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Abstract: Branched manifolds that describe strange attractors in R3 can be enclosed in,
and are organized by, canonical bounding tori. Tori of genus g are labeled by a symbol
sequence, or “periodic orbit”, of period g−1. We show that the number of distinct canonical
bounding tori grows exponentially like N(g) ∼ eλ(g−1), with eλ = 3, so that the “bounding
tori entropy” is log(3).
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1. Introduction

Low dimensional strange attractors—those with Lyapunov dimension dL < 3—can be discretely
classified. A doubly discrete classification has been described in [1]. This classification depends
ultimately on the existence and rigid organization of an infinity of unstable periodic orbits in a strange
attractor [2,3]. At the lowest level this classification depends on a basis set of orbits. This is a set of
orbits with positive topological entropy whose presence forces the existence of all the other unstable
periodic orbits in the attractor [4–6]. The basis set of orbits for any attractor is discrete, and up to any
finite period the basis set of orbits is finite.
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At the second level of this organizational hierarchy for strange attractors are branched manifolds
[1,2,7–9]. These are obtained from the flow that generates a strange attractor by projecting the flow
down along the stable direction. The unstable periodic orbits that exist in the strange attractor exist in
1-1 correspondence with the periodic orbits on the branched manifold, with possibly a small number of
exceptions. Information about branched manifolds can be extracted from experimental data [10].

Recently a third level of discreteness in the description and classification of low dimensional strange
attractors has been introduced [11,12]. Branched manifolds can be enclosed in bounding tori. These
serve to organize branched manifolds in the same way that branched manifolds organize the periodic
orbits in a strange attractor. A bounding torus provides a canonical form for any flow inR3 that generates
a strange attractor. An algorithm for transforming a flow to its canonical form is given in [12]. The
bounding tori that enclose every strange attractor that has been studied in R3 have been described in
[11,12].

Bounding tori are described first by their genus, g ≥ 1. However, genus alone does not uniquely
identify a bounding torus when g > 4, and in fact the number of distinct bounding tori of genus g,
N(g), grows rapidly with g. Each distinct bounding torus describes a different class of tearing and
squeezing processes (or mechanisms) that serve to create strange attractors. The number of distinct
mechanisms responsible for generating chaotic behavior grows with N(g). It was proposed in [12] that
the growth might be exponential, so that an entropy-like limit of the type limg→∞ log[N(g)]/g might
exist, in analogy with the limiting definition of topological entropy to describe the growth in the number
of periodic orbits of period p with the period, p, in a strange attractor. The term entropy is being used
here to quantify the complexity of an entire class of dynamical systems, i.e., to describe the growth rate
in the number of topologically distinct dynamical systems for a given genus. This is in contrast to the
typical use of entropy in dynamical systems theory, which quantifies the complexity in the orbit structure
of a single dynamical system.

The purpose of the present work is to show that this limit exists and to evaluate it. We show that

lim
g→∞

log[N(g)]

g − 1
= log(3) (1)

so that an entropy of log(3) can be associated with the growth in the number of bounding tori with genus
g in R3.

2. Background

A bounding torus of genus g = 8 is shown in Figure 1. This represents a projection of a two
dimensional surface without self-links in R3 down onto a plane. The projection can always be brought
to a canonical form [11,12]. In that form the projection consists of the outer boundary of a disk and
g interior disks. The interior disks are of two types: nc circles and np even-sided polygons, where
nc + np = g. The flow on the outer boundary is unidirectional; the flow on the nc interior circles is also
unidirectional, and in the same direction as the flow on the exterior boundary. All singularities of the flow
lie on the np interior polygons: a polygon with 2n sides (n > 1) has 2n singularities, one at each vertex.
Half the singularities on a polygon are tearing singularities; the other half are joining singularities. The
total number of singularities on the bounding torus (all at the vertices of the interior polygons) is 2(g−1)

[11,12].
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For the bounding torus shown in Figure 1 there are nc = 5 interior uniflow circles labeledA→ E and
three interior polygons labeled a, b, c. The global Poincaré section of any flow bounded by this torus has
g − 1 = 7 disconnected components [11,12]. These are shown as line segments in Figure 1 and labeled
1→ 7, sequentially in the direction of the flow along the exterior boundary. At the tearing singularity at
the top of the square labeled b, the flow from component 2 of the Poincaré section is directed to either
component 3 or component 4 of the Poincaré section. Similarly, the flow to component 4 of the Poincaré
section from components 2 and 3 meet at the joining singularity on the right side of b. A bounding torus
of genus g describes how the g−1 tearing singularities and the g−1 joining singularities are arranged in
phase space with respect to each other to define a mechanism for creating chaotic behavior. The number
of tearing and squeezing mechanisms therefore grows with genus as N(g).

There are several ways that bounding tori can be uniquely identified. The labeling algorithms are
described in Equation 2.

1 2 3 4 5 6 7 1 . . .

A B C B D B E A . . .

a b b c c a a . . .

1 3 1 3 1 3 1 1 . . . (2, 4, 6)

(2)

The first row lists the components of the global Poincaré section in the order they are encountered
traversing the exterior boundary of the projection in the direction of the flow. Below each integer i

Figure 1. A canonical bounding torus with genus 8. This is partly described by
Young partition (3,2,2).

(1 ≤ i ≤ 7) is the capital letter (A,B,C,D,E) that identifies the uniflow circle to which the ith

component of the surface of section is attached. The sequence (ABCBDBE) that is encountered is
shown in the second row of Equation 2. In moving from component i to component i + 1 a hole
with singularities is encountered. The sequence (abbccaa) that is encountered is shown in the third
row of Equation 2. There is a 1-1 correspondence between the bounding torus and each of the two
letter sequences (ABCBDBE and abbccaa), up to the usual symmetries (relabeling the holes, changing



Entropy 2010, 12 956

the starting point). In fact, these two descriptions of a bounding torus are dual to each other. Both
sequence strings are in fact infinite, but of finite period g − 1 = 7. The last string of integers in
Equation 2 indicates that there is an orbit of topological period 3 around hole B and period-1 orbits
around the holes A,C,D,E. A permutation group representation of this bounding torus in terms of
permutation group generating cycles is (2,4,6)(1)(3)(5)(7) or more simply (2,4,6). This representation in
terms of generating cycles can be used algorithmically to construct the transition matrix for this bounding
torus [11,12].

Part of the degeneracy associated with enumerating bounding tori of genus g can be lifted by
introducing Young partitions λ = (λ1, λ2, · · · , λnp), λ1 ≥ λ2 ≥ · · · ≥ λnp ≥ 2 [11,12]. Each internal
polygon with 2λi edges and singularities is visited exactly λi times in a tour around the exterior boundary.
The partition associated with the torus has np rows, one for each interior polygon. For the bounding torus
shown in Figure 1, λ = (3, 2, 2) because hole a is encountered three times and holes b and c twice each
on a round trip round the exterior boundary. All allowed bounding tori that can be associated with this
partition are obtained by distributing the g − 1 = 7 letters aaa, bb, and cc on the perimeter of a circle
subject to the single condition that no interleaving occurs (..a.b.b.a.. is allowed but ..a.b.a.b.. is not).
“Interleaving” is an algebraic representation of the geometric idea that the holes must be encountered
in a precisely defined way. A geometric test for interleaving is as follows. Cyclically permute the
word until all letters of any one type occur at the beginning of a word (abbccaa → aaabbcc). Delete
these letters (aaabbcc → bbcc). Continue cyclic rotation and deletion until it is no longer possible. If
nothing remains, no interleaving is present and the original word represents an allowed bounding torus.
If something nonzero remains there is interleaving in the original word, which does not represent an
allowed bounding torus.

The number of bounding tori of genus g can be determined by

1. listing all allowed Young partitions;

2. counting the number of allowed letter distributions (up to cyclic permutation) for each Young
partition.

The sequence of polygon encounters can be replaced by a sequence of three symbols: (, ), and *. The
opening and closing parentheses stand for the first and last occurrence, respectively, of a given letter,
intermediate occurrences being indicated by a ∗. The non-interleaving property implies that each ∗
belongs to the innermost pair of parentheses between which it is embedded. Thus aaa→ (∗), aaabb→
(∗)(), aabba → (∗()), and baaab → ((∗)). This construction guarantees that at each position of the
sequence the cumulative number of opening parentheses is not less than the cumulative number of closing
parentheses, counting from the left.

The complete set of bounding tori of genus g is obtained by constructing all three-symbol sequences
that satisfy the requirements (a) that the total number of opening parentheses be equal to that of closing
parentheses, (b) that the cumulative number of opening parentheses be always not less than that of closing
parentheses, (c) that a ∗ can only appear if the number of opening parentheses preceding it is larger than
the number of closing parentheses. Finally, (d) sequences that are related by a cyclic permutation are
equivalent. Cyclic permutations are more easily described in terms of letter sequences than three-symbol
sequences. Thus aaabb 7→ baaab translates to (∗)() 7→ ((∗)).
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Requirements (a)–(c) are in 1-1 correspondence with the properties satisfied by the coupled states of
spin-1 particles. This is established by observing that coupling k − 1 spins s = 1 with total spin Sk−1

to a single spin s = 1 is isomorphic with the three-symbol coupling problem under the association:
( increases the spin [Sk = Sk−1 + 1]; * preserves the spin [Sk = Sk−1]; and ) decreases the spin
[Sk = Sk−1 − 1], subject to the condition that Sk−1 = 0⇒ Sk = 1. Requirement (a) corresponds to the
specific case Sg−1 = STot = 0.

This algorithm for describing the complete set of bounding tori of genus-g is described more fully in
Section 4.

3. Upper Bound on Toral Entropy

An upper bound on toral entropy is log(3). This upper bound on N(g) is obtained by noting that a
word of length g − 1 can be formed with the three-symbol alphabet (, *, ) in 3g−1 ways. This bound
ignores the requirements (a)–(d) specified above. Imposing these requirements leads to the same limit:
log(3).

4. Lower Bound and Exact Results

The algorithm for building (and counting) the complete set of inequivalent three-symbol sequences of
length g−1 that respect requirements (a)-(d) proceeds as follows: An overcomplete list is generated from
the complete set of sequences of length g − 2 by applying to each one of them the following operations:
(1) Inserting a ∗ at each legal position (i.e., lengthening a cycle). (2) Replacing a ∗ by the sequence ()

(i.e., embedding a two-cycle). (3) Replacing a ∗ by the sequence )( (i.e., splitting a cycle into two cycles).
In fact, operation (3) is only capable of generating sequences that have not already been generated by
operations (1) and (2) if applied to a length g − 2 sequence with a maximum (bg−2

2
c) number of cycles.

The list thus created contains repetitions that have to be eliminated. Furthermore, sequences on the
list that are equivalent by cyclic permutations to other sequences need to be discarded. This algorithm
was implemented by Maple and Fortran codes and used to compute N(g) for g up to 20. These results
are reported in Table 1. Values for N(g) were computed by hand up to g = 11 to validate the algorithm
and the coding of it.

In the case that g− 1 = p is prime a simple closed-form expression for N(g) can be constructed. It is
deduced from the expression for the number of different ways that a total spin S = 0 can be computed
from p spins s = 1. The number of ways that n spins s = 1 can be combined to a total spin S = 0 is

fS=0(n) =

bn+1
2
c∑

i=0

 n

i

  n+ 1− i
i

 n− 3i+ 1

n− i+ 1
(3)

The number fS=0(n) includes spin coupling patterns that correspond to letter sequences that are related
by cyclic permutations. These must be removed to relate the spin coupling problem to the bounding torus
problem, that is, to satisfy requirement (d) of Section 2. One of the sequences (ap) is already cyclically
invariant and all the others have periodicity p = g−1. The relation betweenN(g) and f(n) for n = g−1

prime is

N(g) = 1 +
fS=0(g − 1)− 1

g − 1
(4)
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When g− 1 is not a prime some of the spin coupling patterns correspond to periodicity lower than g− 1,
so that the above expression for N(g) is actually a lower bound for nonprime cases. The extension of
Equation 4 to the case g − 1 nonprime requires the determination of the number of ways of forming
distinct sequences with the various periodicities that correspond to the factors of g − 1. For example,
the cyclic permutations of aaabb are all distinct while those of (aab)3 (9 = 3 × 3) are not. The simpler
problem involving just the two symbols ( and ) [or coupling of spin 1

2
particles] has been solved, and

involves complicated number-theoretic functions such as the Euler totient function [13]. Equation 4 was
used to compute N(g) for odd g − 1. Results are presented in Table 2. This table shows that the values
computed for prime values of g−1 are equal to those computed by hand (g−1 ≤ 11) and by the Fortran
algorithm, while the values of N(g) for g − 1 not prime (9, 15) are slightly below the exact values by a
relative fraction that decreases as g increases. Only odd integers are included in this table to provide a
reasonable mixture of prime and nonprime integers: all even integers greater than 2 are nonprime.

Table 1. Number of canonical bounding tori as a function of genus, g.

g N(g) g N(g) g N(g)

3 1 9 15 15 2211
4 1 10 28 16 5549
5 2 11 67 17 14290
6 2 12 145 18 36824
7 5 13 368 19 96347
8 6 14 870 20 252927

Table 2. Comparison of exact results for N(g) with analytic result for prime numbers.

g − 1 Exact From (4)
3 1 1
5 2 2
7 6 6
9 28 26 2

3

11 145 145
13 870 870
15 5549 5540 11

15

17 36824 36824
19 252927 252927
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We have computed log[N(g)]/(g − 1) for prime values of g − 1 and plotted this ratio as a function
of 1/(g − 1) for primes below 2,000. The results are presented in Figure 2. The lower bound can be
computed analytically in the limit g − 1 → ∞ using Stirling’s approximation and is equal to log(3).
Since the upper bound is also log(3), the entropy of bounding tori is log(3).

Figure 2. The ratio log[N(g)]/(g − 1) converges to log(3).

5. Conclusions

Topological entropy describes how the number of unstable periodic orbits of period p in a strange
attractor grows exponentially with period p. Inequivalent bounding tori describe distinct tearing and
squeezing mechanisms that can create strange attractors in R3. We have shown that the number of
inequivalent bounding tori of genus g in R3 grows exponentially with g−1. The limit log[N(g)]/(g−1)

exists as g → ∞ and is log(3). Therefore the number of distinct mechanisms for creating strange
attractors in R3 grows exponentially with genus with growth factor, or entropy, of log(3).
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