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Abstract: The friction and wear phenomena appear due to contact and relative motion
between two solids. The evolution of contact conditions depends on loading conditions and
mechanical behaviours. The wear phenomena are essentially characterized by a matter loss.
Wear and friction are in interaction due to the fact that particles are detached from the solids.
A complex medium appears as an interface having a strong effect on the friction condition.
The purpose of this paper is to describe such phenomena taking account of different scales
of modelization in order to derive some macroscopic laws. A thermodynamical approach is
proposed and models of wear are analysed in this framework where the separation between
the dissipation due to friction and that due to wear is made. Applications on different cases
are presented.
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1. Introduction

The wear phenomena are induced by contact and by relative motion between two solids. They
depend on the loading conditions and on the materials properties; they are essentially characterized by a
matter loss.

Particles are detached from the solids in contact and a complex medium takes place between the two
solids forming a thin layer. The conditions of friction are then affected and therefore the conditions of
wear evolve simultaneously.
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The interface is a complex medium made of detached particles and eventually of a lubricant fluid.
The damaged zones belonging to the solids can be also considered as a part of the interface. All these
zones constitute a layer where the materials lose their own cohesion.

The evolution of this layer is complex especially in the transient phase of the interface formation.
However, for particular geometries and for steady states, with a constant flux of matter, the wear states
can be studied experimentally and conceptually. This framework is a first step of comprehensive study
for understand the parameters governing friction and wear.

Following the terminology introduced in [1] the interface is called “third body” and must be
considered as an aggregate thin layer of different particles with sometimes a lubricant fluid. This layer
develops non-linear macroscopic rheology that must be characterized.

If macroscopic descriptions of such an interface are known in the literature [1,2], the connection
with local mechanical quantities and discussion based on microscopic scale modelling are not currently
developed, unless in some recent studies [3–6].

Some well known wear criteria, as Archard’s law [7], are useful but such models cannot be
predictive when the operating conditions are not sufficiently close to the experimental test conditions of
their elaboration.

Experiments on wear and friction, as observed in Stribeck’s curve, can provide relations between the
friction coefficient µ and the lubricant coefficient L : µ = τ/p, L = ηU/p where τ is the shear stress, p
the pressure of contact, η the fluid viscosity and U the relative velocity.

Figure 1. Stribeck’s curve.

This curve shows three particular regimes: the first regime corresponds to a Coulomb’s friction law
with constant coefficient, the second is an unstable regime with a strong decrease of the friction and the
third is a linear regime corresponding to a state of mild wear.

These results suggest clearly a strong interaction between debris and the solids in relative motion. The
modelization of this interaction can be explored through the evolution of specific internal state variables
governing the third-body behaviour.

The simpler approach is made using of theory of mixtures, where the volume fraction of debris plays
an important role.
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The main purpose of this article is to propose a more general formulation using of thermodynamical
considerations on wear phenomena studying the propagation of surfaces or layers inside sound bodies
taking account of damage evolution and loss of sound matter. A thermodynamical approach of third
body is then introduced and dissipation is analyzed.

For a macroscopic view point the behaviour of the interface is modelized by unit of surface of contact.
The density of mass by surface unit is related to the volume fractions of detached particles and plays the
role of an internal parameter. The driving force associated to wear is then deduced and criteria of wear
are proposed.

Finally, particular situations are studied using some constitutive law of the interface. In each case the
dissipation is analysed. The matter loss and the geometry change are determined according to specific
criteria and associated laws. Analytical and semi-analytical solutions are presented.

2. General Features on Moving Surfaces and Moving Layers

The wear phenomena due to contact and to relative motion between two solids V1, V2 depend on
loading conditions and on material mechanical constitutive laws of the solids in contact. Wear is
essentially characterized by a matter loss. Each solid Vi is decomposed into a undamaged part Ωi and a
damaged zone Ωi3. The boundary between Ωi and Ωi3 is Γi = Γi3.

Particles are moved from the solids Ωi when some criteria are satisfied at the boundaries Γi between
Ωi and a complex medium Ω3 is generated called the interface or the third body.

The third body Ω3 is made of detached particles, damaged zone Ωi3 of the two solids as depicted in
Figure 2.

Figure 2. The microscopic description of wear process.
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The first step of modelization is to characterize the motion of the surface Γi. The third body Ω3

is then Ω13 ∪ Ω23 ∪ Ω33, where Ω33 is a complex mixture of detached particles and eventually of a
lubricant fluid.

Along the surface Γi3 the displacement is continuous and the stress vector too. The local behaviour
changes from those of the undamaged material Ωi to those of a damaged solid Ωi3. The surface Γi3
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moves with the normal velocity ci = ϕiνi in the reference state of the solid, νi is the outward unit normal
vector to Ωi3 and then ϕi is positive. The value of ϕi is given by a constitutive law, this is a part of the
wear description.

This transition can be brutal or diffuse. In the first situation, the transition is governed by the motion
of a surface Γi3 along which the material characteristics endure change by an irreversible process.
Due to damage, the elastic moduli in domain Ωi3 are lower then those in Ωi, then during this brutal
transformation the elastic moduli are discontinuous along Γi3. These discontinuities contribute to the
dissipation by a surface term.

In the second situation, the variation of the quantities is smooth and the quantities remain continuous.
The damaged zone Ωi3 constitutes a thin layer where the damage and the internal variables vary
continuously. The boundary Γi3 between the undamaged material and the damaged zone is moving
but all the mechanical quantities are continuous, the surface term in the dissipation disappears.

Each situation implies different type of dissipation and for each case a driving force associated to the
wear process is proposed.

The conditions of loading are chosen such that the inertia effects are small. Extension to dynamical
problems uses dynamical concept for the driving force applied for defects motion [8], interface or surface
motion [9–12].

The local constitutive law The state of each body is characterized by the displacement u, from which
the strain field ε is derived. The other parameters are the temperature θ and a set of internal parameters
α. The behaviour of Vi is defined by the free energy density ψ as a function of strain ε, the temperature
θ and the set of internal parameters α. The mass density of each phase (undamaged and damaged) is the
same ρ. The state equations of each phase are

σr = ρ
∂ψ

∂ε
, s = −ρ∂ψ

∂θ
, A = −ρ∂ψ

∂α
(1)

The boundary Γi3, between Ωi and Ωi3, is a perfect interface. The external boundary
∂Ωi/Γi3 is decomposed into ∂Vu and ∂VT on which the displacement ud and the loading T d are
prescribed respectively.

The internal state of stresses satisfies the conservation of the momentum

divσ = 0, over V, σ.n = T d, on ∂VT , [σ]Γi
.νi = 0, along Γi3 (2)

This state σ is decomposed in the reversible part σr and an irreversible part σir. The irreversible
stresses σir are essentially due to viscosity. In non linear mechanics, the internal state is generally
associated with irreversibility. The evolution of internal state must satisfy the second law of
thermodynamics. Such requirement is fulfilled by the existence of a potential of dissipation.

Analysis of the dissipation and potential of dissipation The fundamental inequality of
thermodynamics implies that the internal production of entropy must be non negative. The equations of
state do not provide all the constitutive equations; some complementary laws are necessary to describe
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the irreversibility. In the total dissipation DT the contribution of the conduction and those of internal
forces must be distinguished.

DT = σ : ε̇− ρ(ψ̇ + sθ̇)− q.∇θ
θ2

= Dm +Dc ≥ 0 (3)

The two parts are assumed to be separately non-negative. The mechanical part has the form:

Dm = σ : ε̇− ρ(ψ̇ + sθ̇) ≥ 0 (4)

and using of equations of state, the thermodynamical forces associated to irreversibility are obtained

Dm = (σ − σr) : ε̇+ A.α̇ ≥ 0 (5)

and we recognize the role of the irreversible stresses σir.
To determine the evolution of the internal state, relation between velocity and driving forces must be

given. These relations must be compatible with the positivity of the internal production of entropy Dm.
Let us assume that the local behaviour belongs to the class of the so-called “generalized standard”

materials [13]. For this class, a potential of dissipation d(ε̇, α̇) defines the local irreversibility. The
potential d is a convex function of these arguments with a minimum value at the origin. The evolution
of the internal state is given by the normality rule:

(σir, A) ∈ ∂d(ε̇, α̇) (6)

this means that the subdifferential ∂d(ε̇, α̇) of d is the set of state (σir, A) such that:

d(ε̇, ȧ) + σir : (ε∗ − ε̇) + A.(α∗ − α̇) ≤ d(ε∗, α∗) (7)

for all admissible fields (ε∗, α∗). The existence of such a potential for the dissipation ensures the
positivity of the entropy production:

σir : ε̇+ A.ȧ ≥ d(ε̇, α̇)− d(0, 0) ≥ 0 (8)

2.1. The conservation laws

Classical laws of conservation are written, taking discontinuities into account:

Mass conservation

on Γi3, mi = ρc.νi = ρϕi (9)

over Vi, ρ̇+ ρ div(v) = 0 (10)

Momentum conservation

on Γi3, [σ]
Γi
.νi = 0 (11)

over Vi, div(σ) = 0 (12)
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Energy balance

on Γi3, mi[ψ + sθ]
Γ
− νi.σ.[v]Γi

+ νi.[q]Γi
= 0 (13)

over Vi, ė = σ : ε̇− div q (14)

where e is the internal energy e = w + sθ, s is the entropy, q the heat flux

Continuity of displacement

along Γi3, [u]Γi
= 0 ⇒ [v]

Γi
+ ϕi[∇u]Γi

.νi = 0 (15)

Continuity of temperature
along Γi3, [θ]Γi

= 0 (16)

2.2. On moving interface

To study this problem, the analysis is made on one body Vi. The solid is decomposed into Ωi and Ωi3.
Along the boundary Γi3, νi is the outward unit normal vector to Ωi3 , c is the normal velocity and ϕi is
the magnitude of c.

When the surface Γi3 is moving, a mechanical quantity f can suffer a discontinuity [f ]
Γ
= fi − fi3.

The volume Vi is decomposed in two domains, separated by a moving boundary Γi3. The volume average
of f has a rate defined by

d

dt

∫
Vi

f dΩ =

∫
Vi

ḟ dΩ−
∫
Γi3

[f ]
Γ
c.νi dS (17)

Entropy production Using the definition of the entropy of the system S =
∫
Vi
ρs dΩ the second law

of thermodynamic is written as

Ṡ −
∫
∂V

q.n

θ
dS ≥ 0 (18)

and after integration by part, the value of the volume dissipation DT is recovered and a surface
contribution appears ∫

Γi3

ρ[s]
Γi
ϕi − [

q

θ
]
Γ
.νi dS ≥ 0 (19)

Taking the balance equation of energy and the continuity of temperature into account, the dissipation by
unit of surface is obtained

DS =
1

θ
(mi[ψ]Γi

− νi.σ.[v]Γi
) =

Gi

θ
ϕi (20)

This dissipation is a linear function of the normal velocity ϕi of Γi3. The quantity Gi is the driving force
associated to the movement of Γi3. The displacement is continuous along Γi3 then the discontinuity
[∇u]

Γi
satisfies the Hadamard’s relation

[∇u]
Γi

= λ⊗ νi (21)

and the release rate of energy Gi becomes

Gi = ρ[ψ]
Γi
− σ : [ε]

Γi
(22)
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The condition mi = 0, which explains that there is no loss of matter, induces that ϕi = 0 then there
is no discontinuity [v]

Γi
= 0, so there is no dissipation along the surface Γi3, because this surface does

not move.

Interface propagation law To control the matter loss, a criterion based on Gi can be formulated. For
example, we can considered a Griffith’s type law for the propagation of the moving interface

Gi −Gc ≤ 0, ϕi ≥ 0, (Gi −Gc) ϕi = 0 (23)

When the interface moves hence Gi = Gc, this quantity must be conserved during the motion.

Convected differentiation To study the evolution of the mechanical state around the moving surface
Γi3 a convected derivative of any mechanical quantity f is needed. A pointXΓ is on Γi3 if its coordinates
satisfy the scalar equation:

S(XΓ, t) = 0 (24)

It is well known that the gradient ∇S(XΓ, t) = ||∇S||νi is normal to the surface. At time t + dt the
point XΓ comes in XΓ + ϕiνi(XΓ, t)dt and

S(X + ϕiνidt, t+ dt) = 0 → ∂S

∂X
.ϕiνi +

∂S

∂t
= 0 (25)

For any function f(XΓ, t), XΓ ∈ Γi3, the convected derivative of f in the movement of Γi3 is

DΓf(XΓ, t) := lim
dt→0

f(XΓ + ϕiνidt, t+ dt)− f(XΓ, t)

dt
(26)

In particular, the evolution of the middle surface satisfies

DΓS(XΓ, t) = 0 (27)

and the convected derivatives of XΓ and νi are

DΓXΓ = ϕiνi, DΓνi = νi.∇(ϕiνi) (28)

The convected derivative is useful for write the Hadamard’s equation of compatibility: for any
continuous function f along Γi3

[f ]
Γi

= 0 ⇒ DΓ[f ]Γi
= [DΓf ]Γi

= 0 (29)

For the displacement, we have

[u]
Γi

= u(X+
Γ , t)− u(X−

Γ , t) = 0 (30)

The convected derivative of u(X+
Γ , t) = u+ and of u(X−

Γ , t) = u− are given by

DΓu
± =

∂u

∂t
(X±

Γ , t) + ϕi∇u(X±
Γ , t).νi (31)

the classical relation on discontinuity is recovered as

[v]
Γi
+ ϕi[∇u]Γi

.νi = [DΓu]Γi
= 0 (32)
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Consistency condition The law of propagation shows that the condition ϕi ̸= 0 implies Gi = Gc, that
relation is conserved during the propagation. The consistency condition associated with the Griffith’s
propagation law is then written at point s ∈ Γi3 where Gi = Gc in the form

ϕi(s) ≥ 0, ∀ϕ∗(s) ≥ 0, (ϕi(s)− ϕ∗(s)) DΓ(Gi) ≥ 0 (33)

this ensures that ϕi ≥ 0 if DΓ(Gi) = 0. This condition determines the velocity ϕi(XΓ, t) ; the surface
equation is then implicitly defined by the condition Gi(XΓ, t) = Gc.

This description is based on the fact that the transition between the initial solid and the damaged
material is brutal, that transition induces discontinuities.

2.3. On moving layer

The situation of diffuse damage is now considered. For example, a damage constitutive law governed
by a continuous scalar function d is assumed and a free energy is taken as

ψ(ε, d) = (1− d)ψo(ε) = (1− d)
1

2
ε : Co : ε, σ = (1− d)Co : ε (34)

the damage parameter varies from 0 (no damage) to 1 (totally damaged). Over Ωi, d = 0 and d varies
continuously from 0 to 1 over Ωi3.

In this description along the surface Γi3, between sound material and damaged zone, d = 0. The
stress vector ([σ]

Γi
.νi = 0), the displacement and the elastic moduli are continuous quantities. These

properties induce that ∇u is continuous and so the energy release rates Gi is zero along the surface Γi3.
The previous results on dissipation must be revisited. The loss of matter is governed by the motion of
the surface d(x, t) = 1.

The volume Vi is decomposed as previously, but now the displacement and the internal parameters are
continuous along the surface Γi3. Inside the domain Ωi3, the evolution of a mechanical quantity f(ε, α)
function of the strain ε and of the set of internal parameters αmust be characterized. The volume average
of f is decomposed as

F =

∫
Ωi

f(ε, α) dΩ +

∫
Ωi3

f(ε, α) dΩ (35)

and has a time-derivative expressed in term of a classical time derivative in Ωi and a convected derivative
on Ωi3. Convective derivative is useful to describe hypothesis of self-similarity process in the damaged
zone during the wear.

The domain Ωi3 evolves simultaneously with two surfaces: one is Γi3 associated with the boundary
d(x, t) = 0 and the other is Γo along which d(x, t) = 1.

A point x in Ωi3 is locally defined by it’s normal projection XΓ on the surface Γi3 and the normal
coordinate z along the unit normal vector νi. The thickness of the layer is H(S, t) and 0 ≤ z ≤ H .

x = XΓ − zνi (36)

When the surface Γi3 moves with the normal velocity ϕi, the local frame τ i, νi moves simultaneously.
For example a 2D motion of a curve satisfies the geometric relations

dXΓ

dS
= τ i, DΓτ i = −dϕi

dS
νi, DΓνi =

dϕi

dS
τ i,

dγi
dS

=
d2ϕi

dS2
+ γ2i ϕi (37)
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where γi is the curvature of the surface Γi3 at point S, νi the normal unit vector et τ i the tangent unit
vector to the curve. It can be noticed that

dx

dS
= τ i − z

dνi
dS

= (1− γiz)τ i (38)

the elementary length is function of the curvature

ds = j(x) dS (39)

in the reference coordinates (XΓ, z). Similar relations exist for a surface motion.
The point x has a convected derivative

DΓx(z) = ϕiνi − zDΓνi (40)

During the motion, the thickness evolves and the velocity of the point M = x(H) is

DΓM = DΓx(H)− Ḣ νi (41)

The evolution of each term of F can now be given.

d

dt
(

∫
Ωi

f dΩ) =

∫
Ωi

df

dt
dΩ−

∫
Γi3

fDΓx(o).νi dS (42)

d

dt
(

∫
Ωi3

f dΩ) =

∫
Ωi3

df

dt
dΩ−

∫
Γo

fDΓM.νH dS +

∫
Γi3

fDΓx(o).νi dS (43)

Ḟ =

∫
Ωi

df

dt
dΩ +

∫
Γi3

[f ]
Γ
DΓx(o).νi dS +

∫
Ωi3

df

dt
dΩ +

∫
Γo

fDΓM.νH dS (44)

In these expressions, DΓx(o) = ϕiνi, DΓM = ϕHνH = ϕiνi −DΓ(Hνi).
The function f is continuous along Γ, then there is no contribution of discontinuities on the time

derivative of F , then

Ḟ =

∫
Ωi

df

dt
dΩ +

∫
Ωi3

df

dt
dΩ +

∫
Γo

fDΓM.νH dS (45)

The only surface contribution is due to the flux of matter along the surface Γo. Along Γo, the loss
matter occurs simultaneously with the full damage d = 1.

Over Ωi3, the convected derivative of f is used

DΓf =
df

dt
+∇f.DΓx (46)

and we have ∫
Ωi3

DΓf + ftr(∇DΓx) dΩ =

∫
Ωi3

df

dt
dΩ +

∫
∂Ωi3

fDΓx.ν(x) dS (47)

then the rate of F is finally

Ḟ =

∫
Ωi

df

dt
dΩ +

∫
Ωi3

(
DΓf + ftr(∇DΓx)

)
dΩ−

∫
Γo

fḢνi.νH dS (48)

The global dissipation is expressed using these expressions.
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Analysis of dissipation The dissipation has the classical expression

Dm =

∫
∂V

n.σ.v dS − d

dt

∫
V

ψ(ε, α) dΩ (49)

as previously we have

Dm =

∫
Ωi3

A.α̇+ σir : ε̇ dΩ +

∫
Γo

ψDΓM.νH dS (50)

The dissipation contains to terms, one in the volume and the last one defined on the surface. In the
transient phase this terms is zero, because the material in Ωi3 is only partially damaged d < 1, then
DΓM.νH = 0. When rupture occurs, this term contributes to the dissipation, the value of energy at point
d = 1 is lost.

Some others expressions for dissipation can be formulated.

Others expressions of dissipation Introducing the local Eshelby momentum tensor P

P = ψ1− σ.∇u (51)

This tensor satisfies the relations

divP T = −A : ∇α− σir : ∇ε, in Ωi3, ν.[P ]
Γi

= 0, along Γi3 (52)

And using the convected frame with Ωi3 with the velocity DΓx, the dissipation is rewritten as

Dm =

∫
Ωi3

(A.DΓα+ σir : DΓε) dΩ

−
∫
Ωi3

P : (∇DΓx)(z) dΩ +

∫
∂Ωi3

ν.P .DΓx(z) dS (53)

+

∫
Γo

ψḢνi.νH dS

This expression has a great interest when local conditions of the stationarity of the steady state
is realized. If the damage d is a function of the distance z to the curve Γi3 the local stationarity is
expressed as

DΓd = ḋ+ ϕi∇d.νi = 0 (54)

and for local stationarity, DΓα = 0.

Comments on local stationarity If Y is the driving force associated to d, then the contribution of
damage to dissipation is

Dd =

∫
Ωi3

Y ḋ dΩ = −
∫
Ωi3

Y∇d.νi j(x) dz ϕi(S) dS (55)

= −
∫
Γi3

∫
H(S)

(
Y (x)∇d.νi j(x)

)
dz ϕi(S) dS (56)
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Therefore, if the distribution of ∇d is known inside the layer, the average value Ḡi is the driving force
associated to the velocity ϕi,

Ḡi = −
∫
H(S)

(
Y (x)∇d.νi j(x)

)
dz (57)

The quantity j(x) takes the shape of the layer into account and it defines the measure of area at x with
respect to the measure of area at XΓ so that

dΩ(x) = ds dz = j(x) dS dz (58)

Assuming now that the profile d(z) is a given function, the propagation law is generalized as

(Ḡi −Gc)ϕi = 0, ϕi ≥ 0, Ḡi −Gc ≤ 0 (59)

Combining the hypothesis of stationarity and an imposed profile for d, the thickness H is given, the
Γo interface is moving with the normal velocity ϕi of Γi3, when −

∫
H
∇d.νi j(x)dz = 1.

In this case, the iso-d curves are orthogonal to the normal νi and each iso-d curve has the same
velocity ϕi.

3. The Macroscopic Interface Study

From a macroscopic point of view, it is not necessary to model the microscopic behaviour which
occurs in Ω3. Micromechanical considerations can be useful in order to describe in a realistic manner
the behaviour of the interface. This type of analysis can provide a relevant interface law at the mesoscopic
level and at macroscopic scale too. The multi scale approach of the interface is based on fundamental
characteristics at three different scales:

• At the microscopic scale, the contact between asperities govern the wear mechanisms. Some
studies with plastic strains and with micro cracks propagation have been tempted [5,14]. These
are the fundamental ideas of the decomposition of Ω3 in Ω13 ∪ Ω33 ∪ Ω23.

• At the mesoscopic scale, this is the description of the third body. This model was proposed in
[1] developed by [15] and [16]. The local physics is that Ωi3 is a porous medium. In Ω33 the
solid particles are in suspension forming a shear layer as inside a viscous fluid flow. This point
is developed in [3]. In other situations, a very large plastic shear deformation is present, so the
profile of local deformation in this thin layer depends strongly on the loading conditions.

• The macroscopic modelling is based on models of friction law which are depending on parameters
to account of the evolution of the interface. These models can be inferred from the smaller scale
by some averaging technics as those proposed under local stationarity hypothesis.

Some other studies are founded on cyclic loading taking account of cyclic asymptotic behaviour of
elastoplastic materials generalised to the theory of damage in mechanics [17].

The system of two bodies in relative motion separated by the third body Ω3 is considered. As
previously in each domain the local behaviour is described by a free energy ψ and a potential d of
dissipation. The dissipation is considered only for domain Ω3. So the behaviour in Ω1 and Ω2 is
reversible. Therefore dissipation is concentrate into the interface.

The proposed description is depicted in Figure 3.
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Figure 3. The transition from microscopic to mesoscopic description of wear process.
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Sharp transition At the mesoscopic level, the dissipation is given by

D =

∫
S

∫
H

d3dz +
∑
i

1

θi
ϕi([ρψ]Γi

− σ : [ε]
Γi
)ji dS (60)

where [f ]
Γi

= fi − f3, and d3 is the volume dissipation due to the irreversibility processes inside Ω3:

d3 = −
q.∇θ
θ2

+
1

θ
(σ : ∇v − ρ(ψ̇ + sθ̇)) (61)

Comments If matter loss occurs,m1 orm2 is positive, then the corresponding discontinuity [v]
Γi

exists
too and the local quantity Gi = mi([ψ]Γi

−σ : [ε]
Γi

) is positive. There is a dissipation due to the loss of
material: that is a characterization of wear.

The volume dissipation d3 contains two contributions, one is due to heat conduction, the other is
associated to mechanical irreversibility. This contribution can be associated with the viscosity of the
fluid which carry the detached particle. When the shear reaches a critical value τc the velocity field
inside the interface is reduced to a gliding motion v = U/H zex and the dissipation in the mesoscopic
scale is evaluated as

D = −
∫
Ω

q.∇θ
θ2

dΩ +

∫
S

(
τcU

θ
+
∑
i

Giϕ

θi
) dS (62)

The second term is due to the viscoplasticity governed by the yield stress τc, it plays the role of
friction [18,19].

The control of the wear dissipation obeys to the normality rule

Gi −Gi
c ≤ 0, ϕi ≥ 0, (Gi −Gi

c)ϕi = 0 (63)

This simple description is based on the brutal transition on the mechanical characteristic from initial
material to a damaged one. The interface Γi3 moves according to this normality rule.
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Diffuse damage Consider now that Ωi3 is a zone of diffuse damage. The description of damage can be
made with a smooth transition governed by a damage parameter d in Ωi3, a set of internal parameters α,
which contains the plastic strain εp. For example a free energy of the form

ψi(ε, α, d) =
1

2
(ε− α) : Ci(d) : (ε− α) + ψb(d, α) (64)

is considered. In this case, the damage parameter governs continuously the change of moduli of elasticity
and it describes the degradation of the stiffness.

As previously, the state equations are given by

σr = Ci(d) : (ε− α), A = σr −
∂W

∂α
, Y = −∂ψi

∂d
(65)

and a potential of dissipation di(ε̇, α̇, ḋ) is given so that

σir =
∂di
∂ε̇

, A =
∂di
∂α̇

, Y =
∂di

∂ḋ
(66)

The thickness of the interface Ω3 = Ω13 ∪Ω33 ∪Ω23 is H = H1 +H3 +H2. At this stage all possible
choice for the local constitutive behaviour can be used. And literature provide many papers on this
subject with computational results. But the main difficulty is to determine the physical characteristics of
the behaviour at this scale.

A macro level approach based on this local description can be tempted to understand the specific
structure of the thin layer and to estimate some necessary parameters to a relevant description of the
mechanisms inside the interface.

4. A Macrolevel Approach

The preceding sections emphasise the fact that in a more general global approach, we can tempt to
characterize the thin layer behaviour by considering it is in a state of equilibrium under given conditions
applied to Γi3. Then the behaviour of the thin layer can be considered as affected to a surface Γ, by
considering that the thickness is an infinitesimal quantity compared to a characteristic length of the
bodies in interaction. Time derivatives of integral of varying surface or volume domains are studied in
[20]. Some such results are used here to express the dissipation.

The interface Ω3 is a thin layer composed by Ω13 ∪Ω33 ∪Ω23. The geometry of the layer is described
by its middle surface Γ and the thickness H = 2h at each point of this surface.

The free energy ψs per unit of area of the middle surface Γ of the layer is defined by

ψs =
1

ρs

∫
H

ρ(x)ψ3(ε(x), α(x))j(x)dz (67)

x = XΓ + zν, XΓ is the position of the middle surface, z is the normal coordinate −h ≤ z ≤ h, the
middle surface has a curvature κ, and j(x) is the variation of area surface due to curvature with respect
to the middle surface coordinates. The local volume is then dΩ = j(x) dz dS.

The mass ρs by unit of area is defined by

ρs =

∫
H

ρ(x) j(x) dz (68)
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The mass of the overall system is not conserved. The mass loss ρiϕi from Ωi is added to Ω3 hence
we obtain

d

dt

∫
Ωi3

ρ dΩ =
d

dt

∫
Γ

ρs dS =

∫
Γ

[|ρϕj|] dS (69)

with [|ρϕj|] = ρ1ϕ1j1 + ρ2ϕ2j2. But in the same time, a flux of matter is present in the tangent plane of
Γ with the velocity Cs Then the rate of the surface density is given by

d

dt

∫
Γ

ρs dS =

∫
Γ

(DΓρs − ϕρs γ) dS −
∫
∂Γ

ρsCs.n dl =

∫
Γ

[|ρϕj|] dS (70)

This contributes locally to the matter flux. Assuming that the conservation is locally true, we have

DΓρs − ϕρs γ − divs(ρsCs) = [|ρϕj|] (71)

The local problem The layer is in equilibrium with external loading and contact conditions. The
displacement is continuous on Γi , the surface energy ψs depends upon the given displacements
along Γi. The other parameters are a set of internal parameters α(XΓ, z), the thickness H(XΓ) and
the temperature. The local strain ε derives from the displacement u3. The displacement is continuous
along the interfaces Γi then

u1(x1, t) = u3(XΓ + hν, t), u2(x2, t) = u3(XΓ − hν, t), h = H/2 (72)

Then, it is obvious that the surface free energy is a function of ui(xi, t) and of the thickness H .
Time derivatives of integral of varying surface or volume domains are studied in [20]. Some such

results are used here to express the dissipation.

The strain is rate is ε̇ =
1

2
(∇v +∇Tv), where v = u̇. The dissipative function Ds associated to the

local potential d3 = d(ε̇, α̇) is defined by the average

ρsDs(v1, v2, α̇) =

∫
H

ρ(x)d(ε̇(x), α̇) j(x) dz (73)

We consider that the behaviour inside Ωi is reversible. The steady state equations over Ωi are then

σ = ρi
∂ψi

∂ε
, divσ = 0,

ε =
1

2
(∇u+∇Tu)

For the interface, we have

T r
i = ρs

∂ψs

∂ui
, A = −ρs

∂ψs

∂α
, Gs = −ρs

∂ψs

∂H
(74)

where T r
i is the reversible tension along the interface. The balance momentum equations using of the

local behaviour is given by

νi.σji = T r
i + T ir

i = ρs(
∂ψs

∂ui
+
∂Ds

∂vi
) (75)

and the complementary laws are

A = −ρs
∂Ds

∂α̇
, T ir

i = ρs
∂Ds

∂vi
(76)
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Figure 4. The transition from mesoscopic description to macroscopic description of
wear process.

Γ13

Ω

Γ23

Ω3

Ω 1

2

V

The normal νi along the interface Γi3 is not the normal to the middle surface because h depends
on XΓ.

The macroscopic description as depicted on 4 ignores the details at the microscopic level.
The local thickness H(XΓ) = 2h is obviously the relevant parameter geometrically associated with

the interface, while the internal parameters govern the physical properties of the layer. For example, the
set of volume fraction of debris from materials 1 and 2 are such parameters.

Analysis of dissipation The global dissipation is derived from the macroscopic description. It is useful
to introduce the global free energy P of the tribologic system

P =

∫
Ωi

ρiψi(ε(u), α) dΩ +

∫
Γ

ρsψs(u1, u2, h, α) dS (77)

The rate of the free energy is then

dP
dt

=
d

dt
(

∫
Ωi

ρiψi dΩ) +
d

dt
(

∫
Γ

ρsψs dS) (78)

which becomes after rearrangements

dP
dt

=

∫
Ωi

σi : ε(vi) dΩ−
∫
Γi3

ρiψiϕi ji dS

+

∫
Γ

(DΓ(ρsψs)− ρsψsϕγ) dS +

∫
∂Γ

ρsψsn.Csdl

where γ is the mean curvature of the middle surface and ϕ the normal velocity of the mean surface.
Taking account of equilibrium and conservation of mass, we have

dP
dt

=

∫
Ωi/Γi3

n.σ.v dS −
∫
Γ

νi.σ.vi ji dS

−
∫
Γ

[|ρiψiϕiji|] dS +

∫
Γ

ρs(DΓψs + Cs.∇ψs) + ψs([|ϕiρiji|]) dS
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The displacement is continuous along the interfaces Γi3 then

DΓui = vi +∇ui.(DΓxi) (79)

where
DΓx1 = DΓx(h) + ḣν, DΓx2 = DΓx(−h)− ḣν (80)

The total dissipation Dm is

Dm =
dP

dt
−

∫
Ωi/Γi3

n.σ.v dS (81)

hence

Dm =

∫
Γ

[|Gi ϕi ji|] dS −
∫
Γ

(
[|νi.σi.∇uiji|].νḣ− ρsCs.∇ψs

)
dS (82)

+

∫
Γ

ρs

(∂ψs

∂α
DΓ(α) +

∂Ds

∂v
.DΓ(ui)−

∂ψs

∂h
ḣ
)
dS

where Gi = ρiψi − ρiψs − νi.σ
i.∇ui. A term due to the variation of the thickness appears

Gt = −ρs
∂ψs

∂H
− jiνi.σ

i.∇ui.ν (83)

But ϕi, H are dependent. The velocities of propagation are linked

ϕ1ν1 = (ϕ+ ḣ)ν + hDΓν, ϕ2ν2 = (ϕ− ḣ)ν − hDΓν (84)

then
ϕ = (ϕ1ν1 + ϕ2ν2).ν/2, 2ḣ = (ϕ1ν1 − ϕ2ν2).ν (85)

And the dissipation is equivalent to

Dm =

∫
Γ

GT
i ϕi +Gα∇αϕ dS +

∫
Γ

ρsCs.∇ψs dS +

∫
Γ

A : DΓ(α) + T ir
i .DΓ(ui) dS (86)

the second term is due to DΓν and it is very small because H is small, and

GT
1 = G1 j1 +Gtν.ν1; GT

2 = G2 j2 −Gtν.ν2 (87)

Expansion of displacement with respect to z This macroscopic point of view suggests to develop the
internal state over Ω3 as an asymptotic expansion of the coordinate z

u(XΓ, z) = uo(XΓ) + u1(XΓ)z + u2(XΓ)z
2 + ...

α(XΓ, z) = αo(XΓ) + α1(XΓ)z + ...

The relative displacement w = u1 − u2 is then a function of the gradient of u on the middle surface

w(XΓ) = u1 − u2 = 2h∇u(XΓ, 0).ν (88)

at the first order in z.
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The free energy is expanded with to z and the expression is given by

ψs(u1, u2, α) =
1

ρs

∫
H

ρ(XΓ, s)ψ3(ε(XΓ + zν), α)dz (89)

where ε = εo + zε1 at first order. In the same way, the potential of dissipation is

dS(v1, v2, α̇) =
1

ρs

∫
H

ρ(x, s)d3(ε̇, α̇)dz (90)

Under this approximation

uo(XΓ) =
1

2
(u1 + u2), u

1 =
1

2h
(u1 − u2) (91)

so the energy depends on the value of w and on the gradient of the displacement along Γ.
Many studies concerning interface behaviour are based on such approximation [21–23].
In this case, the global state of equilibrium is revisited to take into account of the dependance of the

energy with gradient of displacement ρsψs = f(ui,∇ui). The variations of
∫
Γ
ρsψs dS with respect to

ui are then

δ

∫
Γ

∂f

∂ui
.δui +

∂f

∂∇ui
: ∇δui dS (92)

by integration by parts we obtain

δ

∫
Γ

ρsψs dS =

∫
Γ

(
∂f

∂ui
−∇ ∂f

∂∇ui
).δui dS +

∫
∂Γ

n.
∂f

∂∇ui
.δuidl (93)

Hence the equilibrium of the interface is now given by

νi.σ
iji = ρs

∂ψ

∂ui
−∇

(
ρs

∂ψ

∂∇ui

)
(94)

if there is no viscosity, if not the right part contains new terms

T ir
i = ρs

∂D

∂vi
−∇(ρs

∂D

∂∇vi
) (95)

This approximation shows that the conditions of continuity of the displacement given by the
asymptotic expansion and the displacement of the undamaged bodies implies that the imposed shear
U/H ex is related to the discontinuity v1 − v2 of the two bodies in contact. These expressions show
that global approach based on relative displacement or relative rate of displacement can be justified by
micromechanical considerations, but they emphasise the role plays by the mass density by unit of area.
This quantity is an important internal parameter which is governed by the mass conservation and the
wear criterion.

An important task is to develop models of the layer based on micromechanical hypotheses. Using
homogenization theory for thin layer under global shear loading, taking account of the mass flux, must
be investigated. This process will provide different models of interface behaviour depending on the
dissipative mechanisms evolving inside the third body. These models must be derived taking account of
conditions of sliding contact, in particular in the presence of viscous fluid, the flow between the bodies
must be characterized. This shows the emergence of specific time scales according to each models of
interface depending on loading conditions. The mechanisms of degradation can also be modified during
the loading history. This approach should be useful for determination of the domains described by the
Stribeck’s curve or also to study the transition from a regular state of low rate of wear to a state of
abrasive wear.
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5. Examples and Applications

A linear elastic half-plane in plane strain is considered. The purpose of the study is to analyse the
contact wear under a rigid punch. The studies are made in two cases of loading :

• the sliding wear under steady relative motion [3],

• the sliding wear under cyclic loading [17].

In order to obtain displacements, stresses and strains at the surface of the half-space, which is covered
in the contact area by the interface model, it is useful to consider integral equations.

The displacement (ux, uy) of the upper boundary of an linear elastic half-space with elasticity
characteristics Young modulus E, Poisson’s ratio ν, satisfies the integral equations [24], for which the
contact area is (−a, a):

c1
dux
dx

(x) = c2σyy(x) + Pv
1

π

∫ a

a

σxy(s)

s− x
ds (96)

c1
duy
dx

(x) = −c2σxy(x) + Pv
1

π

∫ a

a

σyy(s)

s− x
ds (97)

where the constants ci are

c1 =
E

2(1− ν2)
, c2 =

1− 2ν)

2(1− ν)
(98)

and the principal value Pv is defined as

Pv
1

π

∫ a

a

f(s)

s− x
ds = lim

ϵ→0+

1

π

∫ a−ϵ

a

f(s)

s− x
ds+

1

π

∫ a

a+ϵ

σxy(s)

s− x
ds (99)

5.1. Sliding contact in steady relative motion

The rigid punch has a vertical displacement upy = δ + x2/2R and we assume that wear occurs only
in the half space. Ahead the punch there is no debris, then the volume fraction of debris f = 0. The
thickness of the interface is Ho, which corresponds to the sum of rugosities of the solids and contains the
thickness of the incompressible fluid. Due to wear, the thickness evolves. The mass conservation and
the fluid incompressibility give the relations between the wear rate ϕ(x), the fraction of debris f(x) and
the thickness of the thin layer H(x).

All the equations of conservation are written in the moving frame with the punch at the velocity Uex
ρs = fρo + (1− f)ρf and

∂ρ3
∂t

+ div(ρ3v3) = 0 (100)

by integration over the thickness H we have

∂ρs
∂t

+

∫
H

d

dx
(ρ3vx) dz + ρoϕ = 0 (101)

and because the layer is submitted to a local shear v = U/Hzex we obtain

ϕ+
U

2

∂

∂x
(fH) = 0 (102)

The mass of fluid is also conserved then
∂

∂x
(H(1− f)) = 0 (103)
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The constitutive law The free energy of the mixture is given by

ψs(w, f) = k(f)
1

2
(wn)

2 + kt(wt − αt)
2 (104)

A potential of dissipation is given to determine the irreversible contribution, essentially due to viscosity

d(ẇ, α̇t) =
1

2
ηn(f)ẇ

2
n +

1

2
ηt(f)ẇ

2
t +

1

2
ηa(f)α̇

2
t (105)

n.σ = k(f)wnn+ kt(f)(wt − αt)τ + ηnẇnn+ ηtẇtτ , A = kt(wt − αt) = ηa(f)α̇t (106)

This constitutive law generalizes the law use in [3] in which ηa = kt = 0. For (ηa = kt = 0) we have
an interfacial behaviour given by

σyy = k(f)wn, σxy = ηt(f)ẇt (107)

k(f) and η(f) are chosen from typical homogenized value of the phases.

1

k(f)
=

f

Ks

+
(1− f)

Kf

, ηt = ηo(1 + 2.5f) (108)

that the homogenized Reuss’s model for the stiffness, and the Einstein’s law for the viscosity.
Introducing these equations in the equilibrium equation for a given profile ϕ(x) the answer of the

half-space will be determined. The wear rate ϕ must satisfy a complementary law, as proposed before.
For the sake of simplicity we take

ϕ = kpσyy (109)

This relation determines the velocity ϕ. The solution is obtained analytically by an asymptotic expansion
in series of the volume fraction f of particles.

• At zero order, the Hertz’s solution is recovered

• At first order, a dependance with f is obtained. Wear occurs, and the profile of the pressure σyy(x)
evolves. The presence of viscous fluid induces a displacement of the maximum of pressure like
under the dry contact with friction [25].

This analytical solution is studied in paper [3] and discussed in [26].

5.2. Cyclic loading

The matter loss is determined with respect a criterion of wear in the case of cyclic loading. For this
the results of cyclic plasticity are generalized for elastic brittle materials.

The vertical displacement δ of the punch is prescribed and a periodic horizontal displacement of the
punch is imposed.

The wear rate is related to the Griffith’s law:

ϕ ≥ 0, G(s)−Gc ≤ 0, ϕ (G(s)−Gc) = 0 (110)

During the loading, wear occurs, the surface evolves and reaches an asymptotic shape Γ.
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The loss of matter is determined by the surface shape y = Ψ(x) of the half space such that the volume
of loss matter is the smaller volume compatible with the criterion of wear: during the motion of the
punch the criterion (G(y, t)−Gc ≤ 0,∀y = Ψ(x)) is fulfilled all time.

Assume that ϕ = Ψ(x) is small. During the motion, the applied loading is cyclic and is convected
by the motion to the surface. Using of derivative DΓ, on the initial configuration the loading is given by
σ.ν = F (x, t) and is now convected along the moving interface with the velocity ϕ, then

DΓ(σ.ν) = DΓF, DΓu = u̇+ ϕ∇u.ν (111)

then
σ̇.ν +

d

dx
(ϕ(x)σ.τ) = DΓF (112)

The rate solution is determined on the initial geometry, with components of stress and displacement rate
given by these relations.

u̇x = DΓu.ex − ϕex.∇u.ν, u̇y = DΓv.ex − ϕey.∇u.ν (113)

and
σ̇yy = DΓF.ey −

d

dx
(ϕσyx), σ̇xy = DΓF.ex −

d

dx
(ϕσxx) (114)

Since the variation of the geometry is small, the kernel No(x, z) of the integral equation

u(x) =

∫
Γ

No(x, z).T (z)dz (115)

must be developed at least at first order in ϕ [17].
For an isotropic material, the solution for displacement is found to be:

c1u1 = c1u
o
1 − c1ϕPv

1

π

∫
σo
yy

s− x
ds− c2σ

o
xyϕ+ 2c1Pv

1

π

∫ (σo
yy +

1

π

∫ σo
xy

z − s
dz)

s− x
ds

c1u2 = c1u
o
2 − c1ϕPv

1

π

∫
σo
xyϕ

s− x
ds− c2σ

o
xyϕ+ 2c1ϕPv

1

π

∫
σo
yy

s− x
ds

where uo =
∫
No(x, y).T ods.

The problem of asymptotic solution for wear is given by the optimisation problem

min
ϕ(x)≥0

Gc

∫ b

b

ϕdx+ α

∫ b

−b

∫ T

o

< G(ϕ, x, t)−Gc >
2
+ dx (116)

This problem is solved using for the driving forceG =
1

2
ε : C : ε−n(C : ε).∇u.nwhere n is the normal

vector to the surface (x, ϕ(x)). In the considered case, the indenter is rigid so there is no contribution of
the indenter to the driving force.

The stabilized answer is obtained numerically, using an iterative algorithm [17]. The conditions of
contact include Signorini’s condition with friction and comparisons are made with experiments [27].
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6. Conclusions

In this article, a review of different descriptions of wear is presented. The approach emphasise the
role of micromechanics on the elaboration of a relevant modelisation of wear by introducing the most
important parameters in the description of the third body. The modelization shows that the mass density
by unit of surface plays an crucial role, especially in transient phase.

The thermodynamical analysis suggests also to consider local criterion for wear based on driving
forces associated with the local phenomena involving the final rupture. At different scale the relations
between local driving forces and global driving forces to describe the behaviour of the thin layer must
be established solving a complex boundary value problem. This problem is a problem of equilibrium
of a thin layer under macroscopic shear deformation with non-linear behaviour including damage and
viscoplasticity. According to non-linear behaviour and to presence of fluid, different time scales must
appear determining domains of validity of each model of interface.

This multi-scale approach has been shortly discussed. According to different choice of modelisation,
different expressions for dissipation are obtained. The driving force associated to wear process have
been expressed and wear laws have been proposed.

Simpler formulations have been achieved, taking account of the most important features of the wear
process and semi-explicit answers are obtained. These results show the ability of such an approach.

Some of the ideas and techniques used here (like integral equations) could be of some interest for
solving other problems on wear.
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