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Abstract:



The friction and wear phenomena appear due to contact and relative motion between two solids. The evolution of contact conditions depends on loading conditions and mechanical behaviours. The wear phenomena are essentially characterized by a matter loss. Wear and friction are in interaction due to the fact that particles are detached from the solids. A complex medium appears as an interface having a strong effect on the friction condition. The purpose of this paper is to describe such phenomena taking account of different scales of modelization in order to derive some macroscopic laws. A thermodynamical approach is proposed and models of wear are analysed in this framework where the separation between the dissipation due to friction and that due to wear is made. Applications on different cases are presented.
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1. Introduction


The wear phenomena are induced by contact and by relative motion between two solids. They depend on the loading conditions and on the materials properties; they are essentially characterized by a matter loss.



Particles are detached from the solids in contact and a complex medium takes place between the two solids forming a thin layer. The conditions of friction are then affected and therefore the conditions of wear evolve simultaneously.



The interface is a complex medium made of detached particles and eventually of a lubricant fluid. The damaged zones belonging to the solids can be also considered as a part of the interface. All these zones constitute a layer where the materials lose their own cohesion.



The evolution of this layer is complex especially in the transient phase of the interface formation. However, for particular geometries and for steady states, with a constant flux of matter, the wear states can be studied experimentally and conceptually. This framework is a first step of comprehensive study for understand the parameters governing friction and wear.



Following the terminology introduced in [1] the interface is called “third body” and must be considered as an aggregate thin layer of different particles with sometimes a lubricant fluid. This layer develops non-linear macroscopic rheology that must be characterized.



If macroscopic descriptions of such an interface are known in the literature [1,2], the connection with local mechanical quantities and discussion based on microscopic scale modelling are not currently developed, unless in some recent studies [3,4,5,6].



Some well known wear criteria, as Archard’s law [7], are useful but such models cannot be predictive when the operating conditions are not sufficiently close to the experimental test conditions of their elaboration.



Experiments on wear and friction, as observed in Stribeck’s curve, can provide relations between the friction coefficient μ and the lubricant coefficient L : [image: there is no content], [image: there is no content] where τ is the shear stress, p the pressure of contact, η the fluid viscosity and U the relative velocity.
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Figure 1. Stribeck’s curve. 






Figure 1. Stribeck’s curve.
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This curve shows three particular regimes: the first regime corresponds to a Coulomb’s friction law with constant coefficient, the second is an unstable regime with a strong decrease of the friction and the third is a linear regime corresponding to a state of mild wear.



These results suggest clearly a strong interaction between debris and the solids in relative motion. The modelization of this interaction can be explored through the evolution of specific internal state variables governing the third-body behaviour.



The simpler approach is made using of theory of mixtures, where the volume fraction of debris plays an important role.



The main purpose of this article is to propose a more general formulation using of thermodynamical considerations on wear phenomena studying the propagation of surfaces or layers inside sound bodies taking account of damage evolution and loss of sound matter. A thermodynamical approach of third body is then introduced and dissipation is analyzed.



For a macroscopic view point the behaviour of the interface is modelized by unit of surface of contact. The density of mass by surface unit is related to the volume fractions of detached particles and plays the role of an internal parameter. The driving force associated to wear is then deduced and criteria of wear are proposed.



Finally, particular situations are studied using some constitutive law of the interface. In each case the dissipation is analysed. The matter loss and the geometry change are determined according to specific criteria and associated laws. Analytical and semi-analytical solutions are presented.




2. General Features on Moving Surfaces and Moving Layers


The wear phenomena due to contact and to relative motion between two solids [image: there is no content], [image: there is no content] depend on loading conditions and on material mechanical constitutive laws of the solids in contact. Wear is essentially characterized by a matter loss. Each solid [image: there is no content] is decomposed into a undamaged part [image: there is no content] and a damaged zone [image: there is no content]. The boundary between [image: there is no content] and [image: there is no content] is [image: there is no content].



Particles are moved from the solids [image: there is no content] when some criteria are satisfied at the boundaries [image: there is no content] between [image: there is no content] and a complex medium [image: there is no content] is generated called the interface or the third body.



The third body [image: there is no content] is made of detached particles, damaged zone [image: there is no content] of the two solids as depicted in Figure 2.


Figure 2. The microscopic description of wear process.
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The first step of modelization is to characterize the motion of the surface [image: there is no content]. The third body [image: there is no content] is then [image: there is no content], where [image: there is no content] is a complex mixture of detached particles and eventually of a lubricant fluid.



Along the surface [image: there is no content] the displacement is continuous and the stress vector too. The local behaviour changes from those of the undamaged material [image: there is no content] to those of a damaged solid [image: there is no content]. The surface [image: there is no content] moves with the normal velocity [image: there is no content] in the reference state of the solid, [image: there is no content] is the outward unit normal vector to [image: there is no content] and then [image: there is no content] is positive. The value of [image: there is no content] is given by a constitutive law, this is a part of the wear description.



This transition can be brutal or diffuse. In the first situation, the transition is governed by the motion of a surface [image: there is no content] along which the material characteristics endure change by an irreversible process. Due to damage, the elastic moduli in domain [image: there is no content] are lower then those in [image: there is no content], then during this brutal transformation the elastic moduli are discontinuous along [image: there is no content]. These discontinuities contribute to the dissipation by a surface term.



In the second situation, the variation of the quantities is smooth and the quantities remain continuous. The damaged zone [image: there is no content] constitutes a thin layer where the damage and the internal variables vary continuously. The boundary [image: there is no content] between the undamaged material and the damaged zone is moving but all the mechanical quantities are continuous, the surface term in the dissipation disappears.



Each situation implies different type of dissipation and for each case a driving force associated to the wear process is proposed.



The conditions of loading are chosen such that the inertia effects are small. Extension to dynamical problems uses dynamical concept for the driving force applied for defects motion [8], interface or surface motion [9,10,11,12].



The local constitutive law The state of each body is characterized by the displacement [image: there is no content], from which the strain field ε is derived. The other parameters are the temperature θ and a set of internal parameters α. The behaviour of [image: there is no content] is defined by the free energy density ψ as a function of strain ε, the temperature θ and the set of internal parameters α. The mass density of each phase (undamaged and damaged) is the same ρ. The state equations of each phase are


[image: there is no content]=ρ∂ψ∂ε,s=−ρ∂ψ∂θ,A=−ρ∂ψ∂α



(1)







The boundary [image: there is no content], between [image: there is no content] and [image: there is no content], is a perfect interface. The external boundary ∂[image: there is no content]/[image: there is no content] is decomposed into [image: there is no content] and [image: there is no content] on which the displacement [image: there is no content]d and the loading [image: there is no content] are prescribed respectively.



The internal state of stresses satisfies the conservation of the momentum


divσ=0,overV,σ.[image: there is no content]=[image: there is no content],on∂VT,[σ][image: there is no content].[image: there is no content]=0,along[image: there is no content]



(2)







This state σ is decomposed in the reversible part [image: there is no content] and an irreversible part [image: there is no content]. The irreversible stresses [image: there is no content] are essentially due to viscosity. In non linear mechanics, the internal state is generally associated with irreversibility. The evolution of internal state must satisfy the second law of thermodynamics. Such requirement is fulfilled by the existence of a potential of dissipation.



Analysis of the dissipation and potential of dissipation The fundamental inequality of thermodynamics implies that the internal production of entropy must be non negative. The equations of state do not provide all the constitutive equations; some complementary laws are necessary to describe the irreversibility. In the total dissipation [image: there is no content] the contribution of the conduction and those of internal forces must be distinguished.


[image: there is no content]=σ:ε˙−ρ(ψ˙+sθ˙)−q.∇θθ2=[image: there is no content]+Dc≥0



(3)




The two parts are assumed to be separately non-negative. The mechanical part has the form:


[image: there is no content]



(4)




and using of equations of state, the thermodynamical forces associated to irreversibility are obtained


[image: there is no content]=(σ−[image: there is no content]):ε˙+A.α˙≥0



(5)




and we recognize the role of the irreversible stresses [image: there is no content].



To determine the evolution of the internal state, relation between velocity and driving forces must be given. These relations must be compatible with the positivity of the internal production of entropy [image: there is no content].



Let us assume that the local behaviour belongs to the class of the so-called “generalized standard” materials [13]. For this class, a potential of dissipation [image: there is no content] defines the local irreversibility. The potential d is a convex function of these arguments with a minimum value at the origin. The evolution of the internal state is given by the normality rule:


([image: there is no content],A)∈∂d(ε˙,α˙)



(6)




this means that the subdifferential [image: there is no content] of d is the set of state ([image: there is no content],A) such that:


d(ε˙,a˙)+[image: there is no content]:(ε*−ε˙)+A.(α*−α˙)≤d[image: there is no content]



(7)




for all admissible fields [image: there is no content]. The existence of such a potential for the dissipation ensures the positivity of the entropy production:


[image: there is no content]:ε˙+A.a˙≥d(ε˙,α˙)−d(0,0)≥0



(8)







2.1. The conservation laws


Classical laws of conservation are written, taking discontinuities into account:



Mass conservation


on[image: there is no content],mi=ρc.[image: there is no content]=ρ[image: there is no content]



(9)






over[image: there is no content],ρ˙+ρdiv(v̲)=0



(10)







Momentum conservation


on[image: there is no content],[σ][image: there is no content].[image: there is no content]=0



(11)






over[image: there is no content],div(σ)=0



(12)







Energy balance


on[image: there is no content],mi[ψ+sθ]Γ−[image: there is no content].σ.[v̲][image: there is no content]+[image: there is no content].[[image: there is no content]][image: there is no content]=0



(13)






over[image: there is no content],e˙=σ:ε˙−div[image: there is no content]



(14)




where e is the internal energy [image: there is no content], s is the entropy, [image: there is no content] the heat flux



Continuity of displacement


along[image: there is no content],[[image: there is no content]][image: there is no content]=0⇒[v̲][image: there is no content]+[image: there is no content][∇[image: there is no content]][image: there is no content].[image: there is no content]=0



(15)







Continuity of temperature


along[image: there is no content],[θ][image: there is no content]=0



(16)








2.2. On moving interface


To study this problem, the analysis is made on one body [image: there is no content]. The solid is decomposed into [image: there is no content] and [image: there is no content]. Along the boundary [image: there is no content], [image: there is no content] is the outward unit normal vector to [image: there is no content], c is the normal velocity and [image: there is no content] is the magnitude of c.



When the surface [image: there is no content] is moving, a mechanical quantity f can suffer a discontinuity [f]Γ=fi−fi3. The volume [image: there is no content] is decomposed in two domains, separated by a moving boundary [image: there is no content]. The volume average of f has a rate defined by


ddt∫[image: there is no content]fdΩ=∫[image: there is no content]f˙dΩ−∫[image: there is no content][f]Γc.[image: there is no content]dS



(17)







Entropy production Using the definition of the entropy of the system S=∫[image: there is no content]ρsdΩ the second law of thermodynamic is written as


S˙−∫∂V[image: there is no content].[image: there is no content]θdS≥0



(18)




and after integration by part, the value of the volume dissipation [image: there is no content] is recovered and a surface contribution appears


∫[image: there is no content]ρ[s][image: there is no content][image: there is no content]−[[image: there is no content]θ]Γ.[image: there is no content]dS≥0



(19)




Taking the balance equation of energy and the continuity of temperature into account, the dissipation by unit of surface is obtained


DS=1θ(mi[ψ][image: there is no content]−[image: there is no content].σ.[v̲][image: there is no content])=[image: there is no content]θ[image: there is no content]



(20)




This dissipation is a linear function of the normal velocity [image: there is no content] of [image: there is no content]. The quantity [image: there is no content] is the driving force associated to the movement of [image: there is no content]. The displacement is continuous along [image: there is no content] then the discontinuity [∇[image: there is no content]][image: there is no content] satisfies the Hadamard’s relation


[∇[image: there is no content]][image: there is no content]=λ̲⊗[image: there is no content]



(21)




and the release rate of energy [image: there is no content] becomes


[image: there is no content]=ρ[ψ][image: there is no content]−σ:[ε][image: there is no content]



(22)







The condition [image: there is no content], which explains that there is no loss of matter, induces that [image: there is no content]=0 then there is no discontinuity [v̲][image: there is no content]=0, so there is no dissipation along the surface [image: there is no content], because this surface does not move.



Interface propagation law To control the matter loss, a criterion based on [image: there is no content] can be formulated. For example, we can considered a Griffith’s type law for the propagation of the moving interface


[image: there is no content]−Gc≤0,[image: there is no content]≥0,([image: there is no content]−Gc)[image: there is no content]=0



(23)




When the interface moves hence [image: there is no content]=Gc, this quantity must be conserved during the motion.



Convected differentiation To study the evolution of the mechanical state around the moving surface [image: there is no content] a convected derivative of any mechanical quantity f is needed. A point [image: there is no content] is on [image: there is no content] if its coordinates satisfy the scalar equation:


S([image: there is no content],t)=0



(24)




It is well known that the gradient ∇S([image: there is no content],t)=||∇S||[image: there is no content] is normal to the surface. At time [image: there is no content] the point [image: there is no content] comes in [image: there is no content]+[image: there is no content][image: there is no content]([image: there is no content],t)dt and


S(X+[image: there is no content][image: there is no content]dt,t+dt)=0→∂S∂X.[image: there is no content][image: there is no content]+∂S∂t=0



(25)







For any function f([image: there is no content],t),[image: there is no content]∈[image: there is no content], the convected derivative of f in the movement of [image: there is no content] is


DΓf([image: there is no content],t):=limdt→0f([image: there is no content]+[image: there is no content][image: there is no content]dt,t+dt)−f([image: there is no content],t)dt



(26)







In particular, the evolution of the middle surface satisfies


DΓS([image: there is no content],t)=0



(27)




and the convected derivatives of [image: there is no content] and [image: there is no content] are


DΓ[image: there is no content]=[image: there is no content][image: there is no content],DΓ[image: there is no content]=[image: there is no content].∇([image: there is no content][image: there is no content])



(28)







The convected derivative is useful for write the Hadamard’s equation of compatibility: for any continuous function f along [image: there is no content]


[f][image: there is no content]=0⇒DΓ[f][image: there is no content]=[DΓf][image: there is no content]=0



(29)




For the displacement, we have


[[image: there is no content]][image: there is no content]=[image: there is no content](X̲Γ+,t)−[image: there is no content](X̲Γ−,t)=0



(30)




The convected derivative of [image: there is no content](X̲Γ+,t)=[image: there is no content]+ and of [image: there is no content](X̲Γ−,t)=[image: there is no content]− are given by


DΓ[image: there is no content]±=∂[image: there is no content]∂t(X̲Γ±,t)+[image: there is no content]∇[image: there is no content](X̲Γ±,t).[image: there is no content]



(31)




the classical relation on discontinuity is recovered as


[v̲][image: there is no content]+[image: there is no content][∇[image: there is no content]][image: there is no content].[image: there is no content]=[DΓ[image: there is no content]][image: there is no content]=0



(32)







Consistency condition The law of propagation shows that the condition [image: there is no content]≠0 implies [image: there is no content]=Gc, that relation is conserved during the propagation. The consistency condition associated with the Griffith’s propagation law is then written at point s∈[image: there is no content] where [image: there is no content]=Gc in the form


[image: there is no content](s)≥0,∀ϕ*(s)≥0,([image: there is no content](s)−ϕ*(s))DΓ([image: there is no content])≥0



(33)




this ensures that [image: there is no content]≥0 if DΓ([image: there is no content])=0. This condition determines the velocity [image: there is no content]([image: there is no content],t) ; the surface equation is then implicitly defined by the condition [image: there is no content]([image: there is no content],t)=Gc.



This description is based on the fact that the transition between the initial solid and the damaged material is brutal, that transition induces discontinuities.




2.3. On moving layer


The situation of diffuse damage is now considered. For example, a damage constitutive law governed by a continuous scalar function d is assumed and a free energy is taken as


ψ(ε,d)=(1−d)ψo(ε)=(1−d)12ε:Co:ε,σ=(1−d)Co:ε



(34)




the damage parameter varies from 0 (no damage) to 1 (totally damaged). Over [image: there is no content], [image: there is no content] and d varies continuously from 0 to 1 over [image: there is no content].



In this description along the surface [image: there is no content], between sound material and damaged zone, [image: there is no content]. The stress vector ([σ][image: there is no content].[image: there is no content]=0), the displacement and the elastic moduli are continuous quantities. These properties induce that ∇[image: there is no content] is continuous and so the energy release rates [image: there is no content] is zero along the surface [image: there is no content]. The previous results on dissipation must be revisited. The loss of matter is governed by the motion of the surface [image: there is no content].



The volume [image: there is no content] is decomposed as previously, but now the displacement and the internal parameters are continuous along the surface [image: there is no content]. Inside the domain [image: there is no content], the evolution of a mechanical quantity [image: there is no content] function of the strain ε and of the set of internal parameters α must be characterized. The volume average of f is decomposed as


F=∫[image: there is no content]f(ε,α)dΩ+∫[image: there is no content]f(ε,α)dΩ



(35)




and has a time-derivative expressed in term of a classical time derivative in [image: there is no content] and a convected derivative on [image: there is no content]. Convective derivative is useful to describe hypothesis of self-similarity process in the damaged zone during the wear.



The domain [image: there is no content] evolves simultaneously with two surfaces: one is [image: there is no content] associated with the boundary [image: there is no content] and the other is [image: there is no content] along which [image: there is no content].



A point [image: there is no content] in [image: there is no content] is locally defined by it’s normal projection [image: there is no content] on the surface [image: there is no content] and the normal coordinate z along the unit normal vector [image: there is no content]. The thickness of the layer is [image: there is no content] and [image: there is no content].


[image: there is no content]=[image: there is no content]−z[image: there is no content]



(36)




When the surface [image: there is no content] moves with the normal velocity [image: there is no content], the local frame [image: there is no content],[image: there is no content] moves simultaneously. For example a 2D motion of a curve satisfies the geometric relations


d[image: there is no content]dS=[image: there is no content],DΓ[image: there is no content]=−d[image: there is no content]dS[image: there is no content],DΓ[image: there is no content]=d[image: there is no content]dS[image: there is no content],d[image: there is no content]dS=d2[image: there is no content]dS2+γi2[image: there is no content]



(37)




where [image: there is no content] is the curvature of the surface [image: there is no content] at point S, [image: there is no content] the normal unit vector et [image: there is no content] the tangent unit vector to the curve. It can be noticed that


d[image: there is no content]dS=[image: there is no content]−zd[image: there is no content]dS=(1−[image: there is no content]z)[image: there is no content]



(38)




the elementary length is function of the curvature


ds=j([image: there is no content])dS



(39)




in the reference coordinates ([image: there is no content],z). Similar relations exist for a surface motion.



The point [image: there is no content] has a convected derivative


DΓ[image: there is no content](z)=[image: there is no content][image: there is no content]−zDΓ[image: there is no content]



(40)




During the motion, the thickness evolves and the velocity of the point M=[image: there is no content](H) is


DΓM=DΓ[image: there is no content](H)−H˙[image: there is no content]



(41)




The evolution of each term of F can now be given.


ddt(∫[image: there is no content]fdΩ)=∫[image: there is no content]dfdtdΩ−∫[image: there is no content]fDΓ[image: there is no content](o).[image: there is no content]dS



(42)






ddt(∫[image: there is no content]fdΩ)=∫[image: there is no content]dfdtdΩ−∫[image: there is no content]fDΓM.ν̲HdS+∫[image: there is no content]fDΓx(o).[image: there is no content]dS



(43)






F˙=∫[image: there is no content]dfdtdΩ+∫[image: there is no content][f]ΓDΓx(o).[image: there is no content]dS+∫[image: there is no content]dfdtdΩ+∫[image: there is no content]fDΓM.ν̲HdS



(44)







In these expressions, DΓ[image: there is no content](o)=[image: there is no content][image: there is no content],DΓM=ϕHν̲H=[image: there is no content][image: there is no content]−DΓ(H[image: there is no content]).



The function f is continuous along Γ, then there is no contribution of discontinuities on the time derivative of F, then


F˙=∫[image: there is no content]dfdtdΩ+∫[image: there is no content]dfdtdΩ+∫[image: there is no content]fDΓM.ν̲HdS



(45)







The only surface contribution is due to the flux of matter along the surface [image: there is no content]. Along [image: there is no content], the loss matter occurs simultaneously with the full damage [image: there is no content].



Over [image: there is no content], the convected derivative of f is used


DΓf=dfdt+∇f.DΓ[image: there is no content]



(46)




and we have


∫[image: there is no content]DΓf+ftr(∇DΓ[image: there is no content])dΩ=∫[image: there is no content]dfdtdΩ+∫∂[image: there is no content]fDΓ[image: there is no content].ν̲([image: there is no content])dS



(47)




then the rate of F is finally


F˙=∫[image: there is no content]dfdtdΩ+∫[image: there is no content]DΓf+ftr(∇DΓ[image: there is no content])dΩ−∫[image: there is no content]fH˙[image: there is no content].ν̲HdS



(48)







The global dissipation is expressed using these expressions.



Analysis of dissipation The dissipation has the classical expression


[image: there is no content]=∫∂V[image: there is no content].σ.v̲dS−ddt∫Vψ(ε,α)dΩ



(49)




as previously we have


[image: there is no content]=∫[image: there is no content]A.α˙+σir:ε˙dΩ+∫[image: there is no content]ψDΓM.ν̲HdS



(50)




The dissipation contains to terms, one in the volume and the last one defined on the surface. In the transient phase this terms is zero, because the material in [image: there is no content] is only partially damaged [image: there is no content], then [image: there is no content]. When rupture occurs, this term contributes to the dissipation, the value of energy at point [image: there is no content] is lost.



Some others expressions for dissipation can be formulated.



Others expressions of dissipation Introducing the local Eshelby momentum tensor P


P=ψ1−σ.∇[image: there is no content]



(51)




This tensor satisfies the relations


divPT=−A:∇α−σir:∇ε,in[image: there is no content],ν̲.[P][image: there is no content]=0,along[image: there is no content]



(52)




And using the convected frame with [image: there is no content] with the velocity DΓ[image: there is no content], the dissipation is rewritten as


[image: there is no content]=∫[image: there is no content](A.DΓα+σir:DΓε)dΩ−∫[image: there is no content]P:(∇DΓx)(z)dΩ+∫∂[image: there is no content]ν̲.P.DΓx(z)dS+∫[image: there is no content]ψH˙[image: there is no content].ν̲HdS



(53)







This expression has a great interest when local conditions of the stationarity of the steady state is realized. If the damage d is a function of the distance z to the curve [image: there is no content] the local stationarity is expressed as


DΓd=d˙+[image: there is no content]∇d.[image: there is no content]=0



(54)




and for local stationarity, [image: there is no content].



Comments on local stationarity If Y is the driving force associated to d, then the contribution of damage to dissipation is


Dd=∫[image: there is no content]Yd˙dΩ=−∫[image: there is no content]Y∇d.[image: there is no content]j([image: there is no content])dz[image: there is no content](S)dS



(55)






=−∫[image: there is no content]∫H(S)Y([image: there is no content])∇d.[image: there is no content]j([image: there is no content])dz[image: there is no content](S)dS



(56)







Therefore, if the distribution of [image: there is no content] is known inside the layer, the average value [image: there is no content]¯ is the driving force associated to the velocity [image: there is no content],


G¯i=−∫H(S)Y([image: there is no content])∇d.[image: there is no content]j([image: there is no content])dz



(57)







The quantity j([image: there is no content]) takes the shape of the layer into account and it defines the measure of area at [image: there is no content] with respect to the measure of area at [image: there is no content] so that


dΩ([image: there is no content])=dsdz=j([image: there is no content])dSdz



(58)







Assuming now that the profile [image: there is no content] is a given function, the propagation law is generalized as


(G¯i−Gc)[image: there is no content]=0,[image: there is no content]≥0,G¯i−Gc≤0



(59)







Combining the hypothesis of stationarity and an imposed profile for d, the thickness H is given, the [image: there is no content] interface is moving with the normal velocity [image: there is no content] of [image: there is no content], when −∫H∇d.[image: there is no content]j([image: there is no content])dz=1.



In this case, the iso-d curves are orthogonal to the normal [image: there is no content] and each iso-d curve has the same velocity [image: there is no content].





3. The Macroscopic Interface Study


From a macroscopic point of view, it is not necessary to model the microscopic behaviour which occurs in [image: there is no content]. Micromechanical considerations can be useful in order to describe in a realistic manner the behaviour of the interface. This type of analysis can provide a relevant interface law at the mesoscopic level and at macroscopic scale too. The multi scale approach of the interface is based on fundamental characteristics at three different scales:

	
At the microscopic scale, the contact between asperities govern the wear mechanisms. Some studies with plastic strains and with micro cracks propagation have been tempted [5,14]. These are the fundamental ideas of the decomposition of [image: there is no content] in Ω13∪[image: there is no content]∪Ω23.



	
At the mesoscopic scale, this is the description of the third body. This model was proposed in [1] developed by [15] and [16]. The local physics is that [image: there is no content] is a porous medium. In [image: there is no content] the solid particles are in suspension forming a shear layer as inside a viscous fluid flow. This point is developed in [3]. In other situations, a very large plastic shear deformation is present, so the profile of local deformation in this thin layer depends strongly on the loading conditions.



	
The macroscopic modelling is based on models of friction law which are depending on parameters to account of the evolution of the interface. These models can be inferred from the smaller scale by some averaging technics as those proposed under local stationarity hypothesis.








Some other studies are founded on cyclic loading taking account of cyclic asymptotic behaviour of elastoplastic materials generalised to the theory of damage in mechanics [17].



The system of two bodies in relative motion separated by the third body [image: there is no content] is considered. As previously in each domain the local behaviour is described by a free energy ψ and a potential d of dissipation. The dissipation is considered only for domain [image: there is no content]. So the behaviour in [image: there is no content] and [image: there is no content] is reversible. Therefore dissipation is concentrate into the interface.



The proposed description is depicted in Figure 3.


Figure 3. The transition from microscopic to mesoscopic description of wear process.
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Sharp transition At the mesoscopic level, the dissipation is given by


D=∫S∫H[image: there is no content]dz+∑i1θi[image: there is no content]([ρψ][image: there is no content]−σ:[ε][image: there is no content])jidS



(60)




where [f][image: there is no content]=fi−f3, and [image: there is no content] is the volume dissipation due to the irreversibility processes inside [image: there is no content]:


[image: there is no content]=−[image: there is no content].∇θθ2+1θ(σ:∇v̲−ρ(ψ˙+sθ˙))



(61)




Comments If matter loss occurs, [image: there is no content] or [image: there is no content] is positive, then the corresponding discontinuity [v̲][image: there is no content] exists too and the local quantity [image: there is no content]=mi([ψ][image: there is no content]−σ:[ε][image: there is no content]) is positive. There is a dissipation due to the loss of material: that is a characterization of wear.



The volume dissipation [image: there is no content] contains two contributions, one is due to heat conduction, the other is associated to mechanical irreversibility. This contribution can be associated with the viscosity of the fluid which carry the detached particle. When the shear reaches a critical value [image: there is no content] the velocity field inside the interface is reduced to a gliding motion v̲=U/Hze̲x and the dissipation in the mesoscopic scale is evaluated as


D=−∫Ω[image: there is no content].∇θθ2dΩ+∫S([image: there is no content]Uθ+∑i[image: there is no content]ϕθi)dS



(62)




The second term is due to the viscoplasticity governed by the yield stress [image: there is no content], it plays the role of friction [18,19].



The control of the wear dissipation obeys to the normality rule


[image: there is no content]−Gci≤0,[image: there is no content]≥0,([image: there is no content]−Gci)[image: there is no content]=0



(63)







This simple description is based on the brutal transition on the mechanical characteristic from initial material to a damaged one. The interface [image: there is no content] moves according to this normality rule.



Diffuse damage Consider now that [image: there is no content] is a zone of diffuse damage. The description of damage can be made with a smooth transition governed by a damage parameter d in [image: there is no content], a set of internal parameters α, which contains the plastic strain [image: there is no content]. For example a free energy of the form


ψi(ε,α,d)=12(ε−α):Ci(d):(ε−α)+ψb(d,α)



(64)




is considered. In this case, the damage parameter governs continuously the change of moduli of elasticity and it describes the degradation of the stiffness.



As previously, the state equations are given by


σr=Ci(d):(ε−α),A=σr−∂W∂α,Y=−∂ψi∂d



(65)




and a potential of dissipation [image: there is no content] is given so that


σir=∂di∂ε˙,A=∂di∂α˙,Y=∂di∂d˙



(66)







The thickness of the interface [image: there is no content]=Ω13∪[image: there is no content]∪Ω23 is [image: there is no content]. At this stage all possible choice for the local constitutive behaviour can be used. And literature provide many papers on this subject with computational results. But the main difficulty is to determine the physical characteristics of the behaviour at this scale.



A macro level approach based on this local description can be tempted to understand the specific structure of the thin layer and to estimate some necessary parameters to a relevant description of the mechanisms inside the interface.




4. A Macrolevel Approach


The preceding sections emphasise the fact that in a more general global approach, we can tempt to characterize the thin layer behaviour by considering it is in a state of equilibrium under given conditions applied to [image: there is no content]. Then the behaviour of the thin layer can be considered as affected to a surface Γ, by considering that the thickness is an infinitesimal quantity compared to a characteristic length of the bodies in interaction. Time derivatives of integral of varying surface or volume domains are studied in [20]. Some such results are used here to express the dissipation.



The interface [image: there is no content] is a thin layer composed by Ω13∪[image: there is no content]∪Ω23. The geometry of the layer is described by its middle surface Γ and the thickness [image: there is no content] at each point of this surface.



The free energy [image: there is no content] per unit of area of the middle surface Γ of the layer is defined by


[image: there is no content]=1[image: there is no content]∫Hρ([image: there is no content])ψ3(ε([image: there is no content]),α([image: there is no content]))j([image: there is no content])dz



(67)




[image: there is no content]=[image: there is no content]+zν̲, [image: there is no content] is the position of the middle surface, z is the normal coordinate [image: there is no content], the middle surface has a curvature κ, and j([image: there is no content]) is the variation of area surface due to curvature with respect to the middle surface coordinates. The local volume is then dΩ=j([image: there is no content])dzdS.



The mass [image: there is no content] by unit of area is defined by


[image: there is no content]=∫Hρ([image: there is no content])j([image: there is no content])dz



(68)




The mass of the overall system is not conserved. The mass loss ρi[image: there is no content] from [image: there is no content] is added to [image: there is no content] hence we obtain


ddt∫[image: there is no content]ρdΩ=ddt∫Γ[image: there is no content]dS=∫Γ[|ρϕj|]dS



(69)




with [image: there is no content]. But in the same time, a flux of matter is present in the tangent plane of Γ with the velocity [image: there is no content] Then the rate of the surface density is given by


ddt∫Γ[image: there is no content]dS=∫Γ(DΓ[image: there is no content]−ϕ[image: there is no content]γ)dS−∫∂Γ[image: there is no content][image: there is no content].[image: there is no content]dl=∫Γ[|ρϕj|]dS



(70)







This contributes locally to the matter flux. Assuming that the conservation is locally true, we have


DΓ[image: there is no content]−ϕ[image: there is no content]γ−divs([image: there is no content][image: there is no content])=[|ρϕj|]



(71)







The local problem The layer is in equilibrium with external loading and contact conditions. The displacement is continuous on [image: there is no content] , the surface energy [image: there is no content] depends upon the given displacements along [image: there is no content]. The other parameters are a set of internal parameters α([image: there is no content],z), the thickness H([image: there is no content]) and the temperature. The local strain ε derives from the displacement [image: there is no content]3. The displacement is continuous along the interfaces [image: there is no content] then


[image: there is no content]1([image: there is no content]1,t)=[image: there is no content]3([image: there is no content]+hν̲,t),[image: there is no content]2([image: there is no content]2,t)=[image: there is no content]3([image: there is no content]−hν̲,t),h=H/2



(72)




Then, it is obvious that the surface free energy is a function of [image: there is no content]i([image: there is no content]i,t) and of the thickness H.



Time derivatives of integral of varying surface or volume domains are studied in [20]. Some such results are used here to express the dissipation.



The strain is rate is [image: there is no content], where v̲=[image: there is no content]˙. The dissipative function [image: there is no content] associated to the local potential [image: there is no content]=d(ε˙,α˙) is defined by the average


[image: there is no content][image: there is no content](v̲1,v̲2,α˙)=∫Hρ([image: there is no content])d(ε˙([image: there is no content]),α˙)j([image: there is no content])dz



(73)







We consider that the behaviour inside [image: there is no content] is reversible. The steady state equations over [image: there is no content] are then


σ=ρi∂ψi∂ε,divσ=0,ε=12(∇[image: there is no content]+∇T[image: there is no content])











For the interface, we have


[image: there is no content]=[image: there is no content]∂[image: there is no content]∂[image: there is no content]i,A=−[image: there is no content]∂[image: there is no content]∂α,Gs=−[image: there is no content]∂[image: there is no content]∂H



(74)




where [image: there is no content] is the reversible tension along the interface. The balance momentum equations using of the local behaviour is given by


[image: there is no content].σji=[image: there is no content]+T̲iir=[image: there is no content](∂[image: there is no content]∂[image: there is no content]i+∂[image: there is no content]∂v̲i)



(75)




and the complementary laws are


A=−[image: there is no content]∂[image: there is no content]∂α˙,T̲iir=[image: there is no content]∂[image: there is no content]∂v̲i



(76)
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Figure 4. The transition from mesoscopic description to macroscopic description of wear process. 
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The normal [image: there is no content] along the interface [image: there is no content] is not the normal to the middle surface because h depends on [image: there is no content].



The macroscopic description as depicted on 4 ignores the details at the microscopic level.



The local thickness H([image: there is no content])=2h is obviously the relevant parameter geometrically associated with the interface, while the internal parameters govern the physical properties of the layer. For example, the set of volume fraction of debris from materials 1 and 2 are such parameters.



Analysis of dissipation The global dissipation is derived from the macroscopic description. It is useful to introduce the global free energy [image: there is no content] of the tribologic system


[image: there is no content]=∫[image: there is no content]ρiψi(ε([image: there is no content]),α)dΩ+∫Γ[image: there is no content][image: there is no content]([image: there is no content]1,[image: there is no content]2,h,α)dS



(77)




The rate of the free energy is then


d[image: there is no content]dt=ddt(∫[image: there is no content]ρiψidΩ)+ddt(∫Γ[image: there is no content][image: there is no content]dS)



(78)




which becomes after rearrangements


d[image: there is no content]dt=∫[image: there is no content]σi:ε(v̲i)dΩ−∫[image: there is no content]ρiψi[image: there is no content]jidS+∫Γ(DΓ([image: there is no content][image: there is no content])−[image: there is no content][image: there is no content]ϕγ)dS+∫∂Γ[image: there is no content][image: there is no content][image: there is no content].[image: there is no content]dl








where γ is the mean curvature of the middle surface and ϕ the normal velocity of the mean surface.



Taking account of equilibrium and conservation of mass, we have


d[image: there is no content]dt=∫[image: there is no content]/[image: there is no content][image: there is no content].σ.v̲dS−∫Γ[image: there is no content].σ.v̲ijidS−∫Γ[|ρiψi[image: there is no content]ji|]dS+∫Γ[image: there is no content](DΓ[image: there is no content]+[image: there is no content].∇[image: there is no content])+[image: there is no content]([|[image: there is no content]ρiji|])dS











The displacement is continuous along the interfaces [image: there is no content] then


DΓ[image: there is no content]i=v̲i+∇[image: there is no content]i.(DΓxi)



(79)




where


DΓx1=DΓ[image: there is no content](h)+h˙ν̲,DΓx2=DΓ[image: there is no content](−h)−h˙ν̲



(80)







The total dissipation [image: there is no content] is


[image: there is no content]=dPdt−∫[image: there is no content]/[image: there is no content][image: there is no content].σ.v̲dS



(81)




hence


[image: there is no content]=∫Γ[|[image: there is no content][image: there is no content]ji|]dS−∫Γ[|[image: there is no content].σi.∇[image: there is no content]iji|].ν̲h˙−[image: there is no content][image: there is no content].∇[image: there is no content]dS+∫Γ[image: there is no content]∂[image: there is no content]∂αDΓ(α)+∂[image: there is no content]∂v̲.DΓ([image: there is no content]i)−∂[image: there is no content]∂hh˙dS



(82)




where [image: there is no content]=ρiψi−ρi[image: there is no content]−[image: there is no content].σi.∇[image: there is no content]i. A term due to the variation of the thickness appears


Gt=−[image: there is no content]∂[image: there is no content]∂H−ji[image: there is no content].σi.∇[image: there is no content]i.ν̲



(83)







But [image: there is no content],H are dependent. The velocities of propagation are linked


ϕ1ν̲1=(ϕ+h˙)ν̲+hDΓν̲,ϕ2ν̲2=(ϕ−h˙)ν̲−hDΓν̲



(84)




then


ϕ=(ϕ1ν̲1+ϕ2ν̲2).ν̲/2,2h˙=(ϕ1ν̲1−ϕ2ν̲2).ν̲



(85)







And the dissipation is equivalent to


[image: there is no content]=∫ΓGiT[image: there is no content]+Gα∇αϕdS+∫Γ[image: there is no content][image: there is no content].∇[image: there is no content]dS+∫ΓA:DΓ(α)+T̲iir.DΓ([image: there is no content]i)dS



(86)




the second term is due to [image: there is no content] and it is very small because H is small, and


G1T=G1j1+Gtν̲.ν̲1;G2T=G2j2−Gtν̲.ν̲2



(87)







Expansion of displacement with respect to z This macroscopic point of view suggests to develop the internal state over [image: there is no content] as an asymptotic expansion of the coordinate z


[image: there is no content]([image: there is no content],z)=[image: there is no content]o([image: there is no content])+[image: there is no content]1([image: there is no content])z+[image: there is no content]2([image: there is no content])z2+...α([image: there is no content],z)=αo([image: there is no content])+α1([image: there is no content])z+...











The relative displacement [image: there is no content]=[image: there is no content]1−[image: there is no content]2 is then a function of the gradient of [image: there is no content] on the middle surface


[image: there is no content]([image: there is no content])=[image: there is no content]1−[image: there is no content]2=2h∇[image: there is no content]([image: there is no content],0).ν̲



(88)




at the first order in z.



The free energy is expanded with to z and the expression is given by


[image: there is no content]([image: there is no content]1,[image: there is no content]2,α)=1[image: there is no content]∫Hρ([image: there is no content],s)ψ3(ε([image: there is no content]+zν̲),α)dz



(89)




where [image: there is no content] at first order. In the same way, the potential of dissipation is


dS(v̲1,v̲2,α˙)=1[image: there is no content]∫Hρ(x,s)[image: there is no content](ε˙,α˙)dz



(90)







Under this approximation


[image: there is no content]o([image: there is no content])=12([image: there is no content]1+[image: there is no content]2),[image: there is no content]1=12h([image: there is no content]1−[image: there is no content]2)



(91)




so the energy depends on the value of [image: there is no content] and on the gradient of the displacement along Γ.



Many studies concerning interface behaviour are based on such approximation [21,22,23].



In this case, the global state of equilibrium is revisited to take into account of the dependance of the energy with gradient of displacement [image: there is no content][image: there is no content]=f([image: there is no content]i,∇[image: there is no content]i). The variations of ∫Γ[image: there is no content][image: there is no content]dS with respect to [image: there is no content]i are then


δ∫Γ∂f∂[image: there is no content]i.δ[image: there is no content]i+∂f∂∇[image: there is no content]i:∇δ[image: there is no content]idS



(92)




by integration by parts we obtain


δ∫Γ[image: there is no content][image: there is no content]dS=∫Γ(∂f∂[image: there is no content]i−∇∂f∂∇[image: there is no content]i).δ[image: there is no content]idS+∫∂Γ[image: there is no content].∂f∂∇[image: there is no content]i.δ[image: there is no content]idl



(93)




Hence the equilibrium of the interface is now given by


[image: there is no content].σiji=[image: there is no content]∂ψ∂[image: there is no content]i−∇[image: there is no content]∂ψ∂∇[image: there is no content]i



(94)




if there is no viscosity, if not the right part contains new terms


Tiir=[image: there is no content]∂D∂v̲i−∇([image: there is no content]∂D∂∇v̲i)



(95)







This approximation shows that the conditions of continuity of the displacement given by the asymptotic expansion and the displacement of the undamaged bodies implies that the imposed shear U/He̲x is related to the discontinuity [image: there is no content] of the two bodies in contact. These expressions show that global approach based on relative displacement or relative rate of displacement can be justified by micromechanical considerations, but they emphasise the role plays by the mass density by unit of area. This quantity is an important internal parameter which is governed by the mass conservation and the wear criterion.



An important task is to develop models of the layer based on micromechanical hypotheses. Using homogenization theory for thin layer under global shear loading, taking account of the mass flux, must be investigated. This process will provide different models of interface behaviour depending on the dissipative mechanisms evolving inside the third body. These models must be derived taking account of conditions of sliding contact, in particular in the presence of viscous fluid, the flow between the bodies must be characterized. This shows the emergence of specific time scales according to each models of interface depending on loading conditions. The mechanisms of degradation can also be modified during the loading history. This approach should be useful for determination of the domains described by the Stribeck’s curve or also to study the transition from a regular state of low rate of wear to a state of abrasive wear.




5. Examples and Applications


A linear elastic half-plane in plane strain is considered. The purpose of the study is to analyse the contact wear under a rigid punch. The studies are made in two cases of loading:

	
the sliding wear under steady relative motion [3],



	
the sliding wear under cyclic loading [17].








In order to obtain displacements, stresses and strains at the surface of the half-space, which is covered in the contact area by the interface model, it is useful to consider integral equations.



The displacement ([image: there is no content]) of the upper boundary of an linear elastic half-space with elasticity characteristics Young modulus E, Poisson’s ratio ν, satisfies the integral equations [24], for which the contact area is ([image: there is no content]):


[image: there is no content]



(96)






[image: there is no content]



(97)




where the constants [image: there is no content] are


c1=E2(1−ν2),c2=1−2ν)2(1−ν)



(98)




and the principal value [image: there is no content] is defined as


[image: there is no content]



(99)







5.1. Sliding contact in steady relative motion


The rigid punch has a vertical displacement [image: there is no content] and we assume that wear occurs only in the half space. Ahead the punch there is no debris, then the volume fraction of debris [image: there is no content]. The thickness of the interface is [image: there is no content], which corresponds to the sum of rugosities of the solids and contains the thickness of the incompressible fluid. Due to wear, the thickness evolves. The mass conservation and the fluid incompressibility give the relations between the wear rate [image: there is no content], the fraction of debris [image: there is no content] and the thickness of the thin layer [image: there is no content].



All the equations of conservation are written in the moving frame with the punch at the velocity [image: there is no content][image: there is no content]=fρo+(1−f)ρf and


[image: there is no content]



(100)




by integration over the thickness H we have


∂[image: there is no content]∂t+∫Hddx(ρ3vx)dz+ρoϕ=0



(101)




and because the layer is submitted to a local shear [image: there is no content] we obtain


[image: there is no content]



(102)




The mass of fluid is also conserved then


[image: there is no content]



(103)







The constitutive law The free energy of the mixture is given by


[image: there is no content](w,f)=k(f)12(wn)2+kt(wt−αt)2



(104)




A potential of dissipation is given to determine the irreversible contribution, essentially due to viscosity


[image: there is no content]



(105)






[image: there is no content].σ=k(f)wn[image: there is no content]+kt(f)(wt−αt)τ̲+ηnw˙n[image: there is no content]+ηtw˙tτ̲,A=kt(wt−αt)=ηa(f)α˙t



(106)







This constitutive law generalizes the law use in [3] in which [image: there is no content]. For ([image: there is no content]) we have an interfacial behaviour given by


σyy=k(f)wn,σxy=ηt(f)w˙t



(107)




[image: there is no content] and [image: there is no content] are chosen from typical homogenized value of the phases.


1[image: there is no content]=fKs+(1−f)Kf,ηt=ηo(1+2.5f)



(108)




that the homogenized Reuss’s model for the stiffness, and the Einstein’s law for the viscosity.



Introducing these equations in the equilibrium equation for a given profile [image: there is no content] the answer of the half-space will be determined. The wear rate ϕ must satisfy a complementary law, as proposed before. For the sake of simplicity we take


[image: there is no content]



(109)




This relation determines the velocity ϕ. The solution is obtained analytically by an asymptotic expansion in series of the volume fraction f of particles.

	
At zero order, the Hertz’s solution is recovered



	
At first order, a dependance with f is obtained. Wear occurs, and the profile of the pressure [image: there is no content] evolves. The presence of viscous fluid induces a displacement of the maximum of pressure like under the dry contact with friction [25].








This analytical solution is studied in paper [3] and discussed in [26].




5.2. Cyclic loading


The matter loss is determined with respect a criterion of wear in the case of cyclic loading. For this the results of cyclic plasticity are generalized for elastic brittle materials.



The vertical displacement δ of the punch is prescribed and a periodic horizontal displacement of the punch is imposed.



The wear rate is related to the Griffith’s law:


ϕ≥0,G(s)−Gc≤0,ϕ(G(s)−Gc)=0



(110)







During the loading, wear occurs, the surface evolves and reaches an asymptotic shape Γ.



The loss of matter is determined by the surface shape [image: there is no content] of the half space such that the volume of loss matter is the smaller volume compatible with the criterion of wear: during the motion of the punch the criterion ([image: there is no content] is fulfilled all time.



Assume that [image: there is no content] is small. During the motion, the applied loading is cyclic and is convected by the motion to the surface. Using of derivative DΓ, on the initial configuration the loading is given by [image: there is no content] and is now convected along the moving interface with the velocity ϕ, then


DΓ(σ.ν̲)=DΓF,DΓ[image: there is no content]=[image: there is no content]˙+ϕ∇[image: there is no content].ν̲



(111)




then


[image: there is no content]



(112)




The rate solution is determined on the initial geometry, with components of stress and displacement rate given by these relations.


u˙x=DΓu.e̲x−ϕe̲x.∇[image: there is no content].ν̲,u˙y=DΓv.e̲x−ϕe̲y.∇[image: there is no content].ν̲



(113)




and


σ˙yy=DΓF.e̲y−ddx(ϕσyx),σ˙xy=DΓF.e̲x−ddx(ϕσxx)



(114)




Since the variation of the geometry is small, the kernel [image: there is no content] of the integral equation


[image: there is no content](x)=∫ΓNo(x,z).T(z)dz



(115)




must be developed at least at first order in ϕ [17].



For an isotropic material, the solution for displacement is found to be:


[image: there is no content]








where [image: there is no content]o=∫No(x,y).Tods.



The problem of asymptotic solution for wear is given by the optimisation problem


[image: there is no content]



(116)




This problem is solved using for the driving force G=12ε:C:ε−[image: there is no content](C:ε).∇[image: there is no content].[image: there is no content] where [image: there is no content] is the normal vector to the surface [image: there is no content]. In the considered case, the indenter is rigid so there is no contribution of the indenter to the driving force.



The stabilized answer is obtained numerically, using an iterative algorithm [17]. The conditions of contact include Signorini’s condition with friction and comparisons are made with experiments [27].





6. Conclusions


In this article, a review of different descriptions of wear is presented. The approach emphasise the role of micromechanics on the elaboration of a relevant modelisation of wear by introducing the most important parameters in the description of the third body. The modelization shows that the mass density by unit of surface plays an crucial role, especially in transient phase.



The thermodynamical analysis suggests also to consider local criterion for wear based on driving forces associated with the local phenomena involving the final rupture. At different scale the relations between local driving forces and global driving forces to describe the behaviour of the thin layer must be established solving a complex boundary value problem. This problem is a problem of equilibrium of a thin layer under macroscopic shear deformation with non-linear behaviour including damage and viscoplasticity. According to non-linear behaviour and to presence of fluid, different time scales must appear determining domains of validity of each model of interface.



This multi-scale approach has been shortly discussed. According to different choice of modelisation, different expressions for dissipation are obtained. The driving force associated to wear process have been expressed and wear laws have been proposed.



Simpler formulations have been achieved, taking account of the most important features of the wear process and semi-explicit answers are obtained. These results show the ability of such an approach.



Some of the ideas and techniques used here (like integral equations) could be of some interest for solving other problems on wear.
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