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Abstract: This paper develops a semi-parametric, Information-Theoretic method for 

estimating parameters for nonlinear data generated under a sample selection process. 

Considering the sample selection as a set of inequalities makes this model inherently 

nonlinear. This estimator (i) allows for a whole class of different priors, and (ii) is 

constructed as an unconstrained, concentrated model. This estimator is easy to apply and 

works well with small or complex data. We provide a number of explicit analytical 

examples for different priors’ structures and an empirical example. 

Keywords: concentrated model; inequalities; information; maximum entropy; priors; 

sample selection 

 

1. Introduction and Basic Model 

The sample selection problem appears often in empirical studies of labor supply, individuals' wages 

and other topics. For small sample sizes the existing parametric [1] and semi-parametric estimators [2–5] 

have difficulties. Recently, [6], henceforth GMP, developed a semi-parametric, Information-Theoretic 

(IT) estimator for the sample-selection problem that performs well when the sample is small. This 

estimator is based on the IT generalized maximum entropy (GME) approach of [7] and [8]. GMP used 

a large number of sampling experiments to investigate and compare the small-sample behavior of their 

estimator relative to other estimators. GMP concluded that their IT estimator is the most stable 

estimator while the likelihood estimators predicted better within the sample for large enough samples. 
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Their IT estimator outperformed the AP estimator in most cases and in all small samples. Another set 

of experiments within the nonlinear framework appear in [9]. 

GMP specified their IT-GME model with bounds on the parameters and with finite and discrete 

support. Though, their IT-GME estimator performs relatively well, it still has some of the basic 

shortcomings of that estimator. It has finite and bounded supports for both signal and noise, it is not 

flexible enough to incorporate infinitely large bounds and continuous support spaces, and it is 

constructed as a constrained optimization estimator. The objective here is to extend the estimator 

discussed in GMP in three directions. First, we allow unbounded support spaces for all parameters. 

Second, we accommodate for a whole class of (discrete and continuous) priors. Third, we construct our 

estimator as an unconstrained concentrated model. 

1.1. The Basic Sample Selection Model 

For simplicity, we follow a common labor model discussed in [10]. Suppose individual h (h=1,…, N) 

values staying (working) at home at wage *

1hy  and can earn *

2hy  in the marketplace. If * *

2 1h hy y> , the 

individual works in the marketplace, 
1 1hy = , and we observe the market value, *

2 2h hy y= . Otherwise, 

1 0hy =  and 
2 0hy = . 

The individual's value at home or in the marketplace depends (linearly) on demographic 

characteristics (x): 

 * t

1h 1h 1 1hy   x   β ε= +  (1) 

 
*

2 2 2

t

h 2h hy   x   β ε= +  (2) 

where 
1hx and 

2hx  are K1 and K2-dimensional vectors, β1 and β2 are K1 and K2-dimensional vectors of 

unknowns and “t” stands for “transpose”. This model can be expressed as 

      

* *

2 1

1 * *

2 1

1 if    

0 if    

h h

h

h h

y y
  y

y y

 >
= 

≤
      (3) 

* *

2 2 2 1

2 * *

2 1

if    

0 if    

t

2h h h h

h

h h

x β   y y
  y

y y

ε + >
= 

≤
     (4) 

Our objective is to estimate β1 and β2. Typically the researcher is interested primarily in β2. 

Unlike the more traditional models, GMP constructed their model as a solution to a constrained 

optimization problem such that the information represented by the set of censored equations (3)-(4) 

enters the estimation as inequalities: 

22 2 2 1if   1t
 hh h hx     y , yβ ε+ = =      (5) 

2 1h2 2 1 1 1
 if    1y

t t
 hh h h

x     x    ,    β βε ε+ > + =     (6) 

  2 12 2 1 1 1
 if    0y

t t
 h  hh h h

x     x    ,  β βε ε+ ≤ + =     (7) 

In our formulation, we use inequalities as well to represent all available information in the set of 

censored equations. 
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2. The Information-Theoretic Estimator 

Rewrite equations (1)-(2) as finding γ1 and γ 2 in *

1 1 1y A γ=  and *

2 2 2y A γ= , where the dependent 

variable is censored and where 
1

1 1 1

1

, [ ]A X I
β

γ
ε

 
= = 
 

, 
2

2 2 2

2

and [ ]A X I
β

γ
ε

 
= = 
 

. We formulate the 

censored model (5)-(7) in the following way. 

Let the constraint sets ( ), ,
1,2 .

i i s i n
C C C i= × =  For each i, Ci,s is an auxiliary closed, convex set 

used to model the a-priori constraints on the β’s. Similarly, the closed convex set Ci,n is part of the 

specification of the “physical” nature of the noise and contains all possible realizations of ε . We view 

the coordinates 
,ini i sCς and 

,ini i nCν  as values of random variables distributed according to some 

probability measure ( ) ( , )i i i i idP dPξ ς ν≡ such that their expectations (E) are 

[ ] and [ ]
i ii P i i P iE Eβ ς ε ν= =     (8) 

We note that the qualifier “prior” assigned to the Q probability measures is not the traditional 

Bayesian view. Rather, the Qs is just a mathematical construct to transform the estimation problem into 

a variational problem. The Qn, however, could be viewed as the probability measure describing the 

statistical nature of the noise. The process of estimation of the noise involves a tilting of the  

prior measure. 

Given some (any) prior measures 
, ,( ) ( , ) ( ) ( )i i i i i i s i i n idQ dQ dQ dQξ ς ν ς ν≡ =  we search for densities 

( )i iρ ξ  such that ( ) ( )i i i i idP dQρ ξ ξ= satisfies the system (3)-(4). This yields the parameter estimator *
β  

and the estimated residuals *
ε . 

Next, let ( , )i iS P Q  denotes the differential entropy divergence measure between the priors, Qi, and 

the post-data (posteriors) Pi.  This is just the continuous version of the Kullback-Liebler information 

divergence measure, also known as relative entropy (see [11–13]). Since the data are naturally divided 

into observed and unobserved parts, we divide the data into two subsets: J and J
c
 of {1, 2,..., }N . Next, 

rewrite the data (3)-(4) *

1 1 1y A γ=  and *

2 2 2y A γ=  as 

               
1 2

1 1 2 2* *

1 1 2 2

1 1 2 2

[ ]; and [ ]P P

y B y B
y E y E

y B y B
ξ ξ

       
= = = =       
       

                             (9) 

where the matrices B1 and B2 correspond to the rows of the matrices Ai (i=1, 2) labeled by the indices 

for which observations are available. For the indices in J the values y2 are observed and * *

2 1h hy y> , 

whereas for the values in J
c
 all we know is that * *

1 2h hy y> .  

Our “Basic (Primal) Problem” is the solution to 

( )
2 2 1 2 1

1 2

1 1 2 2 2 2 2 2 2 1 1 2 2 1 1
,

{ ( , ) ( , ) | [ ], [ ] [ ]; [ ] [ ]}
P P P P P

P P

Sup S P Q S P Q y B E B E B E B E B Eξ ξ ξ ξ ξ+ = > ≤   (10) 

where the inequalities between vectors are taken to be component wise. 

Next, we formulate the problem as a concentrated (unconstrained) entropy problem. To do so, we 

view the basic primal problem as a two stage problem, call it an “equivalent primal problem.” In the 

equivalent model the first stage consists of the standard Generalized Entropy problem (the equality 

portion of the model) for which a dual can be easily formulated. 

The Equivalent primal problem is a solution to the two stage optimization problem: 
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2 1

2 1

1 1 2 2 2 2 2 1 1 1

2 2 2 1 1 1 2 1 2 1

{ { ( , ) ( , ) | [ ], [ ];

[ ]; [ ]} | , }

P P

P P

Sup Sup S P Q S P Q y B E B E

B E B E y

ξ η ξ

η ξ η ξ η η η

+ = =

= = > ≤
                         

(11) 

Theorem 2.1. The equivalent primal problem (11) is equivalent to the following (dual) problem 

| | | | | |

1 2 1 2 2 1 2{ ( , , , ) , | , and }J J N JInf lnZ yλ λ λ λ λ λ λ λ λ+

−
+− + + ∈ ∈ ∈R R R   (12) 

where a,b  denotes the Euclidean scalar (inner) product of the vectors a and b,  

1 1 1 2 2 21 1 1 2 2 2

1 2

1 1 1 2 2 21 1 1 2 2 2

1 2

, ,, ,

1 1 2 2 1 1 2 2

, ,, ,

1 1 2 2 1 1 1 2 2 2

( , , , ) ( ) ( )

( ) ( ) ( , ) ( , )

B BB B

C C

B BB B

C C

Z e e e e dQ dQ

e e dQ e e dQ Z Z

λ ξ λ ξλ ξ λ ξ

λ ξ λ ξλ ξ λ ξ

λ λ λ λ ξ ξ

ξ ξ λ λ λ λ

− −− −

×

− −− −

=

= =

∫∫

∫ ∫
 

and 
1 1 2 2( , , , )λ λ λ λ  are the four sets of Lagrange multipliers associated with (11). To carry out the 

procedure specified in (12) first set λλλ −=−= 21 , and then carry out the minimization.  

Proof: See Appendix. 

To confirm the uniqueness of the solution to problem (12), observe that the function 

1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2
( , , , ) ln ( , , , ) , , , ,Z yλ λ λ λ λ λ λ λ λ η λ η λ λ η= + + + +�  

is strictly convex on its domain 
1 1 2 2 1 1 2 2( ) { ( , , , ) | ( , , , ) }Q Zλ λ λ λ λ λ λ λ λΨ = = < ∞ , and if 

1 1 2 2( , , , )λ λ λ λ → ∞�  as 
1 1 2 2( , , , )λ= λ λ λ λ → ∂Ψ , then problem (12) has a unique solution, where " "∂  

is the boundary of the set Ψ. This is always true in the cases we consider here. A simple example in 

which it does not hold is ( )l e yλλ λ= +  with R as domain. This has no minimum for a positive y. 

Solving (12) yields * * *

1 2, ,λ λ λ , which in turn yields the optimal maximum entropy (posterior) density. 

* *
1 1 1 1 1 2 2 2 2 2, , , ,

* *

1 2 1 1 2 2* *

1 2

*( , ) ( ) ( )
( , ) ( , )

B B B B
e e

Z Z

λ ξ λ ξ λ ξ λ ξ

ρ ξ ξ ρ ξ ρ ξ
λ λ λ λ

− − − +

= =
−

 

This density is naturally factored into a product of the maximum entropy densities of the two sets of 

equations. Therefore, 
1 2andξ ξ  are independent with respect to the reconstructed density 

* *

1 2 1 1 2 2 1 1 2 2*( , ) ( ) ( ) ( ) ( )dP dQ dQξ ξ ρ ξ ρ ξ ξ ξ= , and with respect to the original priors. Once *P  is solved, 

we follow (8), or (9), to get  

*

*

* *

*
[ ] ( ) ( ); 1,2

i

i

i

i i i i i iP

i C

E dQ i
β

ξ ξ ρ ξ ξ
ε

 
= = = 

 
∫

    (13)

 

With that generic formulation, we show below three analytic examples that cover a wide range of 

possible priors and support spaces for ββββ and εεεε. 

3. Large Sample Properties 

Denote by *

iNβ  the estimator of the true 
iβ  when the sample size is N. Throughout this section we 

add a subscript N to all quantities introduced in Section 2 to remind us that the size of the data set is N. 

We show that *

iN iβ β→  and ( ) ( )* ,
iN i i

N β β N 0 V→−−−−  as N → ∞  in some appropriate way. The proof 

is similar in logic to Proposition 3.2 in [14]. We assume: 
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Assumption 3.1. For every sample size N, the minimizers of (12) are all in the interior of their domains: 

( ) ( )* | | * | |

1 1andJ N Jint intλ λ+

−
+∈ ∈R R  where “int” stands for interior. 

Assumption 3.2. Let ( )1 1 1 1t t t t t

i i i i i i i i i i

J N J
X X B B B B B B B B

N N N J N N J

−   
= + = +   

−   
. Then, assume 

there exists ( )0,1α ∈  such that (i) N → ∞  and J → ∞ such that ( )J
N

α→  and (ii) assume that there 

exists two matrices o

iW  and u

iW  such that 
1 t o

i i iB B W
J

→  and 
1 t u

i i iB B W
N J

→
−

.  

Note that ( )
1

1t o u

i i i i iX X W W W
N

α α→ = + − . 

Proposition 3.1. (Convergence in distribution.) Under Assumptions 3.1 and 3.2 

a) * D

iN iβ β→  as N → ∞ , for i=1, 2. 

b) ( )* ( , )D

iN i i
β β N 0 VΝ →−  −  −  −  as N → ∞  

where D→  stands for convergence in distribution and 1

i i i iV W −= Σ Σ , where
iΣ  is the covariance 

matrix of 
iς  with respect to ( , )i i idQ ς ν .   

The approximate finite sample variance is  
2* * *1 t

i i i

i

=   
N K

σ
−

ε ε  for i = 1, 2 and *

* [ ]
i

i iP
E ν=εεεε  as is shown in (8) or similarly in (12). 

4. Analytic Examples 

We discuss three examples, corresponding to assuming that the β’s are either unbounded (Normal), 

bounded below (Gamma) and bounded below and above (Bernoulli). Under the normal priors, the 

minimum described in (12) can be explicitly computed. In the other cases, a numerical computation  

is necessary. 

4.1. Normal Priors 

Let the constraint space be K N

s nC C C= × = ×R R . Using the traditional view and centering the 

support spaces at zero, the prior—a product of two normal distributions—is 

( )2

( )/2 2 1/2

exp , / 2
( )

(2 ) (det )N K
dQ d

ξ ξ
ξ ξ

π

−

+

− Σ
=

Σ
. The covariance Σ  has two diagonal blocks: K K×  and N N× . 

Without loss of generality, we assume that these two matrices are 2 2ands K n NI Iσ σ  respectively. Our 

basic model holds for the general covariance structure 
1

2

Σ 
Σ =  Σ 

.  

Formulating these priors within our model yields 

{ }2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1
ln ( , ) , 2 , ,

2

t t t
Z B B B B B Bλ λ λ λ λ λ λ λ= Σ − Σ + Σ  
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{ }2 2 2

2 2 1 2 2 2 2 2 2 2 2 2 2 2 2

1
ln ( , ) , 2 , ,

2

t t t
Z B B B B B Bλ λ λ λ λ λ λ λ− = Σ + Σ + Σ  

where 2

1Σ  is a diagonal (K + N) × (K + N) matrix, the first block being a K × K matrix with entries 

equal to 2

1,sσ  and the second block is a N × N matrix with entries equal to 2

1,nσ . That is, the priors on 

signal and noise spaces are iid normal random variables. Thus, problem (12) consists of finding the 

minimum of 

( )

{ }

{ }

1 1 2 1 1 2 2 1 2 2

2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

, , , , ,

1
, 2 , ,

2

1
, 2 , ,

2

t t t

t t t

lnZ y y

B B B B B B

B B B B B B

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

− + + = +

+ Σ − Σ + Σ

+ Σ + Σ + Σ

 

over the set described in (12). 

To verify that the minimizer of (12) occurs in the interior of the constraint set, we look at the first 

order conditions 

2 2

1 1 1 1 1 1 1 2 0t tB B B B yλ λΣ − Σ + =  

 2 2

2 2 2 2 2 2 2 2 0t tB B B B yλ λΣ + Σ + =        (14) 

2 2 2 2

1 1 1 1 1 1 1 2 2 2 2 2 2 2 0t t t tB B B B B B B Bλ λ λ λ− Σ + Σ − Σ − Σ =  

A feasible solution to (12) may lie inside the domain of the constraints and provides a solution.   

Once the system is solved for * * *

1 1 2, ,λ λ λ , the estimated densities are  

1 * 2|| || / 2
*

( ) / 2 2 1/ 2
( )

(2 ) (det )

i i i i

i

h

i i iN K

i

e
dP d

ξ

ξ ξ
π

−− Σ +Σ

+
=

Σ
 

which, as expected, are normally distributed. Defining  

*

*

t

t t t t ii

i i i i i i i

i

X
h B B A

I

λ
λ λ µ

λ

  
= + = ≡   

  
 

(recall that * *

2 1λ λ λ= − = −  due to the constraints) we use (13) to get  

*

2 2*

, .* 2

2 2*

, ,

0
[ ]

0i

t

i s i s i it ti

i i i i i iP
i n i n ii

X µ
E A µ A µ

µ

σ σβ
ξ

σ σε

    
= = −Σ = − = −        

     
 

for i = 1, 2 and where 2

.i sσ  and 2

,i n
σ  are matrices. 

4.2. Gamma Priors 

Let β’s be bounded below by 0. This can be easily generalized by an appropriate shifting of the 

support of the distributions. To show the generality of our model, we let the prior on the noise be 

normal thereby showing that one can use different priors for the signal and the noise. 

The signal and noise constraint spaces respectively are [0, )K K

sC += = ∞R  and N

nC = R . The prior is 
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2, /21

/2 2
1

( )
( ) (2 ) (det )

j n
a v vb bK

j

j N
j n

a e e
dQ d dv

b

ς
ς

ξ ς
π

−− − Σ−

=

 
=  
 Γ Σ 
∏  

Before specifying the concentrated entropy function, we study the matrix A1 defined as 

( ) 1 1 1

1 1

1 1 1

B D I
A X I

B D I

   
= = =   

   
. Note that 

1

1

D

D

 
 
 

 splits X1 and 
1

1

I

I

 
 
 

 splits the N × N identity matrix to 

match the splitting of X. The concentrated entropy function is 

( )
( )

( )2 2 2

1 1 1, 1

1 1 1 1

ln , ln
K

nt t
j

j

a
Z b

a D D
λ λ σ λ λ

λ λ=

 
 − = + +
 + +
 

∑  

(Note that 
1 1 1 1 1

t t tD D Xλ λ µ+ =  and 
2 2 2 2 2

t t tD D Xλ λ µ− = .) A similar expression exists for ( )2 2ln ,Z λ λ− . 

The problem (12) consists of minimizing  

( ) ( )

( ) ( )

1 2

1 2 1 2 2

1 11 1 1 2 2 2

2 2 2 2 2 2

1, 1 2, 2 1 2 2

( , , , ) ,

ln ln

,

K K

t t t t
j j

j j

n n

lnZ y

a a
b b

a D D a D D

y

λ λ λ λ λ λ

λ λ λ λ

σ λ λ σ λ λ λ λ

= =

− + +

   
   = +
   + + + −
   

+ + + + + +

∑ ∑  

Once * * *

1 2, ,λ λ λ  are found, the optimal density is 

( )( ) ( )

( )

2
2 * 2
, ,

1 2

*

/2
2

1
,

/

( )
( ) 2

t
i i j

j
i n i i ni

i

b X a
t b

vK
i i jj

i i j N
j

i n

a X e
e

dP d d
b

µ ς
σ µ σµ ς

ξ ς ν
πσ

 − + −   − +

=

 
+ 

=  
Γ 

 
 

∏  

The estimated parameters are 

( ) ( )
( )( )

*

* ; for 1,..., and 1,2
i

i i ijPj t

i i j

b
E j K i

a X
β ς

µ
 = = = = 

+
 

The realized residuals are 

( ) ( ) ( )*

* 2 *

, ; for 1,..., and 1,2
i

i i i n i ilPl l
E v l N iε σ µ = = − = =    

4.3. Bernoulli Priors 

This example represents another extreme case where it is assumed that the β’s are bounded. For 

simplicity, assume that we know that all β’s lie in the interval [a, b], which makes [ , ] iK

sC a b=  the 

choice for all of the constraints on the signal space . For the noise component, we follow the previous 

formulation of normal priors. 

With this background, the prior measure used is 
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( ) ( ) ( )( )
( ) ( )

2, 2

/2 2
1

/
1

2 2 det

nv vK

a j b j N

j n

e
dQ d d dvξ δ ς δ ς

π

−− Σ

=

 
= + 

Σ 
∏  

The concentrated entropies are  

( ) ( ), ,
22

1

1
ln , ln

2

i

i j i j

K
g a g b

i i n ii
j

Z e eλ λ σ µ
− −

=

= + +∑ , i=1, 2 

where t t

i i i i ig D Dλ λ= +  and ( )
t

i i iµ λ λ= . Recall that 
2 1λ λ= − . In this case, the function to be 

minimized is  

( )

( ) ( )

( ) ( )

1 2

1, 1, 2, 2,

1 2 1 2 2

1 1

2 2 2 2 2 2

1, 1 2, 2 1 2 2

, , , ,

1 1
ln ln

2 2

,

j j j j

K K
g a g b g a g b

j j

n n

lnZ y

e e e e

y

λ λ λ λ λ λ

σ λ λ σ λ λ λ λ

− − − −

= =

− + +

= + + +

+ + + + + +

∑ ∑  

which is minimized over the region described in (12). Again, the optimal solutions (minimizing 
* * *

1 2, ,λ λ λ ) is to be found numerically. The estimated post-data is 

( ) ( ) ( )( )
( )

2
2 * 2
, ,2

*

, , / 2
2

1
,

/

2

i n i i n

i

vK

i i j a j i j b j N

j
i n

e
dP p d q d dv

σ µ σ

ξ δ ς δ ς
πσ

− +

=

 
= + 
 
∏  

for i = 1,2 and where 

,

, ,
, ,1

i j

i j i j

ag

i j i jag bg

e
p q

e e

−

− −
= = −

+
 

from which the estimated parameters and residuals are given by 

, ,

, ,

* * 2 *

, ,and
i j i j

i j i j

ag bg

i j i i n iag bg

ae be

e e
β ε σ µ

− −

− −

+
= = −

+
 

5. Empirical Example 

We illustrate the applicability of our approach using an empirical application consisting of a small 

data set. The objective here is to demonstrate that our IT estimator is easy to apply and can be used for 

many different priors. The small sample performance of the IT-GME version of that estimator (uniform 

discrete priors) and detailed comparisons with other competing estimators is already shown in GMP 

and it falls outside the objectives of this note. The empirical example is based on one of the examples 

analyzed in GMP with data drawn from the March 1996 Current Population Survey. We estimated the 

wage-participation model for the subset of respondents in the labor market. Workers who are  

self-employed are excluded from the sample. Since the normal maximum likelihood estimator did not 

converge for that data [15], only results for the OLS, Heckman two-step, a semi-parametric estimator 

with a nonparametric selection mechanism due to [5], AP, and the different IT models developed here 

are reported [16]. To make our results comparable across the IT estimators, we use the empirical 



Entropy 2010, 12                            

 

 

1577

standard deviations in all three cases and use supports between –100 and 100 for the IT-GME (uniform 

discrete priors) and the IT-Bernoulli case. In both the IT-Normal and IT-Bernoulli the priors used for 

the noise components are normal (as is shown in Section 4). Under these very similar specifications, 

we would expect all three IT examples to yield comparable estimates. Naturally, there are many other 

priors to choose from, but the objective here is just to show the flexibility and applicability of our 

approach. 

We analyze a sample of 151 Native American females, of whom 65 are in the labor force. The wage 

equation covariates include years of education, a dummy for currently enrolled in school, potential 

experience (age - education - 6) and potential experience squared, a dummy for rural location, and a 

dummy for central city location. The covariates in the selection equation include all the variables in the 

wage equation and the amount of welfare payments received in the previous year, a dummy equal one 

for married, and the number of children. We use the three exclusion restrictions to identify the wage 

equation in the parametric and nonparametric two-step approaches. 

Table 1. Estimates of the Native American wage equation (151 individuals; 65 in labor force). 

 OLS 2-Step
 

AP IT-GME IT-Normal IT-Bernoulli 

Constant 1.073 1.771 NA 1.038 1.049 1.068 

Education 0.055 0.043 0.044 0.054 0.056 0.055 

Experience 0.038 0.023 0.038 0.038 0.038 0.038 

Experience Squared –0.001 –0.0005 –0.001 –0.001 –0.001 –0.001 

Rural 0.214 0.268 0.332 0.210 0.215 0.214 

Central City –0.170 –0.091 –0.171 –0.186 –0.166 –0.169 

Enrolled in School –0.290 –0.471 –0.190 –0.301 –0.283 –0.288 

λ  –0.461     

R
2 

0.355 0.376 NA 0.343 0.355 0.354 

MSPE 0.157 0.135 NA 0.147 0.144 0.144 

Notes: Bold numbers reflect significantly different than zero at the 10% level 

Table 1 presents the estimated coefficients for the wage equation. The R
2
 and Mean Squared 

Prediction Error (MSPE) for each model are presented as well. All IT estimators outperform the other 

estimators in terms of predicting selection [17]. The estimated return to education is about 5% across 

all estimation methods, but only statistically significantly different from 0 for the OLS and the IT 

estimators. Though, all estimators have estimated parameters of the same magnitude and sign, only the 

OLS and the three reported IT estimates are statistically significantly different from zero in most cases.   

6. Conclusion 

In this short paper we develop a simple to apply, information-theoretic, method for analyzing 

nonlinear data with sample selection problem. Rather than using a likelihood approach or a  

semi-parametric approach we generalized further the IT-GME model of Golan, Moretti and Perloff 

(2004). Our model (i) allows for bounded and unbounded supports on all the unknown parameters, (ii) 

allows us to use a whole class of priors (continuous or discrete), (iii) is specified as a nonlinear 

concentrated entropy model, and (iv) is easy to apply. Like GMP our model works well even with 
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small data. This is shown in our empirical example. The extensions developed here mark a significant 

improvement on the GMP model and other IT, generalized entropy models.  

A detailed set of sampling experiments comparing our IT method with all other competitors, under 

different data processes, will be done in future work. 
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Appendix  

Proof of Theorem 2.1. 

Proof: Recall (11) 

                   
2 1

2 1

1 1 2 2 2 2 2 1 1 1

2 2 2 1 1 1 2 1 2 1

{ { ( , ) ( , ) | [ ], [ ];

[ ]; [ ]} | , }

P P

P P

Sup Sup S P Q S P Q y B E B E

B E B E y

ξ η ξ

η ξ η ξ η η η

+ = =

= = > ≤
                  (A.1) 

First, note that the inner problem in (A.1) is equivalent to  

( ) ( )1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2, , , ln , , , , , , ,Z yλ λ λ λ λ λ λ λ λ η λ η λ λ η= + + + +�  

where 
iλ  and 

iλ  (i=1, 2) are the Lagrange multipliers associated with the data (9) and Z is the 

normalization factor of dP1dP2: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 2 21 1 1 2 2 2

1 2

1 1 1 2 2 21 1 1 2 2 2

1 2

, ,, ,
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Z e e e e dQ dQ

e e dQ e e dQ Z Z

λ ξ λ ξλ ξ λ ξ

λ ξ λ ξλ ξ λ ξ

λ λ λ λ ξ ξ

ξ ξ λ λ λ λ

− −− −

×

− −− −

=

= =

∫∫

∫ ∫
 

Note that the inner sup is over (P1, P2), and the outer sup is over the ηηηη’s in the region indicated 

within the {}⋅ . The basic idea here is to replace the inequalities appearing in problem (10) with 

equalities. Next, the dual-unconstrained model of this inner primal problem is the solution to  

( ){ }| | | |, | , and forJ N J

i i i i
Inf i = 1,2λ λ λ λ −∈ ∈� R R

λλλλ

 

where |J| is the number of observations where y2i > y1i. With this step, the equivalent dual model of the 

primal problem (A.1) is 

 
( )1 1 2 2 1 1 1 1 2 2 2 2

| | | |

2 1 2 1

, , , , , , ,

, and ,

{

}

{ |

| }J N J

i i

Sup Inf lnZ y

y for i = 1,2

λ λ λ λ λ η λ η λ λ η

λ λ η η η−

+ + + +

∈ ∈ > ≤R R

          (A.2) 

Next, we rewrite the constraints for the outer problem. The constraint 2 1y η>  is rewritten as 

1 2 , 0yη ζ ζ= − > , and the constraint 2 1η η≤ is written as | |

2 ,N Jη −∈R  
1 2 , 0.η η ζ ζ= + ≥  Model 

(A.2) becomes 

( )1 1 2 2 1 2 2 1 1 2 1 2

| | | |

1

, , , , , , ,

, and 0, , 0

{

}

{ |

| }J N J

i i

Sup Inf lnZ yλ λ λ λ λ λ λ ζ λ λ η λ ζ

λ λ ζ η ζ−

+ + − + + +

∈ ∈ > ≥R R

 

Next, exchanging the sup and the inf operations we get 

( )1 1 2 2 1 2 2 1 1 2 1 2

| | | |

1

, , , , , , ,

0, , 0 , and

{

}

{ |

| }J N J

i i

Inf lnZ y Supλ λ λ λ λ λ λ ζ λ λ η λ ζ

ζ η ζ λ λ −

+ + + − + + +

> ≥ ∈ ∈R R

 

To compute the inner supremum, note that 
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{ }

{ }

d

d

0 if
Sup , | 0

otherwise

0 if
Sup , | 0

otherwise

+

+

 − λ ∈
λ ζ ζ > = 

∞

 − λ ∈
λ ζ ζ ≥ = 

∞

�

�

R

R

 

where d
+
�
R  denotes the non-negative orthant in d�

R , the right hand side of the last identity is usually 

written as ( )dI
+

−λ�
R

 and ( )I x
A

 is defined as ( )
0 if x A

I x
if x A

∈
= 

∞ ∉
A

.The difference between the first and 

second problem is that in the first the supremum is reached only when 0λ = , whereas in the second it 

is reached at the boundary of d
+
�
R . Similarly,  

{ } ( ){0}

dMax , | Iλ ζ ζ ∈ = λ� R  

Noting that 
1 2λ λ λ= − ≡ , our MinMax problem (A.2) reduces to finding  

( ) ( ) ( ){ }d d1 2 1 2 2 1 1 1 2

|J| |J| N |J|Inf Z , , , , y I I , and|ln
+ +

−λ −λ λ λ + λ + λ + λ + λ λ ∈ λ ∈ λ ∈� �
R R

R R R  

which simplified to 

( ){ }| | | | | |

1 2 1 2 2 1 2 1, , , , | , andJ J N JInf lnZ yλ λ λ λ λ λ λ λ λ+

−
+− + + ∈ ∈ ∈R R R  

which is (12).  

□ 
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