional constraint compared to (24):

p(Ũa,b|{xi}) =
1

γ2

p({xi}|Ũa,b)p(Ũa,b)

=

 1
γ2

α`α

(b−a)n+α+1 for a ≤ xmin, b ≥ xmax, and b− a ≥ `

0 otherwise.

The normalization constant can be solved for as:

γ2 =

∫ xmin

a=−∞

∫ ∞
b=xmax

p({xi}|Ũa,b)p(Ũa,b)
dadb

b− a

=

∫ xmax−`

a=−∞

∫ ∞
b=xmax

α`α

(b− a)n+α+1

dadb

b− a
+

∫ xmin

a=xmax−`

∫ ∞
b=a+`

α`α

(b− a)n+α+1

dadb

b− a

=
α`α

(n+ α + 1)(n+ α)`n+α
+

α`α(`−∆)

(n+ α + 1)`n+α+1

=

(
α`α

(n+ α + 1)`n+α

)(
1

n+ α
+
`−∆

`

)
(25)

Then the differential entropy estimate is

EU [h(U)] =
α`α

γ2

(∫ xmax−`

a=−∞

∫ ∞
b=xmax

ln(b− a)

(b− a)n+α+1

dadb

b− a
+

∫ xmin

a=xmax−`

∫ ∞
b=a+`

ln(b− a)

(b− a)n+α+1

dadb

b− a

)
=
α`α

γ2

(
ln `

(n+ α + 1)(n+ α)`n+α
+

1

(n+ α + 1)(n+ α)2`n+α
+

1

(n+ α)(n+ α + 1)2`n+α

)
+
α`α

γ2

(
(`−∆) ln `

(n+ α + 1)`n+α+1
+

`−∆

(n+ α + 1)2`n+α+1

)
=

(
α`α

γ2(n+ α + 1)`n+α

)(
ln `

(n+ α)
+

1

(n+ α)2
+

1

(n+ α)(n+ α + 1)

+
(`−∆) ln `

`
+

`−∆

(n+ α + 1)`

)
(a)
=

(
`(n+ α)

`+ (n+ α)(`−∆)

)
·
(

ln `

(n+ α)
+

1

(n+ α)2
+

1

(n+ α)(n+ α + 1)
+

(`−∆) ln `

`
+

`−∆

(n+ α + 1)`

)
(26)

where in (a) we substituted in (25). In the second factor of (a) there are five terms. Combining the first
and fourth term with the first factor results in the first term of the estimate given in (11). Combining the
second term with the first factor results in the second term of (11). Lastly, combining the third and fifth
term of (a) with the first factor results in the third term of (11).
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A.4. Propositions Used in Remaining Derivations

The following identities and propositions will be used repeatedly in the derivations in the rest of the
appendix.

Identity 1. This is a convenient re-statement of the fact that the normal distribution normalizes to
one. For x, µ ∈ Rd and positive definite d× d matrix Σ,∫

µ

e−
n
2

tr(Σ−1(x−µ)(x−µ)T)dµ =

(
2π

n

) d
2

|Σ|
1
2

Identity 2. This is a convenient re-statement of the fact that the inverse Wishart distribution
normalizes to one. For positive definite Σ:∫

Σ>0

e−tr(Σ−1B)

|Σ| q2
dΣ =

Γd
(
q−d−1

2

)
|B| q−d−1

2

Proposition 2.

For W ∼Wishart(S, q),

E[ln |W |] = ln |S|+ d ln 2 +
d∑
i=1

ψ

(
q − d+ i

2

)
≡ ln |2S|+

d∑
i=1

ψ

(
q − d+ i

2

)
Proof: Recall that |W | is distributed as |S|

∏d
i=1 χ

2
q−d+i ([30, Corollary 7.3]) where χ2 denotes

the chi-squared random variable. Then the result is produced by taking the expected log
and using the fact that E[lnχ2

q] = ln 2 + ψ
(
q
2

)
[4]. Lastly the equivalence follows because

ln |2S| = ln 2d|S| = d ln 2 + ln |S|.

Proposition 3.

For V ∼ inverse Wishart(S, q),

E[ln |V |] = ln |S| − d ln 2−
d∑
i=1

ψ

(
q − d+ i

2

)
≡ ln

∣∣∣∣S2
∣∣∣∣− d∑

i=1

ψ

(
q − d+ i

2

)
Proof: Let Z = V −1, then Z ∼ Wishart(S−1, q), and E[ln |V |] = E[ln |Z|−1] = −E[ln |Z|] =

− ln |S−1| − d ln 2 −
∑d

i=1 ψ
(
q−d+i

2

)
, by Proposition 2, and noting that − ln |S−1| = ln |S| produces

the result. Lastly, the equivalence follows because ln |S
2
| = ln 1

2d
|S| = −d ln 2 + ln |S| .

Proposition 4.

For W ∼Wishart(S, q) and any positive definite matrix A ∈ Rd×d,

E[tr(WA)] = qtr(SA)

Proof: E[tr(WA)] = tr(E[W ]A) = qtr(SA).
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Proposition 5.

For V ∼ inverse Wishart (S, q) and any positive definite matrix A ∈ Rd×d,

E[tr(V A)] =
tr(AS)

q − d− 1

Proof: E[tr(V A)] = tr(E[V ]A) = tr(AS)/(q − d− 1).

Proposition 6.

For V ∼ inverse Wishart (S, q) and any positive definite matrix A ∈ Rd×d,

E[tr(V −1A)] = qtr(S−1A)

Proof: By definition, V −1 ∼ Wishart (S−1, q), and so one can apply Proposition 4 to yield
E[tr(V −1A)] = qtr(S−1A).

A.5. Derivation of Bayesian Gaussian Differential Entropy Estimate

We model the samples {xi}ni=1 as being drawn from a random d-dimensional normal distribution
N and assume an inverse Wishart prior distribution for N with parameters (B, q). That is, the prior
probability that the random normal N is Ñ(µ̃, Σ̃) is

p(N = Ñ(µ̃, Σ̃)) =
|B| q2 e−

1
2

tr(Σ̃−1B)

2
qd
2 Γ
(
q
2

)
|Σ̃| q+d+1

2

(27)

The likelihood can be written:

p({xi}ni=1|N = Ñ(µ̃, Σ̃)) =
1

(2π)
nd
2 |Σ̃|n2

n∏
i=1

e−
1
2

tr(Σ̃−1(xi−µ̃)(xi−µ̃)T)

=
1

(2π)
nd
2 |Σ̃|n2

e−
1
2

∑n
i=1 tr(Σ̃−1(xi−x̄+x̄−µ̃)(xi−x̄+x̄−µ̃)T)

=
1

(2π)
nd
2 |Σ̃|n2

e−
1
2

tr(Σ̃−1S)−n
2

tr(Σ̃−1(x̄−µ̃)(x̄−µ̃)T)

(28)

Then the posterior is the likelihood times the prior normalized, or sweeping all the constant terms into
a normalization term α we can write the posterior as:

p(N = Ñ(µ̃, Σ̃)|{xi}ni=1) =
1

α

e−
1
2

tr(Σ̃−1S)−n
2

tr(Σ̃−1(x̄−µ̃)(x̄−µ̃)T)

|Σ̃|n2
e−

1
2

tr(Σ̃−1B)

|Σ̃| q+d+1
2

(29)

Note that this is a density on the statistical manifold of Gaussians, so we integrate with respect to the
Fisher information measure 1/|Σ̃| d+2

2 [27],[25] rather than the Lebesgue measure, such that

α =

∫
Σ̃

∫
µ̃

e−
n
2

tr(Σ̃−1(x̄−µ̃)(x̄−µ̃)T)

|Σ̃|n+q+d+1
2

e−
1
2

tr(Σ̃−1(S+B)) dΣ̃dµ̃

|Σ̃| d+2
2

=

(
2π

n

) d
2 Γd

(
n+q+d+1

2

)
|S +B|n+q+d+1

2

2
d(n+q+d+1)

2 (30)
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where the last line follows from Identities 1 and 2 stated in the previous subsection.
Then combining (30) and (29), the posterior is:

p(N = Ñ(µ̃, Σ̃)|{xi}ni=1) =
( n

2π

) d
2 |S +B|n+q+d+1

2

Γd
(
n+q+d+1

2

) 1

2
d(n+q+d+1)

2

e−
1
2

tr(Σ̃−1(S+B))−n
2

tr(Σ̃−1(x̄−µ̃)(x̄−µ̃)T)

|Σ̃|n+q+d+1
2

(31)
Our differential entropy estimate is the integral EN [h(N)], which is an integral over the statistical

manifold of Gaussians that we convert to an integral over covariance matrices by using the Fisher
information metric 1/|Σ̃|(d+2)/2 [27],[25]. Then,

EN [h(N)] =

∫
Ñ(µ̃,Σ̃)

(
d

2
+
d ln(2π)

2
+

ln |Σ̃|
2

)
p(Ñ(µ̃, Σ̃)|{xi})dÑ

=
d

2
+
d ln(2π)

2

+
( n

2π

) d
2 |S +B|n+q+d+1

2

2
2+d(n+q+d+1)

2 Γd
(
n+q+d+1

2

) ∫
Σ̃>0

∫
µ̃

ln |Σ̃|e
− 1

2
tr(Σ̃−1(S+B))−n

2
tr(Σ̃−1(x̄−µ̃)(x̄−µ̃)T)

|Σ̃|n+q+d+1
2

dΣ̃dµ̃

|Σ̃| d+2
2

(32)

We evaluate the third term of (32) as follows:( n
2π

) d
2 |S +B|n+q+d+1

2

2
2+d(n+q+d+1)

2 Γd
(
n+q+d+1

2

) ∫
Σ̃>0

ln |Σ̃|e
− 1

2
tr(Σ̃−1(S+B))

|Σ̃|n+q+2d+3
2

∫
µ̃

e−
n
2

tr(Σ̃−1(x̄−µ̃)(x̄−µ̃)T)dµ̃dΣ̃

=
( n

2π

) d
2 |S +B|n+q+d+1

2

2
2+d(n+q+d+1)

2 Γd
(
n+q+d+1

2

) ∫
Σ̃>0

ln |Σ̃|e
− 1

2
tr(Σ̃−1(S+B))

|Σ̃|n+q+2d+3
2

(
2π

n

) d
2

|Σ̃|
1
2dΣ̃ (33)

=
|S +B|n+q+d+1

2

2
2+d(n+q+d+1)

2 Γd
(
n+q+d+1

2

) ∫
Σ̃>0

ln |Σ̃|e
− 1

2
tr(Σ̃−1(S+B))

|Σ̃|n+q+2d+2
2

dΣ̃ (34)

=
1

2
ln |S +B| − d

2
ln 2− 1

2

d∑
i=1

ψ

(
n+ q + 1 + i

2

)
(35)

where (33) follows by Integral Identity 1; and (34) is half the expectation of ln |Σ| with respect to the
inverse Wishart with parameters (S +B, n+ q+ d+ 1), and thus (35) follows from (34) by Proposition
3.

Then (32) becomes

d

2
+
d ln π

2
+

1

2
ln |S +B| − 1

2

d∑
i=1

ψ

(
n+ q + 1 + i

2

)
(36)

A.6. Derivation of Bayesian Gaussian Relative Entropy Estimate

Recall that the relative entropy between independent Gaussians N1(x;µ1,Σ1) and N2(x;µ2,Σ2) is

KL(N1‖N2) =
1

2

(
tr(Σ1Σ−1

2 )− log |Σ1Σ−1
2 | − d+ tr

(
Σ−1

2 (µ1 − µ2)(µ1 − µ2)T
))

(37)

Here we derive EN1,N2 [KL(N1‖N2)]. Analogous to the previous derivation of the Bayesian Gaussian
entropy estimate, we form the posterior distributions using independent inverse Wishart priors with
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parameters (B1, q1) and (B2, q2). (Note that this is equivalent to having a non-informative prior on
the mean parameter, and that a different prior on the mean would lead to a more regularized estimate).
We consider the four terms of the expectation of (37), that is, of EN1,N2 [KL(N1‖N2)], in turn.

The first term is:

EN1,N2

[
tr(Σ1Σ−1

2 )
]

=

∫
tr(Σ1Σ−1

2 )p(Ñ1(µ̃1, Σ̃1)|{x1,i}n1
i=1)p(Ñ2(µ̃2, Σ̃2)|{x2,i}n2

i=1)dÑ1dÑ2 (38)

where the posteriors are given by (31). Using the Fisher information measure as above, (38) can be
re-written as expectations of functions of independent random covariance matrices Σ1,Σ2 drawn from
inverse Wishart distributions with respective parameters (S1 +B1, n1 + q1 + d+ 1) and (S2 +B2, n2 +

q2 + d+ 1):

EΣ1,Σ2

[
tr(Σ1Σ−1

2 )
] (a)

=
1

n1 + q1

EΣ2

[
tr((S1 +B1)Σ−1

2 )
]
,

(b)
=
n2 + q2 + d+ 1

n1 + q1

tr((S1 +B1)(S2 +B2)−1)

where (a) is by Proposion 5, and (b) is by Proposition 6.
Similarly, we can write the second term as:

EΣ1,Σ2

[
log |Σ1Σ−1

2 |
]

= EΣ1,Σ2 [log |Σ1| − log |Σ2|] = EΣ1 [log |Σ1|]− EΣ2 [log |Σ2|]

= log
|S1 +B1|
|S2 +B2|

+
d∑
i=1

ψ

(
n2 + q2 + 1 + i

2

)
− ψ

(
n1 + q1 + 1 + i

2

)
where the last line follows from Proposition 4.

The third term is simply −d. The fourth term simplifies by Proposition 6 to:

EΣ2 [tr(Σ−1
2 (x̄1 − x̄2)(x̄1 − x̄2)T)] = (n2 + q2 + d + 1)tr((S2 + B2)−1(x̄1 − x̄2)(x̄1 − x̄2)T)

Combining the terms yields the relative entropy estimate given in (13).

A.7. Derivation of Wishart Differential Entropy:

Using the Wishart density given in (1), the Wishart differential entropy h(W ) is −E[ln p(W )],

=
qd

2
ln 2 +

q

2
ln |Σ|+ ln Γd

(q
2

)
+

1

2
E[tr(WΣ−1)]− q − d− 1

2
E[ln |W |],

(a)
=
qd

2
ln 2 +

q

2
ln |Σ|+ ln Γd

(q
2

)
+
qd

2
− q − d− 1

2
E[ln |W |],

(b)
=
qd

2
ln 2 +

q

2
ln |Σ|+ ln Γd

(q
2

)
+
qd

2
− q − d− 1

2

(
ln |Σ|+ d ln 2 +

d∑
i=1

ψ

(
q − d+ i

2

))
,

(c)
= ln Γd

(q
2

)
+
qd

2
+
d+ 1

2
ln |2Σ| − q − d− 1

2

d∑
i=1

ψ

(
q − d+ i

2

)
where (a) follows by applying Proposition 4 to show that E[tr(WΣ−1)] = qtr(ΣΣ−1) = qd, and then in
(b) one applies Proposition 2 to E[ln |W |] and recalls that ln |2Σ| = ln |Σ|+ d ln 2
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A.8. Derivation of Wishart Relative Differential Entropy:

The relative entropy KL(p1, p2) is

4
= Ep1 [ln

p1(W )

p2(W )
]

= −h(p1)− Ep1 [ln p2(W )]

(a)
= − ln Γd

(q1

2

)
− q1d

2
− d+ 1

2
ln |2Σ1|+

q1 − d− 1

2

d∑
i=1

ψ

(
q1 − d+ i

2

)
− q2 − d− 1

2
Ep1 [ln |W |] +

1

2
Ep1 [tr(WΣ−1

2 )] +
q2

2
ln |2Σ2|+ ln Γd

(q2

2

)
(b)
= ln

(
Γd
(
q2
2

)
Γd
(
q1
2

))+
q1

2
tr
(
Σ1Σ−1

2

)
− q1d

2
− q2

2
ln |Σ1Σ−1

2 | −
(
q2 − q1

2

) d∑
i=1

ψ

(
q1 − d+ i

2

)
where (a) uses the formula for entropy given in (14), and (b) follows by applying Proposition 2 and 4
and then simplifying.

A.9. Derivation of Inverse Wishart Differential Entropy:

Using the inverse Wishart density given in (2), the inverse Wishart differential entropy is:

h(V ) = −q
2

ln |S|+ E[tr(V −1S)]

2
+
qd

2
ln 2 + ln Γd

(q
2

)
+
q + d+ 1

2
E[ln |V |]

(a)
= −q

2
ln |S|+ qtr(S−1S)

2
+
qd

2
ln 2 + ln Γd

(q
2

)
+
q + d+ 1

2
ln |S| − d ln 2−

d∑
i=1

ψ

(
q − d+ i

2

)
(b)
=
d+ 1

2
ln

∣∣∣∣S2
∣∣∣∣+

qd

2
+ ln Γd

(q
2

)
− q + d+ 1

2

d∑
i=1

ψ

(
q − d+ i

2

)
where in (a) we applied Proposition 6 and Proposition 3, and in (b) used tr(S−1S) = tr(I) = d and
simplified.
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A.10. Derivation of Inverse Wishart Relative Entropy:

Taking the expectation with respect to the first inverse Wishart V1 of the log of the ratio of the two
inverse Wishart distributions yields

(q2 − q1)

2
d ln 2 +

E[tr(Σ2 − Σ1)V −1
1 ]

2
− q2

2
ln |Σ2|+

q1

2
ln |Σ1|+ ln Γd

(q2

2

)
− ln Γd

(q1

2

)
+
q2 − q1

2
E[ln |V1|]

(a)
=

(q2 − q1)

2
d ln 2 +

q1tr(Σ2Σ−1
1 )

2
− q1d

2
− q2

2
ln |Σ2|+

q1

2
ln |Σ1|+ ln Γd

(q2

2

)
− ln Γd

(q1

2

)
+
q2 − q1

2
E[ln |V1|]

(b)
=
q2 − q1

2
d ln 2 +

q1tr(Σ2Σ−1
1 )

2
− q1d

2
− q2

2
ln |Σ2|+

q1

2
ln |Σ1|+ ln Γd

(q2

2

)
− ln Γd

(q1

2

)
+
q2 − q1

2

(
ln |Σ1| − d ln 2−

d∑
i=1

ψ

(
q1 − d+ i

2

))
,

= ln
Γd
(
q2
2

)
Γd
(
q1
2

) +
q1

2
tr(Σ2Σ−1

1 )− q1d

2
+
q2

2
ln |Σ1Σ−1

2 | −
q2 − q1

2

d∑
i=1

ψ

(
q1 − d+ i

2

)
where (a) results from distributing the trace and applying Proposition 6 to each term and recalling that
trI = d, (b) applies Proposition 3, and the last line is simplifications.

A.11. Derivation of Bayesian Estimate of Wishart Differential Entropy:

Given sample d × d matrices S1, S2, . . . , Sn drawn iid from the unknown Wishart W with unknown
parameters Σ, q, the normalized posterior distribution p(Σ = Σ̃|S1, S2, . . . , Sn) is the normalized product
of the inverse Wishart prior p(Σ̃) and the product of n Wishart likelihoods

∏
j p(Sj|Σ̃). To derive the

posterior, we take the product of the prior and likelihood and sweep all terms that do not depend on Σ̃

into a normalization constant γ:

p(Σ̃|{Sj}) = γ

(
n∏
j=1

(
e−

1
2

tr(Σ̃−1Sj)

|Σ̃| q2

))(
e−

1
2

tr(Σ̃−1U)

|Σ̃| r+d+1
2

)

= γ
e−

1
2

tr(Σ̃−1(U+
∑n
j=1 Sj))

|Σ̃|nq+r+d+1
2

=
|
(
U +

∑n
j=1 Sj

)
|nq+r2 e−

1
2

tr(Σ̃−1(U+
∑n
j=1 Sj))

2
(nq+r)d

2 Γd
(
nq+r

2

)
|Σ̃|nq+r+d+1

2

(39)

where in (39) we solved for the normalization constant γ. One sees from (39) that the posterior p(Σ̃|{Sj})
is inverse Wishart with parameters U +

∑
j Sj and nq + r.
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Then the differential entropy estimate E[h(W )] can be computed by taking the expectation of h(W )

given in (14) where the W is treated as random and the expectation is with respect to the posterior given
in (39). Only one term requires the expectation:

E[ln |2Σ|] = E[ln |Σ|] + d ln 2

= ln |
n∑
j=1

Sj + U | −
d∑
i=1

ψ

(
nq + r − d+ i

2

)

where (b) applies Proposition 3. Substituting this term into the differential entropy formula (14)
produces the differential entropy estimate (19).

A.12. Derivation of Bayesian Estimate of Relative Entropy Between Wisharts:

There are only two terms of (15) that require evaluating the expectation, taken with respect to the
independent posteriors of the form given in (39).

The first term is evaluated by applying Proposition 4 and Proposition 5 sequentially:

EΣ1,Σ2

[
tr
(
Σ1Σ−1

2

)]
=

(r1 + n1q1)

(r2 + n2q2 − d− 1)
tr

(U1 +

n1∑
j=1

Sj

)(
U2 +

n2∑
k=1

Sk

)−1


The second term follows by applying Proposition 3 twice:

EΣ1,Σ2

[
ln |Σ1Σ−1

2 |
]

= EΣ1,Σ2

[
ln
(
|Σ1||Σ−1

2 |
)]

= EΣ1 [ln |Σ1|]− EΣ2 [ln |Σ2|]

= ln |U1 +

n1∑
j=1

Sj| − ln |U2 +

n2∑
k=1

Sk|

+
d∑
i=1

(
ψ

(
n2q2 + r2 − d+ i

2

)
− ψ

(
n1q1 + r1 − d+ i

2

))
A.13. Derivation of Bayesian Estimate of Inverse Wishart Differential Entropy:

Given sample d × d matrices S1, S2, . . . , Sn drawn iid from the unknown inverse Wishart V
with unknown parameters Σ, q, the normalized posterior distribution p(Σ = Σ̃|S1, S2, . . . , Sn) is
the normalized product of the Wishart prior p(Σ̃) and the product of n inverse Wishart likelihoods∏

j p(Sj|Σ̃).
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To derive the posterior, we take the product of the prior and likelihood and sweep all terms that do not
depend on Σ̃ into a normalization constant γ:

p(Σ̃|{Sj}) = γ

(
n∏
j=1

|Σ̃|
q
2 e−

1
2

tr(Σ̃S−1
j )

)(
|Σ̃|

r−d−1
2 e−

1
2

tr(Σ̃U−1)
)

= γ|Σ̃|
nq+r−d−1

2 e−
1
2

tr(Σ̃(U−1+
∑n
j=1 S

−1
j ))

=
|Σ̃|nq+r−d−1

2 e−
1
2

tr(Σ̃(U−1+
∑n
j=1 S

−1
j ))

2
(nq+r)d

2 Γd
(
nq+r

2

)
|U +

∑n
j=1 S

−1
j |

nq+r
2

(40)

where in (40) we solved for the normalization constant γ. One sees from (40) that the posterior p(Σ̃|{Sj})
is Wishart with parameters U−1 +

∑
j S
−1
j and nq + r.

Then the differential entropy estimate E[h(V )] can be computed by taking the expectation of h(V )

given in (17) where the V is treated as random and the expectation is with respect to the posterior given
in (40). Only one term requires the expectation:

E

[
ln |Σ

2
|
]

(a)
= E[ln |Σ| − d ln 2

(b)
= ln |U−1 +

∑
i

S−1
i |+

d∑
i=1

ψ

(
nq + r − d+ i

2

)
where (a) expands ln |Σ/2| = ln |Σ| − d ln 2, and (b) applies Proposition 2.
Substituting in this term to the differential entropy formula (17) produces the differential entropy estimate
(20).

A.14. Derivation of Bayesian Estimate of Relative Entropy Between Inverse Wisharts:

There are only two terms of (18) that require evaluating the expectation, taken with respect to the
independent posteriors of the form given in (40).

The first term is:

EΣ1,Σ2

[
tr
(
Σ−1

1 Σ2

)] (a)
= (n2q2 + r2)EΣ1

[
tr

(
Σ−1

1

(
U−1

2 +

n2∑
j=1

S−1
2j

))]

(b)
=

n2q2 + r2

n1q1 + r1 − d− 1
tr

(U−1
1 +

n1∑
j=1

S−1
1j

)−1(
U−1

2 +

n2∑
j=1

S−1
2j

) ,

where (a) follows by Proposition 3, and (b) follows because Σ1 ∼Wishart (U−1
1 +

∑n1

j=1 S
−1
1j , n1q1 +r1)

and thus by definition Σ−1
1 ∼ inverse Wishart ((U−1

1 +
∑n1

j=1 S
−1
1j )−1, n1q1 +r1), and thusE[tr(Σ−1

1 A)] =

tr((U−1
1 +

∑n1

j=1 S
−1
1j )−1A)/(n1q1 + r1 − d− 1) by Proposition 5.
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The second term is,

EΣ1,Σ2

[
ln |Σ−1

1 Σ2|
]

= EΣ1,Σ2

[
ln
(
|Σ1|−1|Σ2|

)]
= EΣ2 [ln |Σ2|]− EΣ1 [ln |Σ1|]

= ln

(
|U−1

2 +
∑n2

j=1 S
−1
2j |

|U−1
1 +

∑n1

j=1 S
−1
1j |

)

+
d∑
i=1

(
ψ

(
n2q2 + r2 − d+ i

2

)
− ψ

(
n1q1 + r1 − d+ i

2

))
where the last line follows by applying Proposition 2 twice.

Substituting these two terms into (18) produces the relative entropy estimate (21).

c© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license http://creativecommons.org/licenses/by/3.0/.


	Introduction
	Notation and Background

	Related Work
	Prior Work on Parametric Differential Entropy Estimation
	Prior Work on Nonparametric Differential Entropy Estimation
	Prior Work on Relative Entropy Estimation

	Functional Estimates that Minimize Expected Bregman Loss
	Bayesian Differential Entropy Estimate of the Uniform Distribution
	No Prior Knowledge About the Uniform
	Pareto Prior Knowledge About the Uniform

	Gaussian Distribution
	Differential Entropy Estimate of the Gaussian Distribution
	Relative Entropy Estimate between Gaussian Distributions

	Wishart and Inverse Wishart Distributions
	Wishart Differential Entropy and Relative Entropy
	Inverse Wishart Differential Entropy and Relative Entropy
	Bayesian Estimation of Wishart Differential Entropy
	Bayesian Estimation of Relative Entropy between Two Wisharts
	Bayesian Estimation of Inverse Wishart Differential Entropy
	Bayesian Estimation of Relative Entropy between Two Inverse Wisharts

	Discussion
	Appendix
	Proof of Proposition 1
	Derivation of Uniform Differential Entropy Estimate
	Derivation of Uniform differential Entropy Given Pareto Prior
	Propositions Used in Remaining Derivations
	Derivation of Bayesian Gaussian Differential Entropy Estimate
	Derivation of Bayesian Gaussian Relative Entropy Estimate
	Derivation of Wishart Differential Entropy:
	Derivation of Wishart Relative Differential Entropy:
	Derivation of Inverse Wishart Differential Entropy:
	Derivation of Inverse Wishart Relative Entropy:
	Derivation of Bayesian Estimate of Wishart Differential Entropy:
	Derivation of Bayesian Estimate of Relative Entropy Between Wisharts:
	Derivation of Bayesian Estimate of Inverse Wishart Differential Entropy:
	Derivation of Bayesian Estimate of Relative Entropy Between Inverse Wisharts:


