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Abstract: Considerable research efforts have been devoted to probabilistic modeling of
genetic population structures within the past decade. In particular, a wide spectrum of
Bayesian models have been proposed for unlinked molecular marker data from diploid
organisms. Here we derive a theoretical framework for learning genetic population structure
of a haploid organism from bi-allelic markers for which potential patterns of dependence
are a priori unknown and to be explicitly incorporated in the model. Our framework is
based on the principle of minimizing stochastic complexity of an unsupervised classification
under tree augmented factorization of the predictive data distribution. We discuss a fast
implementation of the learning framework using deterministic algorithms.
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1. Introduction

The concept of a structured or subdivided population has received intensive attention both in applied
and theoretical population genetics for several decades. Intuitively, such populations can be considered
to harbor multiple pools of individuals, each associated with distinct allele frequencies over a set of
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molecular marker loci. For a mathematical conceptualization of such a structure in population genetics,
see [1,2]. In a traditional formulation, statistical inference regarding the extent of subdivision that a
population harbors is performed through summary statistics calculated from genotype data available for a
number of local, geographically determined sample populations. Many different forms of such summary
statistics exist in the literature; for details see the previously cited references. Despite the fact that the
traditional formulation is still widely utilized in applied population genetics, a complementary approach
to determining how subdivided a population is, has grown particularly popular within the most recent
decade. This approach is fundamentally based on statistical learning of a mixture model for genotype
data from multiple marker loci, where the mixture components are representing gene pools that have
drifted apart over time. In a typical setting both the appropriate number and the contents of the mixture
components are unknown a priori for a sample of individuals that have been genotyped. Currently, a
large body of literature exists about the mixture-based inference of population structure, where numerous
ramifications of a simple mixture model can be found [3–9]. A survey of the existing methods from a
spatially explicit perspective can be found in [10].

We have earlier demonstrated how a Bayesian representation of statistical uncertainty related to
population structure can be derived from a combination of generalized exchangeability and random urn
models [7]. The operational interpretation of this model is that the observed genotypes and the alleles
within each genotype are conditionally independent over all the considered loci, given the underlying
allele frequency parameters in each latent pool of the total population. The latent pools themselves are
represented by a stochastic partition of the sampled dataset, where the number of pools necessary for
sufficiently expressive representation of the molecular variation is explicitly determined. In machine
learning terminology the stochastic partitions perform unsupervised classification of data from multiple
finite alphabets, such that the occurrence of the letters is considered to be conditionally independent over
the alphabets given the classification of the items for which the letter combinations are observed.

In the current work we derive a generalization of unsupervised classification approach to inferring
genetic population structures from biallelic multilocus data, where the loci are no longer assumed to be
conditionally independent given a pool. The statistical learning approach is derived using information
theoretic notions where the minimum description length (MDL) criterion is used for minimization of
the stochastic complexity (SC) associated with the inferred population structure. To encode possible
dependencies among the loci, we augment the classifier with a binary tree to enable a sparse factorization
of the joint distribution of the multi-locus genotypes where the amount of dependence is determined by
the level of complexity in the data when filtered through the MDL criterion. The mathematical model
thus enables simultaneous learning of the unsupervised classification and the graphical structures that
are needed for representing the possible dependencies. It will be explicitly shown that SC (per sample)
is the sum of the length of the description of the samples within the classification and of the length of
the description of the classification with respect to the classification model chosen. Some parts of our
findings were earlier reported in a condensed form in a conference proceedings article [11]. We point
out that the general notion of augmenting a classifier by a tree is due to Chow and Liu [12] and in a more
extensive form due to [13] in a supervised context.

This article is organized as follows. In Section 2.1 we introduce a tree-based factorization of the joint
distribution of the multilocus genotypes, in Section 2.2 the SC criteria for learning trees and unsupervised
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classifications, respectively, are derived. The final sections thereafter discuss deterministic algorithms for
learning the optimal population structure under the introduced framework and provide some concluding
remarks.

2. Results and Discussion

2.1. Tree-based factorization of the joint distribution of multilocus genotypes

Assume the observed data consists in total of n observed genotypes over d biallelic marker loci from
a haploid organism. Thus, each observation resides in the d-dimensional binary hypercube Bd and we
let x denote its elements carrying d binary components, i.e.,

Bd :=
{
x | x = (xi)

d
i=1 , xi ∈ {0, 1}

}
Consider one latent pool in the population into which t of the total n samples are assigned in
terms of an unsupervised classification into k disjoint classes. The classification itself will be made
notationally explicit in a later section, whereas here we seek a probabilistic representation of the possible
dependencies among the d allele frequencies of the individual loci in any particular pool. At one extreme,
such representation should also allow for the simplest possible model where all loci are independent,
thus encoding the situation where the data do not display evidence for dependence. Using the general
Markov theory developed for graphical models of multivariate distributions, we may derive the sought
probabilistic representation that enjoys these properties. We let

X t =
{
x(l)
}t
l=1

(1)

be a set of x(l) ∈ Bd, which are considered as t independent realizations of the multilocus genotypes from
a single latent pool with its specific (unknown) allele frequencies. Note that the data is here assumed
complete, such that no components are missing in any x(l).

Let G = (V,E) be an acyclic graph with the set of nodes (or vertices) V = {1, . . . , d} and the edges
E. Each connected component of G is a tree and G may also be called a forest. We shall first consider
forests that consist of one single tree.

If we choose a direction for the edges of G, the node i in the directed edge (i, j) in E is said to be the
parent of node j and j is called a child of the node i. The notations i and j are used interchangeably to
denote any particular locus in the remainder of the text. A tree is characterized by the property that any
two vertices are connected by a unique path. Hence the parent of a node is uniquely given. The root of a
directed tree is the node lacking a parent. If G is a directed tree, then we designate by G∼ the undirected
version obtained from G by replacing the directed edges by undirected edges.

The structure or topology of the tree G (and effectively of G∼) is thus given by

Π = (Π[1],Π[2], . . . ,Π[d]) ,

where Π[j] is the parent of the node j, such that Π(1) = ∅ (the empty set). We suppose here that the
nodes are ordered so that 1 is the root of the tree and that Π(i) < i for all i (topological order).

For each node we assign a binary random variable Xi corresponding to the ith locus, where the
possible alleles are labeled by xi ∈ {0, 1}. Each edge (j, i) in E (directed or not) is a statement of
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dependence between Xj and Xi, which implies that the joint allele frequencies of the locus combination
j, i do not factorize into the product of the marginal allele frequencies. In contrary, the absence of an
edge indicates lack of direct dependence between the corresponding loci.

We assume that the joint distribution of (X1, . . . , Xd) is factorized along G in the sense that

P (X1 = x1, . . . , Xd = xd) =
d∏
i=1

P
(
Xi = xi|XΠ[i] = xΠ[i]

)
(2)

In addition to the structure Π we thus need to assign for each node the table of conditional probabilities
P
(
Xi = xi|XΠ[i] = xΠ[i]

)
(allele frequencies) in order to fully specify a tree dependent joint distribution.

Simple Markovian process based dependence representations of linkage between loci have earlier
been introduced in [8] and [14], where it was assumed that the linkage map of the loci is available a
priori and it was explicitly incorporated in the models. The tree and forest based factorizations of the
joint allele probabilities defined below also utilize simple Markovian structures along the node ordering
as any locus will have only a single or no parents. The essential difference is then that the linkage map of
the loci is not assumed known a priori, but is implicitly represented by the node ordering along the tree
or forest, which is learned from the observed data. In situations where the chromosome at which a locus
is positioned is known for the loci, it is straightforward to impose the information to our framework by
learning the trees (forests) separately for each subset of loci positioned within different chromosomes. In
order not to burden the notation excessively, we abstain from an explicit representation of this possibility.

For notational convenience we shall in the sequel express the joint distributions
P (X1 = x1, . . . , Xd = xd) and other probability distributions also by omitting the random variables but
including the structure of the tree as

P (x1, . . . , xd | Π) =
d∏
i=1

P
(
xi|xΠ[i]

)
.

A directed tree G = (V,E) equipped with tree dependent probability distribution (2) factorized along
G = (V,E) is the model introduced in [12] and it is also called a dependence tree. The tree, the binary
random variables X1, . . . , Xd, and the probability distribution (2) constitute a special Bayesian network
[15,16]. However, Meil and Jordan [17] argue that a mixture of trees, which will be introduced below
using the probability distributions (2) as components, is not to be regarded as a Bayesian network.

The undirected graph G∼ is also known as the Markov tree of the probability distribution
P (x1, . . . , xd | Π) [18]. A tree dependent distribution factorized along G∼ with P (x1, . . . , xd | Π) > 0

enjoys the global Markov property, and hence vertex separation implies conditional independence [16].
Therefore G∼ is a perfect representation of P (x1, . . . , xd | Π) [19].

An example of a Chow-Liu dependence tree in the sense of above presentation for seven loci is given
by

(Π[1],Π[2],Π[3],Π[4],Π[5],Π[6],Π[7]) = (∅, 1, 2, 1, 4, 5, 3),

which leads to the factorization

P (x1)P (x2|x1)P (x3|x2)P (x4|x1)P (x5|x4)P (x6|x5)P (x7|x3) ,
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of the joint distribution of the alleles within the considered latent pool. An illustration of a disconnected
dependence tree for seven nodes is given by

(Π[1],Π[2],Π[3],Π[4],Π[5],Π[6],Π[7]) = (∅, 1, ∅, ∅, 4, 4, 5),

which now leads to the factorization

P (x1)P (x2|x1)P (x3)P (x4)P (x5|x4)P (x6|x4)P (x7|x5) . (3)

Bayesian networks can be equivalent in the sense that they imply the same set of independencies
between the variables. Or, they have the same underlying undirected graph but might disagree on the
direction of some of the edges. One cannot distinguish between equivalent graphs using observations of
the variables of the graph. Two rooted trees G1 and G2 are equivalent, if they have the same underlying
undirected graph G∼. The characterizations of equivalence are recapitulated and proved in [20,21]. In
the current work the dependencies between loci are unambiguously represented by the undirected
graph G∼.

2.2. Chow expansion of the of the joint distribution of multilocus genotypes

Since the joint distribution factorized along a forest of dependence trees will, in view of (3), even in
general consist of factors having the same structure as for the joint distribution factorized according to
one single dependence tree, we restrict the attention to the tree dependent probability distribution

P (x) = P (x1) · P
(
x2|xΠ(2)

)
. . . P

(
xd−1|xΠ(d−1)

)
· P
(
xd|xΠ(d)

)
. (4)

The factors P
(
xi|xΠ(i)

)
can be written as

P
(
xi|xΠ(i)

)
=
(
θxii (1− θi)(1−xi)

)xΠ(i)

·
(
φxii (1− φi)(1−xi)

)1−xΠ(i)

, (5)

where for i = 2, . . . , d

θi = P
(
xi = 1|xΠ(i) = 1

)
, (6)

and
φi = P

(
xi = 1|xΠ(i) = 0

)
, (7)

and
P (x1) = θx1

1 (1− θ1)(1−x1) .

Recalling from the previous section definition of the data that was assigned to a particular latent pool,
we obtain the joint probability of the t d-dimensional samples from (4) and (5) as

t∏
l=1

P
(
x(l)
)

= θn1
1 (1− θ1)t−n1

d∏
i=2

θ
ni(1,1)
i (1− θi)ni(0,1) · φni(1,0)

i (1− φi)ni(0,0) , (8)

where, as all x(l) are realizations under the same dependence tree,

ni(1, 1) =
t∑
l=1

x
(l)
i x

(l)
Π(i), ni(1, 0) =

t∑
l=1

x
(l)
i

(
1− x(l)

Π(i)

)
,
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ni(0, 1) =
t∑
l=1

(
1− x(l)

i

)
x

(l)
Π(i), ni(0, 0) =

t∑
l=1

(
1− x(l)

i

)(
1− x(l)

Π(i)

)
,

for i = 2, . . . , d, and

n1 =
t∑
l=1

x
(l)
1 .

Obviously, ni(1, 1) counts the number of times we have simultaneously x
(l)
i = 1 and x

(l)
Π(i) = 1 in

X t =
{
x(l)
}t
l=1

, and the interpretations of the remaining corresponding quantities are also obvious. We
call (8) the (first order) Chow expansion of the joint likelihood of a Markov tree [22].

Prior predictive data distributions under Chow expansion

Since the Chow expansion derived above involves a considerable amount of unknown allele frequency
parameters and different combinations of trees and unsupervised classifications will be associated with
varying numbers of such parameters, it is necessary to handle them in an appropriate manner from the
statistical perspective, to ensure coherent learning of the population structure. Here we use the marginal
likelihood of the tree topology P (X t|Π), which can equivalently be considered as the prior predictive
distribution of X t, to ensure consistent learning under the family of the considered probability models.

The joint likelihood of the tree network in (5) is now represented by the parametrization

Pθ,φ(x) =
d∏
i=1

Pθi,φi
(
xi|xΠ(i)

)
,

where from (6) and (7)
θ = (θ1, . . . , θd) , φ = (φ2, . . . , φd) .

Given that Θ and Φ denote two copies of the d-fold and d − 1-fold product of the unit interval,
respectively, then θ ∈ Θ and φ ∈ Φ.

Given a prior probability density g
(
θ, φ
)

on Θ× Φ, we obtain

P
(
X t|Π

)
=

∫
Θ

∫
Φ

t∏
l=1

Pθ,φ
(
x(l)
)
g
(
θ, φ
)
dθdφ. (9)

This is known in statistics as a prior predictive distribution. We choose the prior g
(
θ, φ
)

by local meta
independence of parameters, [15,20,21], such that

g
(
θ, φ
)

=
d∏
i=1

h (θi)
d∏
i=2

z (φi) . (10)

An explicit expression for the above prior predictive data distribution is derived in Appendix.

2.3. Stochastic complexity and learning of classifications and tree structures

Given the above results we can now derive an expression of the stochastic complexity for any Chow
expansion of joint allele frequencies in a latent pool in a sense made precise in [23,24]. This result will
later be invoked to the task of unsupervised classification, such that our learning approach will aim at
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minimizing the SC over the space of all possible combinations of latent pools and their associated Chow
expansions. By using the result in (9), we obtain the criterion for minimizing the SC as the expression

− logP
(
X t|Π

)
= − log I1 − log I2 − log I3 (11)

= log
Γ (α1) · Γ (α2)

Γ (α1 + α2)
+ log

Γ (t+ α1 + α2)

Γ (n1 + α1) · Γ (t− n1 + α2)

+
d∑
i=2

log
Γ (α1) · Γ (α2)

Γ (α1 + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

+
d∑
i=2

log
Γ (α1) · Γ (α2)

Γ (α1 + α2)

Γ (ni(1, 0) + ni(0, 0) + α1 + α2)

Γ (ni(1, 0) + α1) · Γ (ni(0, 0) + α2)
,

where the hyperparameters are chosen as α1 = α2 = 1/2, which defines a product of respective
Jeffreys’ priors in (10). In order to minimize the log probability− logP (X t|Π) we derive an asymptotic
expansion of the above expression. This expansion is instructive both for algorithmic purposes and for
gaining explicit illustration of the mechanics of SC minimization.

Asymptotic expansion of the stochastic complexity for a Chow expansion

The formulae derived in Appendix establish the following basic result. If the likelihood of the tree
topology P (X t|Π) for a dependence tree is evaluated assuming both local meta independence and
Jeffreys’ prior, which equals the Beta distribution Be(1/2, 1/2), for each of the parameters, then

− logP
(
X t|Π

)
= log

t!

Γ (n1 + 1/2) · Γ (t− n1 + 1/2)

+ t ·
d∑
i=2

h (ni(1)/t)− t ·
d∑
i=2

Ii,Π(i)

+
1

2

d∑
i=2

log
(
nΠ(i)(1)

)
+ log

(
nΠ(i)(0)

)
+ C, (12)

where Ii,Π(i) is given in (50) and C is bounded in t.
Since the learning of the tree network structure is achieved by minimizing − logP (X t|Π) as a

function of the structure Π, in view of (12) we see that this corresponds to minimizing

−t ·
d∑
i=2

Ii,Π(i) +
1

2

d∑
i=2

[
log
(
nΠ(i)(1)

)
+ log

(
nΠ(i)(0)

)]
,

since all other terms are independent of the network structure. This is additionally equivalent to
maximization of

d∑
i=2

Ii,Π(i) −
1

2
·

[
1

t

d∑
i=2

(
log
(
nΠ(i)(1)

)
+ log

(
nΠ(i)(0)

))]
. (13)

The stochastic complexity for an unsupervised classification under Chow expansion

We now consider derivation of SC for unsupervised classifications of the n samples into k disjoint
classes interpreted to represent latent pools in the population, each associated with distinct allele
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frequencies. In terms of data, an unsupervised classification refers to a subdivision of the observed
multilocus genotypes into the sets {X tc , c = 1, ..., k}. There are various ways of representing such
subdivisions, here we define them in terms of class membership functions

u(l)
c :=

{
1 if x(l) ∈ c
0 otherwise,

and incorporate these in the matrix
Un =

{
u(l)
c

}n,k
l=1,c=1

.

Hence

tc =
n∑
l=1

u(l)
c (14)

is the number of binary vectors assigned to class c = 1, ..., k.
Let next λ = {λc}kj=1 be a discrete probability distribution

∑k
c=1 λc = 1, λc ≥ 0, which we use as the

prevalence of u(l)
c so that

λc = P
(
u(l)
c = 1

)
, l = 1, . . . , n. (15)

This can be interpreted as the probability of the event that x(l) is sampled from the latent pool indexed
by c. Then we introduce

Pθc,φc (x | Πc) =
d∏
i=1

Pθic,φic
(
xi|xΠc(i)

)
(16)

as the conditional probability of x within the latent pool c. Thus, each of the classes is equipped with a
dependence tree or possibly a forest of dependence trees designated by Πc. We can now write using (15)
and (16)

P (x) =
k∑
c=1

λcPθc,φc (x | Πc) , (17)

which is formally a mixture of trees in the sense of Meil and Jordan [17]. A difference in the present
setting is that each Πc may also be a forest. Figure 1 provides an illustration of the joint structure of the
probability model for a simple example with d = 5 and k = 2.

In view of the preceding we have the complete integrated likelihood

P ((Xn, Un) |Π) =

∫
Λ

∫
Θ

∫
Φ

n∏
l=1

k∏
c=1

[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

g
(
θc, φc

)
ψ (λ) dθcdφcdλ,

where we have Π denoting the collection of the trees (forests) {Πc, c = 1, ..., k}, and further

θc = (θ1c, . . . , θdc) , φ
c

= (φ2c, . . . , φdc)

and Θ and Φ are the appropriate spaces for θ1, . . . , θk and φ
1
, . . . , φ

k
to assume their values in. The space

Λ is equal to {λ |
∑k

c=1 λc = 1, λc ≥ 0} and ψ (λ) is a probability density on Λ. The above integral
factorizes as

P (Xn, Un|Π) = Q∗ (Un) · P ∗ (Xn|Un,Π) , (18)
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Figure 1. Graphical representation of the dependence structure for an unsupervised
classification model augmented by Chow-Liu trees. Here d = 5 and k = 2 and the unbroken
arrow lines correspond to dependence between the stochastic nodes and the dashed arrows
correspond to the dependence of the root nodes on the classification variable λ, which is
connected to the trees by a random switch (represented by the curved arrow) according the
probabilities in λ.

chowliugenerator2.pdf

where the auxiliary notations are defined as

Q∗ (Un) =

∫
Λ

k∏
c=1

λtcc ψ (λ) dλ, (19)

and

P ∗ (Xn|Un,Π) =
k∏
c=1

∫
Θc

∫
Φc

n∏
l=1

[
Pθc,φc

(
x(l) | Πc

)]u(l)
c

g
(
θc, φc

)
dθcdφc.

With regard to the last integral above the situation is analogous to (8) so that

n∏
l=1

[
Pθc,φc

(
x(l) | Πc

)]u(l)
c

= K1

d∏
i=2

θ
nic(1,1)
ic (1− θic)nic(0,1) · φnic(1,0)

ic (1− φic)nic(0,0) , (20)

where θic is defined as
θic = P

(
xi = 1|xΠc(i) = 1

)
and analogously for φic and

K1 = θn1c
1c (1− θ1c)

tc−n1c .

As all x(l) with the label c follow the factorization of the multivariate distribution for the same
dependence tree Πc,

nic(1, 1) =
∑
l:ulc=1

x
(l)
i x

(l)
Πc(i), nic(1, 0) =

∑
l:ulc=1

x
(l)
i

(
1− x(l)

Πc(i)

)
, (21)

nic(0, 1) =
∑
l:ulc=1

(
1− x(l)

i

)
x

(l)
Πc(i), nic(0, 0) =

∑
l:ulc=1

(
1− x(l)

i

)(
1− x(l)

Πc(i)

)
, (22)
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for i = 2, . . . , d and
n1c =

∑
l:ulc=1

x
(l)
1 .

and tc is given in (14). Here nic(1, 1) counts the number of times the pair
(
x

(l)
i = 1, x

(l)
Πc(i) = 1

)
occurs

in the data set simultaneously with u(l)
c = 1.

Hence, under the above assumptions the same computations that were used in the preceding section
entail the formula

− logP ∗ (Xn|Un,Π) = −
k∑
c=1

logP (Xn|Πc)

= k log π +
k∑
c=1

log
tc!

Γ (n1c + 1/2) · Γ (tc − n1c + 1/2)
+

+2 · k · (d− 1) · log π (23)

+
k∑
c=1

d∑
i=2

log
(nic(1, 1) + nic(0, 1))!

Γ (nic(1, 1) + 1/2) · Γ (nic(0, 1) + 1/2)

+
k∑
c=1

d∑
i=2

log
(nic(1, 0) + nic(0, 0))!

Γ (nic(1, 0) + 1/2) · Γ (nic(0, 0) + 1/2)
,

where we have introduced the notation − logP (Xn|Πc) for the expression in (11) when the class index
c is inserted in all the appropriate places. The forest of Chow-Liu trees is merely implicit in the right
hand side of this expression, but is, of course, required for computation and definition of the statistics of
the locus pairs.

The integral
∫
Λ

∏k
c=1 λ

tc
c ψ (λ) dλ is explicitly evaluated taking ψ (λ) as the Dirichlet density, see [26]

for a rationale, which means that

ψ (λ1, . . . , λk) =


Γ(

∑k
c=1 αc)∏k

c=1 Γ(αc)

∏k
c=1 λ

αc−1
c , if λ1, . . . , λk ∈Λ

0 otherwise.
(24)

Then in (19)

Q∗ (Un) =

∫
Λ

k∏
c=1

λtcc ψ (λ) dλ =
Γ
(∑k

c=1 αc

)
∏k

c=1 Γ (αc)

∫
Λ

k∏
c=1

λtc+αc−1
c dλ =

=
Γ
(∑k

c=1 αc

)
∏k

c=1 Γ (αc)
·

∏k
c=1 Γ (tc + αc)

Γ
(∑k

c=1 tc +
∑k

c=1 αc

) .
If we choose the Jeffreys’ prior, which corresponds to αc = 1/2 (for this result and the computations
required, c.f., [24] or [27] p. 218, for all c, we obtain

− logQ∗ (Un) =
k

2
log π/2− log Γ(k/2)

+ log Γ (n+ k/2)−
k∑
c=1

log Γ (tc + 1/2) . (25)
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We have thus established that SC (per item) is the sum of the length of the description of the items within
the classification and of the length of the description of the classification with respect to the classification
model chosen, i.e.,

SC := − 1

n
logP ∗ (Xn|Un,Π) +

(
− 1

n
logQ∗ (Un)

)
, (26)

respectively, with detailed expressions from (23) and (25). This formula can be used to evaluate the
complexity of any classification Unof data Xn, irrespective of the way it has been arrived at.

2.4. Algorithms for learning unsupervised classifications and Chow expansions

Deterministic algorithm for learning Chow expansions

Chow and Liu [12] established an algorithm for maximization of
∑d

i=2 Ii,Π(i) as a function of the tree
structure. Suzuki [28] has extended the Chow-Liu algorithm by adding to

∑d
i=2 Ii,Π(i) terms penalizing

tree networks that are too complex. We shall next present a variant of these two algorithms for any single
class c containing tc samples.

The procedure for constructing disconnected tree networks consists of the following steps:

A1. Compute the numbers

IPi,j =
1∑

u=0

1∑
v=0

P̂i,j (u, v) log
P̂i,j (u, v)

P̂i (u) · P̂j (v)
− 1

2
· 1

t
[log (nc(1)) + log (nc(0))] (27)

for the d · (d − 1) different pairs of indices, where P̂i,j (u, v) , P̂i (u) , P̂j (v) refer to maximum
likelihood estimates of the corresponding probabilities (see formula (50) in Appendix).

A2. Construct a complete undirected graph with the binary variables as nodes.

A3. Construct a maximum weighted spanning tree with the extra condition that an edge is in the tree
only if IPi,j > 0.

A4. Make the maximum weighted spanning tree directed by choosing a root variable and setting the
direction of all edges to be outward from the root.

There are several algorithms for constructing a maximum weighted spanning tree in step A3, when
the condition for permitting disconnected graphs is not imposed. The most time honoured algorithm for
the task is the Borůvka-Choquet-Kruskal algorithm [29].

Having completed the steps A1-A4 we have a tree structure

Π̂c =
{

Π̂(s)
c

}r
s=1

, (28)

where each Π̂
(s)
c corresponds to Chow-Liu tree with a subset of the nodes {1, . . . , d} and its distinct and

separate root. For a disconnected tree we then have the stochastic complexity

− logP
(
X tc|Π̂c

)
= −

r∑
s=1

logP
(
X tc |Π̂(s)

c

)
, (29)
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where each term in the right hand side is of the form

− logP
(
X tc|Π̂(s)

c

)
= log π + log

t
(s)
c !

Γ
(
n

(s)
1 + 1/2

)
· Γ
(
t
(s)
c − n(s)

1 + 1/2
)

+(d(s) − 1) log π

+
d(s)∑
i=2

log
Γ
(
n

(s)
Π(i)(1) + 1

)
Γ
(
n

(s)
i (1, 1) + 1/2

)
· Γ
(
n

(s)
i (0, 1) + 1/2

)
(30)

+(d(s) − 1) log π

+
d(s)∑
i=2

log
Γ
(
n

(s)
Π(i)(0) + 1

)
Γ
(
n

(s)
i (1, 0) + 1/2

)
· Γ
(
n

(s)
i (0, 0) + 1/2

) ,
with obvious definitions of the quantities involved.

The case d(s) = 1 corresponds to a node that is not connected to any other node, and thereby only the
first term in the right hand side is needed in (30).

Deterministic algorithm for learning unsupervised classification augmented by Chow expansions

Recall the logarithm of the marginal likelihood of the data as a function of an instance of an
unsupervised classification and the set of Chow expansions,

L ((Xn, Un) |Π) = logP ((Xn, Un) |Π) (31)

Below we show how an algorithm for computing maxUn,Π
1
n
L ((Xn, Un) |Π) can be formulated in terms

of a maximum likelihood estimation procedure. Under the previously stated assumptions, as n grows to
infinity, we have for fixed Xn and k the expression

max
Un,Π

1

n
L ((Xn, Un) |Π) = max

Un,Π,Θ,λ

1

n

n∑
l=1

k∑
c=1

[
u(l)
c logPθc,φc

(
x(l) | Πc

)
+ u(l)

c log λc

]
.

(32)

− 1

2
k · (2d)

log n

n
+R,

where R is bounded in n for fixed Xn and k. By stating that Xn is fixed as n→∞, we mean that when
x(n+1) is added, the preceding x(l) in Xn, l ≤ t are not changed. We shall merely show that the desired
expansion is another way of writing (12) above, when terms corresponding to the similar expansion of
− logQ∗ (Un) in (25) are added.

To evaluate the above expression more explicitly, we start by considering in the right hand side of
(32) the maximization of the likelihood

max
Un,Π,Θ,λ

n∏
l=1

k∏
c=1

[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

,
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which is equivalent to the maximization of

max
Un,Π,Θ,λ

1

n

n∑
l=1

k∑
c=1

[
u(l)
c logPθc,φc

(
x(l) | Πc

)
+ u(l)

c log λc

]
.

We first maximize with respect λ to obtain

max
Un,Π

1

n

n∑
l=1

k∑
c=1

[
u(l)
c logPθc,φc

(
x(l)Πc

)]
+

k∑
c=1

λ̂c log λ̂c, (33)

where λ̂c is

λ̂c =

∑n
l=1 u

(l)
c

n
=
tc
n
. (34)

But then the argument following (47) shows that

1

n

k∑
c=1

n∑
l=1

u(l)
c logPθc,φc

(
x(l) | Πc

)
=

1

n

k∑
c=1

logK1c

+
1

n

k∑
c=1

log
tc!

Γ (n1c + 1/2) · Γ (tc − n1c + 1/2)

(35)

−
k∑
c=1

tc
n

d∑
i=2

h (nic(1)/n) +
k∑
c=1

tc
n

d∑
i=2

Ii,Πc(i).

In other words we are going to maximize

1

n

k∑
c=1

n∑
l=1

u(l)
c logPθc,φc

(
x(l) | Πc

)
by maximization of

k∑
c=1

tc
n

d∑
i=2

Ii,Πc(i),

as a function of Π, which we can do for each class c separately using the Chow-Liu algorithm. Having
found the optimum tree topology, we have also obtained the maximum likelihood estimates θ̂c, φ̂c for
each c, c = 1, ..., k.

However, we have already in (12) the additional terms 1
2

∑d
i=2 log

(
nΠc(i)(1)

)
+log

(
nΠc(i)(0)

)
, which

can be subsumed in 1
2
k · (2d) logn

n
.

Clearly we can use Stirling’s formula in a similar way as in (44) to expand − logQ∗ (Un) in (25) so
as to obtain

− 1

n
logQ∗ (Un) ≈ −

k∑
c=1

λ̂c log λ̂c −
k − 1

2

log n

n
.

The general asymptotic expansion result due Schwartz [30], as in [31], c.f. [32] and [33] chapter 5,
provides a similar kind of an expansion, however, without making comparable assumptions about the

prior densities. This special application is based on the fact that
[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

belongs to the
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exponential family of distributions with the convex parameter sets. In general, study of the asymptotics
of approximate Bayesian model selection under implicit priors in the presence of hidden states like class
variables is very challenging; for some recent significant progress see [33,34].

We shall next consider an algorithm for unsupervised classification of Xn, i.e., for finding Un that
maximizes L ((Xn, Un) |Π) for a given value of k, using the expansion in (31). A discussion of this kind
of expansions in clustering theory is found in [35]. We define first the rules of identification to be used
in the algorithm.

A tree augmented supervised Bayesian classifier [13] is based on the following rule of identification
first suggested by Chow and Liu [12]. An x in Bd is assigned to (identified with) class c∗, if

c∗ = arg max
1≤c≤k

Pθ̂c,φ̂c
(x | Πc) λ̂c, (36)

where λ̂c is given in (34) and

Pθ̂c,φ̂c
(x | Πc) =

d∏
i=1

Pθ̂ic,φ̂ic
(
xi|xΠ(i)

)
. (37)

In order to simplify the required notation, we drop here the superscript from the data matrix and set
Un = U . The findings in the preceding subsection show that we can maximize

max
U,Π,Θ,λ

n∏
l=1

k∏
c=1

[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

using the following alternating algorithm:

B1. Fix k, set w = 0 and store an arbitrary (random) U(w).

B2. Find the structure Π̂(w) maximizing

k∑
c=1

tc
n

d∑
i=2

Ii,Πc(i) −
1

2
k · (2d)

log n

n

using the previously defined Chow-Liu-Suzuki algorithm (A1-A4).

B3. For U(w) and Π̂(w) compute the maximum likelihood estimates Θ̂(w) and λ̂(w).

B4. Given Θ̂(w), λ̂(w), and Π̂(w) determine U(w+1) =
{

(u
(l)
c )(w+1)

}n,k
c,l=1

using

(u(l)
c )(w+1) =

{
1 if c(l)

∗ = c

0 otherwise,
(38)

where
c(l)
∗ = arg max

1≤c≤k
Pθ̂c,φ̂c

(
x(l) | Πc

)
λ̂c.

B5. If U(w+1) = U(w), then stop, otherwise set w = w + 1 and go to B2.
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It can be proved in the same way as in [31] that this algorithm will re-enter step B2 only a finite
number of times and, after having stopped, will have found a local minimum of

n∏
l=1

k∏
c=1

[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

as a function of U,Π,Θ, λ. This is easily seen, since each step of the algorithm above increases the value
of the likelihood function, since only non-negative terms are added in step B4.

Due to local meta independence and the other assumptions the class wise components in Θ̂(w), λ̂(w),
and Π̂(w) are estimated using those items in U(w) assigned to the class c, respectively, at this step of
the algorithm.

The estimation procedure above, i.e., finding Û , Π̂, Θ̂, λ̂ such that

(
Û , Π̂, Θ̂, λ̂

)
= arg max

U,Π,Θ,λ

n∏
l=1

k∏
c=1

[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

is an example of what is known as the classification maximum likelihood estimate. The procedure
has been proved to yield biased estimates of the parameters of the probability distribution [35]. In
addition, the family of distributions dealt with here is not identifiable [31]. However, despite of this
the classification performance need not be impaired in practice, provided that the underlying classes are
represented by a wealth of samples.

Finally, in order to establish k, the number of classes, from the data Xn it is possible to proceed by
executing the above algorithm for all feasible values of k and choose k̂ and the corresponding Û

such that

− 1

n
logP ∗

(
Xn|Ûn,Π

)
+

(
− 1

n
logQ∗

(
Ûn
))

,

is maximal.

In view of the fact that we are actually dealing with an exponential family in
[
Pθc,φc

(
x(l) | Πc

)
λc

]u(l)
c

,
we note the consistency result in [36], which establishes the fact that maximizing

L ((Xn, Un) |Π)

as a function of k will produce a consistent estimate of the model and k.

2.5. Discussion

As the success of statistical mixture models applied to inferring population structures neatly
demonstrates, general probabilistic machine learning theory contains many contributions that have
potentially fruitful applications in diverse areas of scientific inquiry. Molecular biology in general is both
an attractive target to applications of generic probabilistic machine learning tools as well as a source of
inspiration for theoretical research on such methods, given the rich variety of biological problems that
necessitate the use of advanced computational and statistical methods to arrive at meaningful solutions.

From a theoretical perspective it is fairly intuitive to attempt to represent possible dependencies
between marker loci using the relatively sparse model structures the general theory of probabilistic
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graphical models and networks has to offer. An introduction to the general theory can be found in [16].
It is worth noting that while our machine learning formulation does not include representation of linkage
distances in terms of explicit parameters for that purpose, conditional distributions of alleles defined
in terms of the tree factorization can still flexibly represent a wide range of dependencies from near
independence to complete linkage between loci. Consequently, the evolutionary time scale related to the
linkage patterns remains implicit in our formulation, and it is therefore dependent on the characteristics
of a particular data set that is investigated.

We have intentionally abstained from considering explicitly any ancestral relationships of the
observed samples in terms of a graph (or a tree); either at the level of individual samples or inferred
latent pools of them. Such graphs would obviously increase the biological realism our approach when
incorporated in the dependence model, however, as the level of computational complexity associated
with our machine learning method is already very high, explicit models of ancestral relationships would
likely render it practically inapplicable to data sets harboring large numbers of samples and latent pools.

In a typical theoretical formulation, probabilistic classification is based on ranking of the posterior
probabilities of classes given an observed feature vector. This is in fact the optimal rule of identification
if the “true” description of the data is used to compute the posterior probabilities. Wong and Poon [37]
claimed that the tree-aided classifier of Chow and Liu minimizes an upper bound on the Bayes error rate,
if the true distribution is approximated by (a mixture of) tree dependent distributions. However, it was
later shown in [38] that the result was erroneous and that more caution is needed in the interpretation of
classifier error rate in this context.

The information theoretic approach based on minimization of stochastic complexity adopted here
[24,39–41] is closely related to the fully Bayesian approach, where a comparable model would lead to
a posterior distribution over the possible combinations of classifications and expansion structures. Our
current approach generalizes previous “naive classifiers” using class-conditional probability distributions
expressing independence between features in [31,42], which are also trained by minimization of
stochastic complexity. Similarly to the Bayesian modeling paradigm, SC enforces a trade-off between
descriptional/predictive accuracy and modeling complexity.

Our result on stochastic complexity for class-conditional probability distributions factorized along a
(rooted) tree, whose nodes correspond to the components of a binary vector, was obtained by applying
the results in [23,24] to a Chow expansion of the joint probability integrated with respect to Jeffreys’
prior. Generally, minimization of stochastic complexity corresponds in many cases to the minimum
description length (MDL) principle of model choice. MDL principle is discussed for learning of the
structure of graphs in [43,44], while surveys and tutorials of algorithms and techniques for learning
graph structure from data are given in [45,46].

The procedure of learning trees from data was first presented in [12]. In this procedure the mutual
information between all pairs of nodes is computed using the relevant sample frequencies and the best
tree is selected as the one that gives the maximum overall mutual information. This is in fact a maximum
likelihood estimate of the tree, the asymptotic consistency of which was proved in [47] for increasing
sets of independent samples from a tree dependent distribution. The procedure was extended by Suzuki
[28], who observed the connection of the Chow-Liu estimate to MDL. The techniques in [44] do not
lead to this, as pointed out by Suzuki [28]. The procedure of structure learning to be applied here is, as
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far as the probability distributions involved are concerned, closely related to the Bayesian algorithms in
[20,21,48] . Learning of graphs from data using the search algorithms of Cooper and Hershkovits is an
NP-complete problem [49].

The deterministic algorithms for learning the population structure minimizing stochastic complexity
that were introduced the previous section can be considered as relatively implementation-friendly,
although they are still considerably computation intensive as the number of samples and marker loci
increase. Given that such algorithms typically only converge to local minima when the model structure
and topology of the search space are complex, it would be necessary to execute the algorithms multiple
times from different random starting configurations to gain information about the stability of the learned
optimal structures. Furthermore, since the stochastic complexities for any two model structures can be
analytically compared, the difference in the optimal data encoding efficiency can be easily compared
over multiple runs of the algorithms.

An alternative to the deterministic learning algorithms considered in this work would be to consider
a family of Monte Carlo algorithms to either approximate the SC optimal population structure or to
perform a fully Bayesian analysis where the posterior distribution over the population structures is
approximated. We have earlier considered Markov chain Monte Carlo (MCMC)-based learning of
unsupervised classification and graphical models [50–52], and in particular demonstrated that standard
reversible Metropolis-Hastings algorithms may dramatically fail when the level of complexity of the
considered models is very high. To resolve this issue, Corander et al. [50] introduced a parallel
non-reversible MCMC algorithm for Bayesian model learning where the topology of the model space in
combination with the probabilistic search operators is not allowed to influence the acceptance ratio of a
Metropolis-Hastings algorithm. This strategy was illustrated to be much more fruitful than a standard
reversible MCMC algorithm for learning a large dimensional unsupervised classification model. A
particular strength of the non-reversible algorithm is that it enables more freedom in the design of
the search operators utilized in the proposal mechanism, since the proposal probabilities need not be
calculated explicitly. On the other hand, the currently considered learning problem is so complex in
general, that any realistic implementation of a stochastic learning algorithm must be done within a true
parallel computing environment to prevent the computation times becoming prohibitive in practice. Our
future aim is to implement such algorithms and the deterministic algorithms considered in this work to
compare their relative levels of performance for solving the learning task of unsupervised classification
augmented with trees. Also, an interesting generalization of the introduced linkage modeling framework
would be to consider multi-allelic loci as well as data from diploid and tetraploid organisms.
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Appendices

A.1. Prior predictive data distributions under Chow expansion

The integral on the right hand side of (9) will by force of (10) be factorized as

P
(
X t|Π

)
= I1 · I2 · I3, (39)

where

I1 =

∫ 1

0

θn1
1 (1− θ1)t−n1 h (θ1) dθ1, (40)

I2 =
d∏
i=2

∫ 1

0

θ
ni(1,1)
i (1− θi)ni(0,1) h (θi) dθi, (41)

and

I3 =
d∏
i=2

∫ 1

0

φ
ni(1,0)
i (1− φi)ni(0,0) z (φi) dφi. (42)

There is an explicit expression for each of the factors I1, I2 and I3, if the prior densities h(·) and z(·) are
Beta densities, e.g.,

h (θ) =

{
Γ(α1+α2)

Γ(α1)·Γ(α2)
θα1−1 (1− θ)α2−1 0 ≤ θ ≤ 1

0 elsewhere,
(43)
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where αi > 0. Then, θ has a Be(α1, α2) distribution. Using the Beta integral∫ 1

0

θα1−1(1− θ)α2−1dθ =
Γ (α1) · Γ (α2)

Γ (α1 + α2)

we obtain, e.g., in each factor of I2 in (41)∫ 1

0

θ
ni(1,1)
i (1− θi)ni(0,1) h (θi) dθi =

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)
.

Thus we have

I2 =
d∏
i=2

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)
,

I3 =
d∏
i=2

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 0) + α1) · Γ (ni(0, 0) + α2)

Γ (ni(1, 0) + ni(0, 0) + α1 + α2)
,

as well as

I1 =
Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (n1 + α1) · Γ (t− n1 + α2)

Γ (t+ α1 + α2)
.

A.2. Asymptotic expansion of the stochastic complexity for a Chow expansion

Assuming α1 = α2 = 1/2 we obtain the generic term (denoted by E(2)
1/2) in I2 (see (11)) as

E
(2)
1/2 ≡

Γ (α1 + α2)

Γ (α1) · Γ (α2)

Γ (ni(1, 1) + α1) · Γ (ni(0, 1) + α2)

Γ (ni(1, 1) + ni(0, 1) + α1 + α2)

=
1

π

Γ (ni(1, 1) + 1/2) · Γ (ni(0, 1) + 1/2)

Γ (ni(1, 1) + ni(0, 1) + 1)
.

By invoking Stirling’s formula in a straightforward calculation for − logE
(2)
1/2 in − log I2 in (11), this

entails
− logE

(2)
1/2 = (ni(1, 1) + ni(0, 1))h

(
θ̂

(1)
i

)
+

1

2
log (ni(1, 1) + ni(0, 1)) + C, (44)

where C is a bounded in t and h (x) = −x log x − (1 − x) log(1 − x), 0 ≤ x ≤ 1, the binary entropy
function (in natural logarithms) of the empirical distribution(

θ̂
(1)
i , 1− θ̂(1)

i

)
=

(
ni(1, 1)

ni(1, 1) + ni(0, 1)
,

ni(0, 1)

ni(1, 1) + ni(0, 1)

)
. (45)

Here θ̂(1)
i is the maximum likelihood estimate (based on X t) of θ(1)

i = P
(
xi = 1|xΠ(i) = 1

)
.

For a generic term (denoted by − logE
(3)
1/2) in − log I3 in (11) we obtain in the same way

− logE
(3)
1/2 = (ni(1, 0) + ni(0, 0))h

(
θ̂

(0)
i

)
+

1

2
log (ni(1, 0) + ni(0, 0)) + C, (46)

where θ̂(0)
i is the maximum likelihood estimate of θ(0)

i = P
(
xi = 1|xΠ(i) = 0

)
.

Next we consider the result of inserting the terms

(ni(1, 1) + ni(0, 1))h
(
θ̂

(1)
i

)
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and
(ni(1, 0) + ni(0, 0))h

(
θ̂

(0)
i

)
in the right hand side of (11). This gives the following expression

d∑
i=2

[
(ni(1, 1) + ni(0, 1))h

(
θ̂

(1)
i

)
+ (ni(1, 0) + ni(0, 0))h

(
θ̂

(0)
i

)]
.

The generic term in the sum is

(ni(1, 1) + ni(0, 1))h
(
θ̂

(1)
i

)
+ (ni(1, 0) + ni(0, 0))h

(
θ̂

(0)
i

)
.

This expression is by definition of the binary entropy function h(x) equal to

= −ni(1, 1) log

(
ni(1, 1)

ni(1, 1) + ni(0, 1)

)
− ni(0, 1) log

(
ni(0, 1)

ni(1, 1) + ni(0, 1)

)
(47)

− ni(1, 0) log

(
ni(1, 0)

ni(1, 0) + ni(0, 0)

)
− ni(0, 0) log

(
ni(0, 0)

ni(1, 0) + ni(0, 0)

)
.

Let us introduce the auxiliary quantities

nΠ(i)(1) = ni(1, 1) + ni(0, 1), nΠ(i)(0) = ni(1, 0) + ni(0, 0), (48)

and
ni(1) = ni(1, 1) + ni(1, 0), ni(0) = ni(0, 1) + ni(0, 0). (49)

Then we have as an identity from the right hand side of (47)

−ni(1, 1) log

(
ni(1, 1)

ni(1, 1) + ni(0, 1)

)
− ni(0, 1) log

(
ni(0, 1)

ni(1, 1) + ni(0, 1)

)

−ni(1, 0) log

(
ni(1, 0)

ni(1, 0) + ni(0, 0)

)
− ni(0, 0) log

(
ni(0, 0)

ni(1, 0) + ni(0, 0)

)
=

= −ni(1, 1) log

(
ni(1, 1)/t · ni(1)/t

nΠ(i)(1)/t · ni(1)/t

)
− ni(0, 1) log

(
ni(0, 1)/t · ni(0)/t

nΠ(i)(1)/t · ni(0)/t

)
−ni(1, 0) log

(
ni(1, 0)/t · ni(1)/t

nΠ(i)(0)/t · ni(1)/t

)
− ni(0, 0) log

(
ni(0, 0)/t · ni(0)/t

nΠ(i)(0)/t · ni(0)/t

)
.

The quantities in the right hand side of the last equality can be regrouped as

−ni(1, 1) log (ni(1)/t)− ni(0, 1) log (ni(0)/t)

−ni(1, 0) log (ni(1)/t)− ni(0, 0) log (ni(0)/t)

−ni(1, 1) log

(
ni(1, 1)/t

nΠ(i)(1)/t · ni(1)/t

)
− ni(0, 1) log

(
ni(0, 1)/t

nΠ(i)(1)/t · ni(0)/t

)
−ni(1, 0) log

(
ni(1, 0)/t

nΠ(i)(0)/t · ni(1)/t

)
− ni(0, 0) log

(
ni(0, 0)/t

nΠ(i)(0)/t · ni(0)/t

)
.
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The first four terms are equal to

−ni(1, 1) log (ni(1)/t)− ni(0, 1) log (ni(0)/t)

−ni(1, 0) log (ni(1)/t)− ni(0, 0) log (ni(0)/t) =

− (ni(1, 1) + ni(1, 0)) log (ni(1)/t)− (ni(0, 1) + ni(0, 0)) log (ni(0)/t) =

−ni(1) log (ni(1)/t)− ni(0) log (ni(0)/t) = t · h (ni(1)/t) .

The remaining terms are

−ni(1, 1) log

(
ni(1, 1)/t

nΠ(i)(1)/t · ni(1)/t

)
− ni(0, 1) log

(
ni(0, 1)/t

nΠ(i)(1)/t · ni(0)/t

)

−ni(1, 0) log

(
ni(1, 0)/t

nΠ(i)(0)/t · ni(1)/t

)
− ni(0, 0) log

(
ni(0, 0)/t

nΠ(i)(0)/t · ni(0)/t

)
=

−t · Ii,Π(i),

where we have defined the mutual information [25] between Xi and XΠ(i) by

Ii,Π(i) =
1∑

u=0

1∑
v=0

P̂i,Π(i) (u, v) log
P̂i,Π(i) (u, v)

P̂i (u) · P̂Π(i) (v)
(50)

using the maximum likelihood estimates (i.e. observed relative frequencies) of the two dimensional
distributions Pi,Π(i) (u, v) as well as of the marginal distributions Pi (u) and PΠ(i) (v).
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