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Abstract: In his 1985 article (“Projection pursuit”), Huber demonstrates the interest of
his method to estimate a density from a data set in a simple given case. He considers the
factorization of density through a Gaussian component and some residual density. Huber’s
work is based on maximizing Kullback–Leibler divergence. Our proposal leads to a new
algorithm. Furthermore, we will also consider the case when the density to be factorized
is estimated from an i.i.d. sample. We will then propose a test for the factorization of the
estimated density. Applications include a new test of fit pertaining to the elliptical copulas.
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1. Outline of the Article

The objective of projection pursuit is to generate one or several projections providing as much
information as possible about the structure of the data set regardless of its size:

Once a structure has been isolated, the corresponding data are transformed through a Gaussianization.
Through a recursive approach, this process is iterated to find another structure in the remaining data, until
no further structure can be evidenced in the data left at the end.

Friedman [1] and Huber [2] count among the first authors to have introduced this type of approaches
for evidencing structures. They each describe, with many examples, how to evidence such a structure
and consequently how to estimate the density of such data through two different methodologies each.
Their work is based on maximizing Kullback–Leibler divergence.
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For a very long time, the two methodologies exposed by each of the above authors were thought to be
equivalent but Zhu [3] showed it was in fact not the case when the number of iterations in the algorithms
exceeds the dimension of the space containing the data, i.e., in case of density estimation. In the present
article, we will therefore only focus on Huber’s study while taking into account the Zhu remarks.

At present, let us briefly introduce Huber’s methodology. We will then expose our approach
and objective.

1.1. Huber’s analytic approach

Let f be a density on Rd. We define an instrumental density g with same mean and variance
as f . Huber’s methodology requires us to start with performing the K(f, g) = 0 test—with K being
the Kullback–Leibler divergence. Should this test turn out to be positive, then f = g and the algorithm
stops. If the test were not to be verified, the first step of Huber’s algorithm amounts to defining a vector
a1 and a density f (1) by

a1 = arg inf
a∈Rd

∗

K(f
ga
fa
, g) and f (1) = f

ga1
fa1

(1.1)

where Rd
∗ is the set of non-null vectors of Rd, where fa (resp. ga) stands for the density of a⊤X

(resp. a⊤Y ) when f (resp. g) is the density of X (resp. Y ). More exactly, this results from the
maximisation of a 7→ K(fa, ga) since K(f, g) = K(fa, ga) +K(f ga

fa
, g) and it is assumed that K(f, g)

is finite. In a second step, Huber replaces f with f (1) and goes through the first step again.
By iterating this process, Huber thus obtains a sequence (a1, a2, ...) of vectors of Rd

∗ and a sequence
of densities f (i).

Remark 1.1. Huber stops his algorithm when the Kullback–Leibler divergence equals zero or when his
algorithm reaches the dth iteration, he then obtains an approximation of f from g:
When there exists an integer j such that K(f (j), g) = 0 with j ≤ d, he obtains f (j) = g, i.e.,

f = gΠj
i=1

f
(i−1)
ai

gai
since by induction f (j) = fΠj

i=1
gai

f
(i−1)
ai

. Similarly, when, for all j, Huber gets

K(f (j), g) > 0 with j ≤ d, he assumes g = f (d) in order to derive f = gΠd
i=1

f
(i−1)
ai

gai
.

He can also stop his algorithm when the Kullback–Leibler divergence equals zero without the condition
j ≤ d is met. Therefore, since by induction we have f (j) = fΠj

i=1
gai

f
(i−1)
ai

with f (0) = f , we obtain

g = fΠj
i=1

gai

f
(i−1)
ai

. Consequently, we derive a representation of f as f = gΠj
i=1

f
(i−1)
ai

gai
.

Finally, he obtains K(f (0), g) ≥ K(f (1), g) ≥ ..... ≥ 0 with f (0) = f .

1.2. Huber’s synthetic approach

Keeping the notations of the above section, we start with performing the K(f, g) = 0 test; should this
test turn out to be positive, then f = g and the algorithm stops, otherwise, the first step of his algorithm
would consist in defining a vector a1 and a density g(1) by

a1 = arg inf
a∈Rd

∗

K(f, g
fa
ga
) and g(1) = g

fa1
ga1

(1.2)

More exactly, this optimisation results from the maximisation of a 7→ K(fa, ga) since
K(f, g) = K(fa, ga) + K(f, g fa

ga
) and it is assumed that K(f, g) is finite. In a second step, Huber
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replaces g with g(1) and goes through the first step again. By iterating this process, Huber thus obtains a
sequence (a1, a2, ...) of vectors of Rd

∗ and a sequence of densities g(i).

Remark 1.2. First, in a similar manner to the analytic approach, this methodology enables us to
approximate and even to represent f from g:
To obtain an approximation of f , Huber either stops his algorithm when the Kullback–Leibler divergence
equals zero, i.e., K(f, g(j)) = 0 implies g(j) = f with j ≤ d, or when his algorithm reaches the dth

iteration, i.e., he approximates f with g(d).

To obtain a representation of f , Huber stops his algorithm when the Kullback–Leibler divergence
equals zero, since K(f, g(j)) = 0 implies g(j) = f . Therefore, since by induction we have
g(j) = gΠj

i=1
fai

g
(i−1)
ai

with g(0) = g, we then obtain f = gΠj
i=1

fai

g
(i−1)
ai

.

Second, he gets K(f, g(0)) ≥ K(f, g(1)) ≥ ..... ≥ 0 with g(0) = g.

1.3. Proposal

Let us first introduce the concept of ϕ−divergence.
Let φ be a strictly convex function defined by φ : R+ → R+, and such that φ(1) = 0. We define a

ϕ−divergence of P from Q—where P and Q are two probability distributions over a space Ω such that
Q is absolutely continuous with respect to P—by

Dϕ(Q,P ) =

∫
φ(
dQ

dP
)dP

or Dϕ(q, p) =
∫
φ( q(x)

p(x)
)p(x)dx, if P and Q present p and q as density respectively.

Throughout this article, we will also assume that φ(0) < ∞, that φ′ is continuous and that this
divergence is greater than the L1 distance—see also Appendix A.1 page 1604.

Now, let us introduce our algorithm.
We start with performing the Dϕ(g, f) = 0 test; should this test turn out to be positive, then f = g

and the algorithm stops, otherwise, the first step of our algorithm would consist in defining a vector a1
and a density g(1) by

a1 = arg inf
a∈Rd

∗

Dϕ(g
fa
ga
, f) and g(1) = g

fa1
ga1

(1.3)

Later on, we will prove that a1 simultaneously optimises (1.1), (1.2) and (1.3).
In our second step, we will replace g with g(1), and we will repeat the first step.

And so on, by iterating this process, we will end up obtaining a sequence (a1, a2, ...) of vectors in Rd
∗

and a sequence of densities g(i).
We will thus prove that the underlying structures of f evidenced through this method are identical

to the ones obtained through Huber’s method. We will also evidence the above structures, which will
enable us to infer more information on f—see example below.

Remark 1.3. As in the previous algorithm, we first provide an approximate and even a representation
of f from g: To obtain an approximation of f , we stop our algorithm when the divergence equals zero,
i.e., Dϕ(g

(j), f) = 0 implies g(j) = f with j ≤ d, or when our algorithm reaches the dth iteration, i.e.,
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we approximate f with g(d).
To obtain a representation of f , we stop our algorithm when the divergence equals zero. Therefore, since
by induction we have g(j) = gΠj

i=1
fai

g
(i−1)
ai

with g(0) = g, we then obtain f = gΠj
i=1

fai

g
(i−1)
ai

.

Second, we get Dϕ(g
(0), f) ≥ Dϕ(g

(1), f) ≥ ..... ≥ 0 with g(0) = g.
Finally, the specific form of relationship (1.3) establishes that we deal with M-estimation. We can
therefore state that our method is more robust than Huber’s—see Yohai [4], Toma [5] as well as
Huber [6].

At present, let us study two examples:

Example 1.1. Let f be a density defined on R3 by f(x1, x2, x3) = n(x1, x2)h(x3), with n being
a bi-dimensional Gaussian density, and h being a non-Gaussian density. Let us also consider g, a
Gaussian density with same mean and variance as f .
Since g(x1, x2/x3) = n(x1, x2), we then have Dϕ(g

f3
g3
, f) = Dϕ(n.f3, f) = Dϕ(f, f) = 0 as f3 = h,

i.e., the function a 7→ Dϕ(g
fa
ga
, f) reaches zero for e3 = (0, 0, 1)′—where f3 and g3 are the third marginal

densities of f and g respectively.
We therefore obtain g(x1, x2/x3) = f(x1, x2/x3).

Example 1.2. Assuming that the ϕ-divergence is greater than the L2 norm. Let us consider (Xn)n≥0, the
Markov chain with continuous state space E. Let f be the density of (X0, X1) and let g be the normal
density with same mean and variance as f .
Let us now assume that Dϕ(g

(1), f) = 0 with g(1)(x) = g(x)f1
g1

, i.e., let us assume that our algorithm
stops for a1 = (1, 0)′. Consequently, if (Y0, Y1) is a random vector with g density, then the distribution
law of X1 given X0 is Gaussian and is equal to the distribution law of Y1 given Y0.
And then, for any sequence (Ai)—where Ai ⊂ E—we have
P
(
Xn+1 ∈ An+1 | X0 ∈ A0, X1 ∈ A1, . . . , Xn−1 ∈ An−1, Xn ∈ An

)
= P (Xn+1 ∈ An+1 | Xn ∈ An) , based on the very definition of a Markov chain,
= P (X1 ∈ A1 | X0 ∈ A0) , through the Markov property,
= P (Y1 ∈ A1 | Y0 ∈ A0) , as a consequence of the above nullity of the ϕ-divergence.

To recapitulate our method, if Dϕ(g, f) = 0, we derive f from the relationship f = g; should a
sequence (ai)i=1,...j , j < d, of vectors in Rd

∗ defining g(j) and such that Dϕ(g
(j), f) = 0 exist, then

f(./a⊤i x, 1 ≤ i ≤ j) = g(./a⊤i x, 1 ≤ i ≤ j), i.e., f coincides with g on the complement of the vector
subspace generated by the family {ai}i=1,...,j—see also Section 2 for a more detailed explanation.

In this paper, after having clarified the choice of g, we will consider the statistical solution to the
representation problem, assuming that f is unknown and X1, X2,... Xm are i.i.d. with density f . We will
provide asymptotic results pertaining to the family of optimizing vectors ak,m—that we will define more
precisely below—as m goes to infinity. Our results also prove that the empirical representation scheme
converges towards the theoretical one. As an application, Section 3.4 permits a new test of fit pertaining
to the copula of an unknown density f , Section 3.5 gives us an estimate of a density deconvoluted with a
Gaussian component and Section 3.6 presents some applications to regression analysis. Finally, we will
present simulations and an application to real datasets.
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2. The Algorithm

2.1. The model

As explained by Friedman [1] and Diaconis [7], the choice of g depends on the family of distribution
one wants to find in f . Until now, the choice has only been to use the class of Gaussian distributions.
This can be extended to the class of elliptic distributions with almost all ϕ−divergences.

Elliptical laws

The interest of this class lies in the fact that conditional densities with elliptical distributions are
also elliptical—see Cambanis [8], Landsman [9]. This very property allows us to use this class in
our algorithm.

Definition 2.1. X is said to abide by a multivariate elliptical distribution—noted X ∼ Ed(µ,Σ, ξd)—if
X presents the following density, for any x in Rd :

fX(x) =
cd

|Σ|1/2 ξd

(
1
2
(x− µ)′Σ−1(x− µ)

)
• with Σ, being a d× d positive-definite matrix and with µ, being a d-column vector,
• with ξd, being referred as the “density generator”,

• with cd, being a normalisation constant, such that cd =
Γ(d/2)

(2π)d/2

( ∫∞
0
xd/2−1ξd(x)dx

)−1

,

with
∫∞
0
xd/2−1ξd(x)dx <∞.

Property 2.1. 1/ For any X ∼ Ed(µ,Σ, ξd), for any A, being an m× d matrix with rank m ≤ d, and for
any b, being an m-dimensional vector, we have AX + b ∼ Em(Aµ+ b, AΣA′, ξm).
Therefore, any marginal density of multivariate elliptical distribution is elliptic, i.e.,
X = (X1, X2, ..., Xd) ∼ Ed(µ,Σ, ξd) ⇒ Xi ∼ E1(µi, σ

2
i , ξ1), fXi

(x) = c1
σi
ξ1

(
1
2
(x−µi

σ
)2
)
, 1 ≤ i ≤ d.

2/ Corollary 5 of Cambanis [8] states that conditional densities with elliptical distributions are also
elliptic. Indeed, ifX = (X1, X2)

′ ∼ Ed(µ,Σ, ξd), with X1 (resp. X2) being a size d1 < d (resp. d2 < d),
then X1/(X2 = a) ∼ Ed1(µ

′,Σ′, ξd1) with µ′ = µ1 +Σ12Σ
−1
22 (a− µ2) and Σ′ = Σ11 −Σ12Σ

−1
22 Σ21, with

µ = (µ1, µ2) and Σ = (Σij)1≤i,j≤2.

Remark 2.1. Landsman [9] shows that multivariate Gaussian distributions derive from ξd(x) = e−x.
He also shows that if X = (X1, ..., Xd) has an elliptical density such that its marginals verify
E(Xi) < ∞ and E(X2

i ) < ∞ for 1 ≤ i ≤ d, then µ is the mean of X and Σ is a multiple of the
covariance matrix of X . Consequently, from now on, we will assume that we are in this case.

Definition 2.2. Let t be an elliptical density on Rk and let q be an elliptical density on Rk′ . The
elliptical densities t and q are said to belong to the same family—or class—of elliptical densities, if their
generating densities are ξk and ξk′ respectively, which belong to a common given family of densities.

Example 2.1. Consider two Gaussian densities N (0, 1) and N ((0, 0), Id2). They are said to belong to
the same elliptical families as they both present x 7→ e−x as generating density.
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Choice of g

Let us begin with studying the following case:
Let f be a density on Rd. Let us assume there exists d non-null linearly independent vectors aj , with

1 ≤ j ≤ d, of Rd, such that

f(x) = n(a⊤j+1x, ..., a
⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x) (2.1)

with j < d, with n being an elliptical density on Rd−j−1 and with h being a density on Rj , which does
not belong to the same family as n. Let X = (X1, ..., Xd) be a vector presenting f as density.

Define g as an elliptical distribution with same mean and variance as f .
For simplicity, let us assume that the family {aj}1≤j≤d is the canonical basis of Rd:
The very definition of f implies that (Xj+1, ..., Xd) is independent from (X1, ..., Xj). Hence, the

density of (Xj+1, ..., Xd) given (X1, ..., Xj) is n.
Let us assume that Dϕ(g

(j), f) = 0, for some j ≤ d. We then get f(x)
fa1fa2 ...faj

= g(x)

g
(1−1)
a1

g
(2−1)
a2

...g
(j−1)
aj

,

since, by induction, we have g(j)(x) = g(x)
fa1

g
(1−1)
a1

fa2

g
(2−1)
a2

...
faj

g
(j−1)
aj

.

Consequently, the fact that conditional densities with elliptical distributions are also elliptical enables
us to infer that

n(a⊤j+1x, ., a
⊤
d x) = f(./a⊤i x, 1 ≤ i ≤ j) = g(./a⊤i x, 1 ≤ i ≤ j)

In other words, f coincides with g on the complement of the vector subspace generated by the family
{ai}i=1,...,j .

Now, if the family {aj}1≤j≤d is no longer the canonical basis of Rd, then this family is again a basis
of Rd. Hence, Lemma D.1—page 1607—implies that

g(./a⊤1 x, ..., a
⊤
j x) = n(a⊤j+1x, ..., a

⊤
d x) = f(./a⊤1 x, ..., a

⊤
j x) (2.2)

which is equivalent to having Dϕ(g
(j), f) = 0—since by induction g(j) = g

fa1

g
(1−1)
a1

fa2

g
(2−1)
a2

...
faj

g
(j−1)
aj

.

The end of our algorithm implies that f coincides with g on the complement of the vector subspace
generated by the family {ai}i=1,...,j . Therefore, the nullity of the ϕ−divergence provides us with
information on the density structure.

In summary, the following proposition clarifies our choice of g which depends on the family of
distribution one wants to find in f :

Proposition 2.1. With the above notations, Dϕ(g
(j), f) = 0 is equivalent to

g(./a⊤1 x, ..., a
⊤
j x) = f(./a⊤1 x, ..., a

⊤
j x)

More generally, the above proposition leads us to defining the co-support of f as the vector space
generated from vectors a1, ..., aj .

Definition 2.3. Let f be a density on Rd. We define the co-vectors of f as the sequence of vectors
a1, ..., aj which solves the problem Dϕ(g

(j), f) = 0 where g is an elliptical distribution with same mean
and variance as f . We define the co-support of f as the vector space generated from vectors a1, ..., aj .

Remark 2.2. Any (ai) family defining f as in (2.1), is an orthogonal basis of Rd—see Lemma D.2
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2.2. Stochastic outline of our algorithm

Let X1, X2,..,Xm (resp. Y1, Y2,..,Ym) be a sequence of m independent random vectors with same
density f (resp. g). As customary in nonparametric ϕ−divergence optimizations, all estimates of f and
fa as well as all uses of Monté Carlo’s methods are being performed using subsamples X1, X2,..,Xn

and Y1, Y2,..,Yn—extracted respectively from X1, X2,..,Xm and Y1, Y2,..,Ym—since the estimates are
bounded below by some positive deterministic sequence θm—see Appendix B.

Let Pn be the empirical measure of the subsample X1, X2,.,Xn. Let fn (resp. fa,n for any a in Rd
∗) be

the kernel estimate of f (resp. fa), which is built from X1, X2,..,Xn (resp. a⊤X1, a⊤X2,..,a⊤Xn).
As defined in Section 1.3, we introduce the following sequences (ak)k≥1 and (g(k))k≥1:

• ak is a non null vector of Rd such that ak = argmin
a∈Rd

∗

Dϕ(g
(k−1) fa

g
(k−1)
a

, f) (2.3)

• g(k) is the density such that g(k) = g(k−1) fak

g
(k−1)
ak

with g(0) = g

The stochastic setting up of the algorithm uses fn and g(0)n = g instead of f and g(0) = g—since g
is known. Thus, at the first step, we build the vector ǎ1 which minimizes the ϕ−divergence between fn
and g fa,n

ga
and which estimates a1 :

Proposition B.1 page 1606 and Lemma D.3 page 1607 enable us to minimize the ϕ−divergence
between fn and g fa,n

ga
. Defining ǎ1 as the argument of this minimization, Proposition 3.3 page 1589

shows us that this vector tends to a1.
Finally, we define the density ǧ(1)m as ǧ(1)m = g

fǎ1,m
gǎ1

which estimates g(1) through Theorem 3.1.

Now, from the second step and as defined in Section 1.3, the density g(k−1) is unknown. Consequently,
once again, we have to truncate the samples:

All estimates of f and fa (resp. g(1) and g(1)a ) are being performed using a subsample X1, X2,..,Xn

(resp. Y (1)
1 , Y (1)

2 ,..,Y (1)
n ) extracted from X1, X2,..,Xm (resp. Y (1)

1 , Y (1)
2 ,..,Y (1)

m —which is a sequence of
m independent random vectors with same density g(1)) such that the estimates are bounded below by
some positive deterministic sequence θm—see Appendix B.

Let Pn be the empirical measure of the subsample X1, X2,..,Xn. Let fn (resp. g(1)n , fa,n, g(1)a,n for any
a in Rd

∗) be the kernel estimate of f (resp. g(1) and fa as well as g(1)a ) which is built from X1, X2,..,Xn

(resp. Y (1)
1 , Y (1)

2 ,..,Y (1)
n and a⊤X1, a⊤X2,..,a⊤Xn as well as a⊤Y (1)

1 , a⊤Y (1)
2 ,..,a⊤Y (1)

n ). The stochastic
setting up of the algorithm uses fn and g(1)n instead of f and g(1).

Thus, we build the vector ǎ2 which minimizes the ϕ−divergence between fn and g(1)n
fa,n

g
(1)
a,n

—since g(1)

and g(1)a are unknown—and which estimates a2.
Proposition B.1 page 1606 and Lemma D.3 page 1607 enable us to minimize the ϕ−divergence

between fn and g(1)n
fa,n

g
(1)
a,n

. Defining ǎ2 as the argument of this minimization, Proposition 3.3 page 1589

shows us that this vector tends to a2 in n. Finally, we define the density ǧ(2)n as ǧ(2)n = g
(1)
n

fǎ2,n

g
(1)
ǎ2,n

which

estimates g(2) through Theorem 3.1.
And so on, we will end up obtaining a sequence (ǎ1, ǎ2, ...) of vectors in Rd

∗ estimating the co-vectors
of f and a sequence of densities (ǧ(k)n )k such that ǧ(k)n estimates g(k) through Theorem 3.1.
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3. Results

3.1. Convergence results

3.1.1. Hypotheses on f

In this paragraph, we define the set of hypotheses on f which could possibly be of use in our work.
Discussion on several of these hypotheses can be found in Appendix C.
In this section, to be more legible we replace g with g(k−1). Let

Θ = Rd, ΘDϕ = {b ∈ Θ |
∫
φ∗(φ′( g(x)

f(x)
fb(b

⊤x)
gb(b⊤x)

))dP <∞}
M(b, a, x) =

∫
φ′( g(x)

f(x)
fb(b

⊤x)
gb(b⊤x)

)g(x)fa(a
⊤x)

ga(a⊤x)
dx− φ∗(φ′( g(x)

f(x)
fb(b

⊤x)
gb(b⊤x)

))

PnM(b, a) =
∫
M(b, a, x)dPn, PM(b, a) =

∫
M(b, a, x)dP

where P is the probability measure presenting f as density.
Similarly as in chapter V of Van der Vaart [10], let us define :

(H1) : For all ε > 0, there is η > 0, such that for all c ∈ ΘDϕ verifying ∥c− ak∥ ≥ ε,

we have PM(c, a)− η > PM(ak, a), with a ∈ Θ.

(H2) : ∃ Z < 0, n0 > 0 such that (n ≥ n0 ⇒ supa∈Θ sup
c∈{ΘDϕ}c PnM(c, a) < Z)

(H3) : There is a neighbourhood V of ak, and a positive function H , such that,
for all c ∈ V , we have |M(c, ak, x)| ≤ H(x) (P− a.s.) with PH <∞,

(H4) : There is a neighbourhood V of ak, such that for all ε, there is a η such that for
all c ∈ V and a ∈ Θ, verifying ∥a− ak∥ ≥ ε, we have PM(c, ak) < PM(c, a)− η.

Putting Iak = ∂2

∂a2
Dϕ(g

fak
gak
, f), and x→ ρ(b, a, x) = φ′( g(x)fb(b

⊤x)
f(x)gb(b⊤x)

)g(x)fa(a
⊤x)

ga(a⊤x)
, putting:

(H5) : The function φ is C3 in (0,+∞) and there is a neighbourhood V ′
k of (ak, ak) such that, for

all (b, a) of V ′
k , the gradient ∇(g(x)fa(a

⊤x)
ga(a⊤x)

) and the Hessian H(g(x)fa(a
⊤x)

ga(a⊤x)
) exist (λ_a.s.), and

the first order partial derivatives g(x)fa(a⊤x)
ga(a⊤x)

and the first and second order derivatives of
(b, a) 7→ ρ(b, a, x) are dominated (λ_a.s.) by λ-integrable functions.

(H6) : The function (b, a) 7→M(b, a) is C3 in a neighbourhood Vk of (ak, ak) for all x; and the
partial derivatives of (b, a) 7→M(b, a) are all dominated in Vk by a P_integrable function H(x).

(H7) : P∥ ∂
∂b
M(ak, ak)∥2 and P∥ ∂

∂a
M(ak, ak)∥2 are finite and the expressions P ∂2

∂bi∂bj
M(ak, ak) and

Iak exist and are invertible.
(H8) : There exists k such that PM(ak, ak) = 0.
(H9) : (V arP(M(ak, ak)))

1/2 exists and is invertible.
(H0) : f and g are assumed to be positive and bounded and such that K(g, f) ≥

∫
|f(x)− g(x)|dx.

3.1.2. Estimation of the first co-vector of f

Let R be the class of all positive functions r defined on R and such that g(x)r(a⊤x) is a density on
Rd for all a belonging to Rd

∗. The following proposition shows that there exists a vector a such that fa
ga

minimizes Dϕ(gr, f) in r:

Proposition 3.1. There exists a vector a belonging to Rd
∗ such that

argmin
r∈R

Dϕ(gr, f) =
fa
ga

and r(a⊤x) =
fa(a

⊤x)

ga(a⊤x)
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Remark 3.1. This proposition proves that a1 simultaneously optimises (1.1), (1.2) and (1.3). In other
words, it proves that the underlying structures of f evidenced through our method are identical to the
ones obtained through Huber’s methods.

Following Broniatowski [11], let us introduce the estimate of Dϕ(g
fa,n
ga
, fn), through

Ďϕ(g
fa,n
ga
, fn) =

∫
M(a, a, x)dPn(x)

Proposition 3.2. Let ǎ be such that ǎ := arg infa∈Rd
∗
Ďϕ(g

fa,n
ga
, fn).

Then, ǎ is a strongly convergent estimate of a, as defined in Proposition 3.1.

Let us also introduce the following sequences (ǎk)k≥1 and (ǧ
(k)
n )k≥1, for any given n—see

Section 2.2.:
• ǎk is an estimate of ak as defined in Proposition 3.2 with ǧ(k−1)

n instead of g,

• ǧ(k)n is such that ǧ(0)n = g, ǧ(k)n (x) = ǧ
(k−1)
n (x)

fǎk,n(ǎ⊤k x)

[ǧ(k−1)]ǎk,n(ǎ⊤k x)
, i.e., ǧ(k)n (x) = g(x)Πk

j=1

fǎj ,n(ǎ
⊤
j x)

[ǧ(j−1)]ǎj ,n(ǎ
⊤
j x)

.

We also note that ǧ(k)n is a density.

3.1.3. Convergence study at the kth step of the algorithm:

In this paragraph, we will show that the sequence (ǎk)n converges towards ak and that the sequence
(ǧ

(k)
n )n converges towards g(k).
Let čn(a) = arg supc∈Θ PnM(c, a), with a ∈ Θ, and γ̌n = arg infa∈Θ supc∈Θ PnM(c, a). We state

Proposition 3.3. Both supa∈Θ ∥čn(a)− ak∥ and γ̌n converge toward ak a.s.

Finally, the following theorem shows that ǧ(k)n converges almost everywhere towards g(k):

Theorem 3.1. It holds ǧ(k)n →n g
(k) a.s.

3.2. Asymptotic Inference at the kth step of the algorithm

The following theorem shows that ǧ(k)n converges towards g(k) at the rate OP(n
− 2

2+d ) in three different
cases, namely for any given x, with the L1 distance and with the Kullback–Leibler divergence:

Theorem 3.2. It holds |ǧ(k)n (x) − g(k)(x)| = OP(n
− 2

2+d ),
∫
|ǧ(k)n (x) − g(k)(x)|dx = OP(n

− 2
2+d ) and

|K(ǧ
(k)
n , f)−K(g(k), f)| = OP(n

− 2
2+d ).

The following theorem shows that the laws of our estimators of ak, namely čn(ak) and γ̌n, converge
towards a linear combination of Gaussian variables.

Theorem 3.3. It holds
√
nA.(čn(ak)− ak)

Law→ B.Nd(0,P∥ ∂
∂b
M(ak, ak)∥2) + C.Nd(0,P∥ ∂

∂a
M(ak, ak)∥2) and

√
nA.(γ̌n − ak)

Law→ C.Nd(0,P∥ ∂
∂b
M(ak, ak)∥2) + C.Nd(0,P∥ ∂

∂a
M(ak, ak)∥2)

where A = P ∂2

∂b∂b
M(ak, ak)(P

∂2

∂ai∂aj
M(ak, ak) +P ∂2

∂ai∂bj
M(ak, ak)), C = P ∂2

∂b∂b
M(ak, ak) and

B = P ∂2

∂b∂b
M(ak, ak) +P ∂2

∂ai∂aj
M(ak, ak) +P ∂2

∂ai∂bj
M(ak, ak).
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3.3. A stopping rule for the procedure

In this paragraph, we will call ǧ(k)n (resp. ǧ
(k)
a,n) the kernel estimator of ǧ(k) (resp. ǧ

(k)
a ). We will

first show that g(k)n converges towards f in k and n. Then, we will provide a stopping rule for this
identification procedure.

3.3.1. Estimation of f

The following proposition provides us with an estimate of f :

Theorem 3.4. We have limn limk ǧ
(k)
n = f a.s.

Consequently, the following corollary shows that Dϕ(g
(k−1)
n

fak,n

g
(k−1)
ak,n

, fak,n) converges towards zero as k

and then as n go to infinity:

Corollary 3.1. We have limn limkDϕ(ǧ
(k)
n

fak,n

[ǧ(k)]ak,n
, fn) = 0 a.s.

3.3.2. Testing of the criteria

In this paragraph, through a test of our criteria, namely a 7→ Dϕ(ǧ
(k)
n

fa,n
[ǧ(k)]a,n

, fn), we will build a
stopping rule for this procedure. First, the next theorem enables us to derive the law of our criteria:

Theorem 3.5. For a fixed k, we have
√
n(V arP(M(čn(γ̌n), γ̌n)))

−1/2(PnM(čn(γ̌n), γ̌n)− PnM(ak, ak))
Law→ N (0, I),

where k represents the kth step of our algorithm and where I is the identity matrix in Rd.

Note that k is fixed in Theorem 3.5 since γ̌n = arg infa∈Θ supc∈Θ PnM(c, a) where M is a known
function of k—see Section 3.1. Thus, in the case when Dϕ(g

(k−1) fak

g
(k−1)
ak

, f) = 0, we obtain

Corollary 3.2. We have
√
n(V arP(M(čn(γ̌n), γ̌n)))

−1/2PnM(čn(γ̌n), γ̌n)
Law→ N (0, I).

Hence, we propose the test of the null hypothesis
(H0) : Dϕ(g

(k−1) fak

g
(k−1)
ak

, f) = 0 versus the alternative (H1) : Dϕ(g
(k−1) fak

g
(k−1)
ak

, f) ̸= 0.

Based on this result, we stop the algorithm, then, defining ak as the last vector generated, we derive
from Corollary 3.2 a α-level confidence ellipsoid around ak, namely

Ek = {b ∈ Rd;
√
n(V arP(M(b, b)))−1/2PnM(b, b) ≤ q

N (0,1)
α }

where qN (0,1)
α is the quantile of a α-level reduced centered normal distribution and where Pn is the

empirical measure arising from a realization of the sequences (X1, . . . , Xn) and (Y1, . . . , Yn).
Consequently, the following corollary provides us with a confidence region for the above test:

Corollary 3.3. Ek is a confidence region for the test of the null hypothesis (H0) versus (H1).

3.4. Goodness-of-fit test for copulas

Let us begin with studying the following case:
Let f be a density defined on R2 and let g be an elliptical distribution with same mean and variance

as f . Assuming first that our algorithm leads us to having Dϕ(g
(2), f) = 0 where family (ai) is the
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canonical basis of R2. Hence, we have g(2)(x) = g(x)f1
g1

f2

g
(1)
2

= g(x)f1
g1

f2
g2

—through Lemma D.4 page

1608—and g(2) = f . Therefore, f = g(x)f1
g1

f2
g2
, i.e., f

f1f2
= g

g1g2
, and then ∂2

∂x∂y
Cf = ∂2

∂x∂y
Cg where Cf

(resp. Cg) is the copula of f (resp. g).
At present, let f be a density on Rd and let g be the density defined in Section 2.1.
Let us assume that our algorithm implies that Dϕ(g

(d), f) = 0.
Hence, we have, for any x ∈ Rd, g(x)Πd

k=1
fak (a

⊤
k x)

[g(k−1)]ak (a
⊤
k x)

= f(x), i.e., g(x)

Πd
k=1gak (a

⊤
k x)

= f(x)

Πd
k=1fak (a

⊤
k x)

,

since Lemma D.4 page 1608 implies that g(k−1)
ak = gak if k ≤ d.

Moreover, the family (ai)i=1...d is a basis of Rd—see Lemma D.5 page 1608. Hence, putting
A = (a1, ..., ad) and defining vector y (resp. density f̃ , copula C̃f of f̃ , density g̃, copula C̃g of g̃)
as the expression of vector x (resp. density f , copula Cf of f , density g, copula Cg of g) in basis A, the
above equality implies ∂d

∂y1...∂yd
C̃f =

∂d

∂y1...∂yd
C̃g.

Finally, we perform a statistical test of the null hypothesis (H0) : ∂d

∂y1...∂yd
C̃f = ∂d

∂y1...∂yd
C̃g versus

the alternative (H1) : ∂d

∂y1...∂yd
C̃f ̸= ∂d

∂y1...∂yd
C̃g. Since, under (H0), we have Dϕ(g

(d), f) = 0, then, as
explained in Section 3.3, Corollary 3.3 provides us with a confidence region for our test.

Theorem 3.6. Keeping the notations of Corollary 3.3, we infer that Ed is a confidence region for the test
of the null hypothesis (H0) versus the alternative hypothesis (H1).

3.5. Rewriting of the convolution product

In the present paper, we first elaborated an algorithm aiming at isolating several known structures
from initial data. Our objective was to verify if for a known density on Rd, a known density n on Rd−j−1

such that, for d > 1,
f(x) = n(a⊤j+1x, ..., a

⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x) (3.1)

did indeed exist, with j < d, with (a1, . . . , ad) being a basis of Rd and with h being a density on Rj .
Secondly, our next step consisted in building an estimate (resp. a representation) of f without

necessarily assuming that f meets relationship (3.1)—see Theorem 3.4.
Consequently, let us consider Z1 and Z2, two random vectors with respective densities h1 and

h2—which is elliptical—on Rd. Let us consider a random vector X such that X = Z1 + Z2 and let
f be its density. This density can then be written as f(x) = h1 ∗ h2(x) =

∫
Rd h1(x)h2(t− x)dt.

Then, the following property enables us to represent f under the form of a product and without the
integral sign.

Proposition 3.4. Let ϕ be a centered elliptical density with σ2.Id, σ2 > 0, as covariance matrix, such
that it is a product density in all orthogonal coordinate systems and such that its characteristic function
s 7→ Ψ(1

2
|s|2σ2) is integrable—see Landsman [9]. Let f be a density on Rd which can be deconvoluted

with ϕ, i.e., f = f ∗ ϕ =
∫
Rd f(x)ϕ(t − x)dt, where f is some density on Rd. Let g(0) be the elliptical

density belonging to the same elliptical family as f and having same mean and variance as f .
Then, the sequence (g(k))k converges uniformly a.s. and in L1 towards f in k, i.e.,

lim
k→∞

sup
x∈Rd

|g(k)(x)− f(x)| = 0, and lim
k→∞

∫
Rd

|g(k)(x)− f(x)|dx = 0
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Finally, with the notations of Section 3.3 and of Proposition 3.4, the following theorem enables us to
estimate any convolution product of a multivariate elliptical density ϕ with a continuous density f :

Theorem 3.7. It holds limn limk ǧ
(k)
n = f ∗ ϕ a.s.

3.6. On the regression

In this section, we will study several applications of our algorithm pertaining to the regression
analysis. We define (X1, ..., Xd) (resp. (Y1, ..., Yd)) as a vector with density f (resp. g—see
Section 2.1).

Remark 3.2. In this paragraph, we will work in the L2 space. Then, we will first only consider the
ϕ−divergences which are greater than or equal to the L2 distance—see Vajda [12]. Note also that the
co-vectors of f can be obtained in the L2 space—see Lemma D.3 and Proposition B.1.

3.6.1. The basic idea

In this paragraph, we will assume that Θ = R2
∗ and that our algorithm stops for j = 1 and a1 = (0, 1)′.

The following theorem provides us with the regression of X1 on X2 :

Theorem 3.8. The probability measure of X1 given X2 is the same as the probability measure of Y1
given Y2. Moreover, the regression between X1 and X2 is X1 = E(Y1/Y2) + ε, where ε is a centered
random variable orthogonal to E(X1/X2).

Remark 3.3. This theorem implies that E(X1/X2) = E(Y1/Y2). This equation can be used in many
fields of research. The Markov chain theory has been used for instance in Example 1.2.
Moreover, if g is a Gaussian density with same mean and variance as f , then Saporta [14] implies that
E(Y1/Y2) = E(Y1) +

Cov(Y1,Y2)
V ar(Y2)

(Y2 − E(Y2)) and then X1 = E(Y1) +
Cov(Y1,Y2)
V ar(Y2)

(Y2 − E(Y2)) + ε.

3.6.2. General case

In this paragraph, we will assume that Θ = Rd
∗ and that our algorithm stops with j for j < d.

Lemma D.6 implies the existence of an orthogonal and free family (bi)i=j+1,..,d of Rd
∗ such that Rd =

V ect{ai}
⊥
⊕ V ect{bk} and such that

g(b⊤j+1x, ..., b
⊤
d x/a

⊤
1 x, ..., a

⊤
j x) = f(b⊤j+1x, ..., b

⊤
d x/a

⊤
1 x, ..., a

⊤
j x) (3.2)

Hence, the following theorem provides us with the regression of b⊤kX , k = 1, ..., d, on
(a⊤1X, ..., a

⊤
j X):

Theorem 3.9. The probability measure of (b⊤j+1X, ..., b
⊤
dX) given (a⊤1X, ..., a

⊤
j X) is the same as

the probability measure of (b⊤j+1Y, ..., b
⊤
d Y ) given (a⊤1 Y, ..., a

⊤
j Y ). Moreover, the regression of b⊤kX ,

k = 1, ..., d, on (a⊤1X, ..., a
⊤
j X) is b⊤kX = E(b⊤k Y/a

⊤
1 Y1, ..., a

⊤
j Y ) + b⊤k ε, where ε is a centered random

vector such that b⊤k ε is orthogonal to E(b⊤kX/a
⊤
1X, ..., a

⊤
j X).

Corollary 3.4. If g is a Gaussian density with same mean and variance as f , and if Cov(Xi, Xj) = 0

for any i ̸= j, then, the regression of b⊤kX , k = 1, ..., d, on (a⊤1X, ..., a
⊤
j X) is b⊤kX = E(b⊤k Y ) + b⊤k ε,

where ε is a centered random vector such that b⊤k ε is orthogonal to E(b⊤kX/a
⊤
1X, ..., a

⊤
j X).
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4. Simulations

Let us study five simulations. The first involves a χ2-divergence, the second a Hellinger
distance, the third and the fourth a Cressie–Read divergence (still with γ = 1.25), and the fifth a
Kullback–Leibler divergence.

In each example, our program will follow our algorithm and will aim at creating a sequence of
densities (g(j)), j = 1, .., k, k < d, such that g(0) = g, g(j) = g(j−1)faj/[g

(j−1)]aj and Dϕ(g
(k), f) = 0,

with Dϕ being a divergence and aj = arg infbDϕ(g
(j−1)fb/[g

(j−1)]b, f), for all j = 1, ..., k. Moreover,
in the second example, we will study the robustness of our method with two outliers. In the third and the
fourth example, defining (X0, X1) as a vector with f as density, we will study the regression of X1 on
X0. And finally, in the fifth example, we will perform our goodness-of-fit test for copulas.

Simulation 4.1 (With the χ2 divergence).
We are in dimension 3(=d), and we consider a sample of 50(=n) values of a random variable X with a
density law f defined by
f(x) = Gaussian(x1 + x2).Gaussian(x0 + x2).Gumbel(x0 + x1)

where the Normal law parameters are (−5, 2) and (1, 1) and where the Gumbel distribution parameters
are −3 and 4. Let us generate then a Gaussian random variable Y with a density—that we will name
g—presenting the same mean and variance as f .
We theoretically obtain k = 1 and a1 = (1, 1, 0). To get this result, we perform the following test:
H0 : a1 = (1, 1, 0) versus (H1) : a1 ̸= (1, 1, 0).

Then, Corollary 3.3 enables us to estimate a1 by the following 0.9(=α) level confidence ellipsoid
E1 = {b ∈ R3; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q

N (0,1)
α /

√
n ≃ 0, 2533/7.0710678 =

0.03582203}
And, we obtain

Table 1. Simulation 1: Numerical results of the optimisation.

Our Algorithm

Projection Study 0 :
minimum : 0.0201741
at point : (1.00912,1.09453,0.01893)
P-Value : 0.81131

Test : H0 : a1 ∈ E1 : True
χ2(Kernel Estimation of g(1), g(1)) 6.1726

Therefore, we conclude that f = g(1).

Simulation 4.2 (With the Hellinger distance H).
We are in dimension 20(=d). We first generate a sample with 100(=n) observations, namely two outliers
x = (2, 0, . . . , 0) and 98 values of a random variable X with a density f defined by
f(x) = Gumbel(x0).Normal(x1, . . . , x9)

where the Gumbel law parameters are -5 and 1 and where the normal distribution is reduced and
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centered. Our reasoning is the same as in Simulation 4.1.
In the first part of the program, we theoretically obtain k = 1 and a1 = (1, 0, . . . , 0). To get this result,
we perform the following test

(H0) : a1 = (1, 0, . . . , 0) versus (H1) : a1 ̸= (1, 0, . . . , 0)

We estimate a1 by the following 0.9(=α) level confidence ellipsoid
Ei = {b ∈ R2; (V arP(M(b, b)))−1/2PnM(b, b) ≤ q

N (0,1)
α /

√
n ≃ 0.02533}

And, we obtain

Table 2. Simulation 2: Numerical results of the optimisation.

Our Algorithm

Projection Study 0

minimum : 0.002692
at point : (1.01326, 0.0657, 0.0628, 0.1011, 0.0509, 0.1083,
0.1261, 0.0573, 0.0377, 0.0794, 0.0906, 0.0356, 0.0012,
0.0292, 0.0737, 0.0934, 0.0286, 0.1057, 0.0697, 0.0771)
P-Value : 0.80554

Test : H0 : a1 ∈ E1 : True

H(Est. of g(1), g(1)) 3.042174

Therefore, we conclude that f = g(1).

Simulation 4.3 (With the Cressie-Read divergence (Dϕ)).
We are in dimension 2(=d), and we consider a sample of 50(=n) values of a random variable
X = (X0, X1) with a density law f defined by
f(x) = Gumbel(x0).Normal(x1)

where the Gumbel law parameters are -5 and 1 and where the normal distribution parameters are (0, 1).
Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the
same mean and variance as f .
We theoretically obtain k = 1 and a1 = (1, 0). To get this result, we perform the following test
H0 : a1 = (1, 0) versus (H1) : a1 ̸= (1, 0)

Then, Corollary 3.3 enables us to estimate a1 by the following 0.9(=α) level confidence ellipsoid
E1 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q

N (0,1)
α /

√
n}, with qN (0,1)

α /
√
n ≃ 0.03582203.

And, we obtain
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Table 3. Simulation 3: Numerical results of the optimisation.

Our Algorithm

Projection Study 0 :
minimum : 0.0210058
at point : (1.001,0.0014)
P-Value : 0.989552

Test : H0 : a1 ∈ E1 : True
Dϕ(Kernel Estimation of g(1), g(1)) 6.47617

Therefore, we conclude that f = g(1).

Figure 1. Graph of the distribution to estimate (red) and of our own estimate (green).

Figure 2. Graph of the distribution to estimate (red) and of Huber’s estimate (green).

At present, keeping the notations of this simulation, let us study the regression of X1 on X0.
Our algorithm leads us to infer that the density of X1 given X0 is the same as the density of Y1

given Y0. Moreover, Property A.1 implies that the co-factors of f are the same for any divergence.
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Consequently, applying Theorem 3.8 implies that X1 = E(Y1/Y0) + ε, where ε is a centered random
variable orthogonal to E(X1/X0).

Thus, since g is a Gaussian density, Remark 3.3 implies that
X1 = E(Y1) +

Cov(Y1,Y0)
V ar(Y0)

(Y0 − E(Y0)) + ε

Now, using the least squares method, we estimate α1 and α2 such that X1 = α1 + α2.X0 + ε.

Thus, the following table presents the results of our regression and of the least squares method if we
assume that ε is Gaussian.

Table 4. Simulation 3: Numerical results of the regression.

Our Regression

E(Y1) -4.545483
Cov(Y1, Y0) 0.0380534
V ar(Y0) 0.9190052
E(Y0) 0.3103752
correlation (Y1, Y0) 0.02158213

Least squares method

α1 -4.34159227
Std Error of α1 0.19870
α2 0.06803317
Std Error of α2 0.21154
correlation (X1, X0) 0.04888484

Figure 3. Graph of the regression of X1 on X0 based on the least squares method (red) and
based on our theory (green).
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Simulation 4.4 (With the Cressie-Read divergence (Dϕ)).
We are in dimension 2(=d), and we consider a sample of 500(=n) values of a random variable
X = (X0, X1) with a density law f defined by
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f(x) = Gumbel(x1 − x0).Normal(x1 + x0)

where the Gumbel law parameters are -5 and 1 and where the normal distribution parameters are (0, 1).
Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the
same mean and variance as f .
We theoretically obtain k = 1 and a1 = (1, 0). To get this result, we perform the following test
H0 : a1 = (1,−1) versus (H1) : a1 ̸= (1,−1). Then, Corollary 3.3 enables us to estimate a1 by the
following 0.9(=α) level confidence ellipsoid
E1 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q

N (0,1)
α /

√
n ≃ 0, 2533/

√
500 = 0.01132792}

And, we obtain

Table 5. Simulation 4: Numerical results of the optimisation.

Our Algorithm

Projection Study 0 :
minimum : 0.010920
at point : (1.09,-0.9701)
P-Value : 0.889400

Test : H0 : a1 ∈ E1 : True
Dϕ(Kernel Estimation of g(1), g(1)) 5.25077

Therefore, we conclude that f = g(1).

At present, keeping the notations of this simulation, let us study the regression ofX1+X0 onX1−X0.
Our algorithm leads us to infer that the density of X1 + X0 given X1 − X0 is the same as the density
of Y1 + Y0 given Y1 − Y0. Moreover, Property A.1 implies that the co-factors of f are the same for any
divergence. Consequently, putting U = X1 + X0, V = X1 − X0, U ′ = Y1 + Y0 and V ′ = Y1 − Y0,
and since {(1, 1)′, (1,−1)′} is an orthogonal basis, we can therefore infer from Theorem 3.8 that U =

E(U ′/V ′) + ε, where ε is a centered random variable orthogonal to E(U/V ).
Thus, since g is a Gaussian density, Remark 3.3 implies that
U = E(U ′) + Cov(U ′,V ′)

V ar(V ′)
(V ′ − E(V ′)) + ε

In other words, we apply the same reasoning as the one used in the regression studies in
Simulation 4.3 to (U, V ) instead of (X1, X0). This is possible since {(1, 1)′, (1,−1)′} is an orthogonal
basis of R2, i.e., we implement a change in basis from the canonical basis of R2 to {(1, 1)′, (1,−1)′}.
Thus, in the canonical basis U = E(U ′/V ′) + ε becomes X1 +X0 = E(Y1 + Y0/Y1 − Y0) + ε, i.e., we
obtain that
X1 +X0 = E(Y1 + Y0) +

Cov(Y1+Y0,Y1−Y0)
V ar(Y1−Y0) (Y1 − Y0 − E(Y1 − Y0)) + ε

where ε is a centered random variable orthogonal to E(X1 +X0/X1 −X0).
The following table presents the results of our regression.
We simulate 10 times the regression and we obtain a and b such that X1 = a+ bX0 + ε :
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Table 6. Simulation 4: Numerical results of the regression.

Simulation a Std Error of a b Std Error of b
1 -4.83739 0.11149 -0.95861 0.04677
2 -4.56895 0.09989 -0.88577 0.04225
3 -4.4926 0.1057 -1.2085 0.0452
4 -4.70619 0.10350 -1.04549 0.04235
5 -4.40331 0.10248 -1.00890 0.0438
6 -4.61757 0.09813 -1.20890 0.04649
7 -4.40572 0.09172 -1.16085 0.04091
8 -4.39581 0.10174 -1.38696 0.04487
9 -4.42780 0.10018 -0.93672 0.04066
10 -4.55394 0.09923 -0.98065 0.04382

Figure 4. Graph of the regression of X1 on X0 based on our theory (green).

Simulation 4.5 (With the Kullback-Leibler divergence K).
We are in dimension 2(=d), and we use the Kullback–Leibler divergence to perform our optimisations.
Let us consider a sample of 50(=n) values of a random variable X with a density law f defined by :
f(x) = cρ(FGumbel(x0), FExponential(x1)).Gumbel(x0).Exponential(x1)

where :
• c is the Gaussian copula with correlation coefficient ρ = 0.5,
• the Gumbel distribution parameters are −1 and 1 and
• the Exponential density parameter is 2.
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Let us generate then a Gaussian random variable Y with a density—that we will name g—presenting the
same mean and variance as f . We theoretically obtain k = 2 and (a1, a2) = ((1, 0), (0, 1)). To get this
result, we perform the following test

(H0) : (a1, a2) = ((1, 0), (0, 1)) versus (H1) : (a1, a2) ̸= ((1, 0), (0, 1))

Then, Theorem 3.6 enables us to verify (H0) by the following 0.9(=α) level confidence ellipsoid
E2 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q

N (0,1)
α /

√
n ≃ 0, 2533/7.0710678 = 0.0358220}

And, we obtain

Table 7. Simulation 5: Numerical results of the optimisation.

Our Algorithm

Projection Study number 0 :
minimum : 0.445199
at point : (1.0142,0.0026)
P-Value : 0.94579

Test : H1 : a1 ̸∈ E1 : True

Projection Study number 1 :
minimum : 0.0263
at point : (0.0084,0.9006)
P-Value : 0.97101

Test : H0 : a2 ∈ E2 : True
K(Kernel Estimation of g(2), g(2)) 4.0680

Therefore, we can conclude that H0 is verified.

Figure 5. Graph of the estimate of (x0, x1) 7→ cρ(FGumbel(x0), FExponential(x1)).

Application to real datasets

Let us now apply our theory to real datasets.
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Let us for instance study the moves in the stock prices of Nokia and Sanofi from January 11, 2010 to
May 10, 2010. We thus gather 84(=n) data from these stock prices—see data below.

Let us also consider X1 (resp. X2) the random variable defining the stock price of Nokia
(resp. Sanofi). We will assume—as it is commonly done in mathematical finance—that the stock market
abides by the classical hypotheses of the Black–Scholes model—see [13].

Consequently, X1 and X2 each present a log-normal distribution as probability distribution. Let f
be the density of vector (ln(X1), X2), let us now apply our algorithm to f with the Kullback–Leibler
divergence as ϕ-divergence. Let us generate then a Gaussian random variable Y with a density—that we
will name g—presenting same mean and variance as f .
We first assume that there exists a vector a such that Dϕ(g

fa
ga
, f) = 0.

In order to verify this hypothesis, our reasoning will be the same as in Simulation 4.1. Indeed, we
assume that this vector is a co-factor of f . Consequently, Corollary 3.3 enables us to estimate a by the
following 0.9(=α) level confidence ellipsoid

E1 = {b ∈ R2; (V arP(M(b, b)))(−1/2)PnM(b, b) ≤ q
N (0,1)
α /

√
n ≃ 0, 2533/

√
84 = 0.02763730}

And, we obtain

Table 8. Numerical results of the optimisation.

Our Algorithm

Projection Study 0 :
minimum : 0.017345
at point : (0.027,3.18)
P-Value : 0.890210

Test : H0 : a1 ∈ E1 : True
K(Kernel Estimation of g(1), g(1)) 2.7704005

Therefore, we conclude that f = g(1), i.e., our hypothesis is confirmed.
Consequently, as explained in Simulations 4.3 and 4.4, we can say that

log(X1) = 0.027.X2 + 3.18 + ε

where ε is a centered random variable orthogonal to E(log(X1)/X2).
Finally, using the least squares method, we estimate α1 and α2 such that log(X1) = α1 + α2.X2 + ε.

Thus, the following table presents the results of the least squares method if we assume that ε is Gaussian:

Table 9. Numerical results of the regression.

Simulation α1 Std Error of α1 α2 Std Error of α2

1 3.153694 0.230380 0.026578 0.004236
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Figure 6. Graph of the regression of log of Nokia on Sanofi based on the least squares
method (red) and based on our theory (green).

Table 10. Stock prices of Nokia and Sanofi.

Date Nokia Log-of-Nokia Sanofi Date Nokia Log-of-Nokia Sanofi
10/05/10 84.75 4.44 51.62 07/05/10 81.85 4.4 48.5
06/05/10 87.3 4.47 50.35 05/05/10 87.75 4.47 50.95
04/05/10 87.25 4.47 50.49 03/05/10 87.85 4.48 51.51
30/04/10 87.8 4.48 51.66 29/04/10 87.85 4.48 51.41
28/04/10 87.85 4.48 51.88 27/04/10 89 4.49 52.11
26/04/10 89.2 4.49 54.09 23/04/10 90.7 4.51 53.47
22/04/10 92.75 4.53 53.59 21/04/10 108.4 4.69 53.95
20/04/10 108.9 4.69 54.43 19/04/10 108.3 4.68 54.05
16/04/10 106.8 4.67 54.04 15/04/10 109.9 4.7 54.95
14/04/10 109.8 4.7 54.86 13/04/10 108.3 4.68 54.67
12/04/10 109.1 4.69 55.27 09/04/10 110.1 4.7 55.41
08/04/10 110.7 4.71 54.96 07/04/10 113.2 4.73 55.3
06/04/10 112.4 4.72 54.64 01/04/10 113.3 4.73 55.16
31/03/10 112.4 4.72 55.19 30/03/10 112.5 4.72 55.39
29/03/10 111.8 4.72 55.49 26/03/10 112.5 4.72 55.72
25/03/10 111.4 4.71 56.33 24/03/10 110.2 4.7 55.95
23/03/10 109.1 4.69 56.12 22/03/10 109.2 4.69 56.33
19/03/10 108.5 4.69 56.57 18/03/10 108.4 4.69 56.56
17/03/10 109.9 4.7 56.28 16/03/10 107 4.67 57.21



Entropy 2010, 12 1602

Table 11. Stock prices of Nokia and Sanofi.

Date Nokia Log-of-Nokia Sanofi Date Nokia Log-of-Nokia Sanofi
15/03/10 105.3 4.66 55.95 12/03/10 105 4.65 55.4
11/03/10 103 4.63 55.65 10/03/10 104 4.64 56.13
09/03/10 101.5 4.62 56.17 08/03/10 100.7 4.61 55.75
05/03/10 100.2 4.61 55.76 04/03/10 98.7 4.59 54.81
03/03/10 99.8 4.6 55.14 02/03/10 97.25 4.58 54.99
01/03/10 95.85 4.56 54.82 26/02/10 95.85 4.56 53.72
25/02/10 94.55 4.55 52.92 24/02/10 96.3 4.57 53.92
23/02/10 96.2 4.57 54.05 22/02/10 96.7 4.57 54.14
19/02/10 97.3 4.58 54.71 18/02/10 96.6 4.57 54.43
17/02/10 96.1 4.57 53.88 16/02/10 94.95 4.55 53.56
15/02/10 93.65 4.54 53.2 12/02/10 93.55 4.54 53.01
11/02/10 94.6 4.55 52.52 10/02/10 95.55 4.56 52.2
09/02/10 98.4 4.59 52.66 08/02/10 99.2 4.6 52.98
05/02/10 99.8 4.6 51.68 04/02/10 102.6 4.63 53.42
03/02/10 103.9 4.64 54.06 02/02/10 103.8 4.64 53.8
01/02/10 102.4 4.63 53.23 29/01/10 103.6 4.64 53.6
28/01/10 101.8 4.62 52.68 27/01/10 92.55 4.53 53.8
26/01/10 92.7 4.53 54.42 25/01/10 91.9 4.52 53.66
22/01/10 94.1 4.54 54.65 21/01/10 93.7 4.54 55.28
20/01/10 92.75 4.53 56.67 19/01/10 93.6 4.54 57.69
18/01/10 94.55 4.55 56.67 15/01/10 93.55 4.54 56.85
14/01/10 93.7 4.54 56.91 13/01/10 92.5 4.53 56.18
12/01/10 92.35 4.53 55.83 11/01/10 93 4.53 56.08

5. Critics of the Simulations

In the case where f is unknown, we will never be sure to have reached the minimum of the
ϕ-divergence: we have indeed used the simulated annealing method to solve our optimisation problem,
and therefore it is only when the number of random jumps tends in theory towards infinity that the
probability to reach the minimum tends to 1. We also note that no theory on the optimal number of
jumps to implement does exist, as this number depends on the specificities of each particular problem.
Moreover, we choose the 50−

4
4+d (resp. 500−

4
4+d and 100−

4
4+d ) for the AMISE of Simulations 4.1, 4.2

and 4.3 (resp. Simulations 4.4 and 4.5). This choice leads us to simulate 50 (resp. 500 and 100) random
variables—see Scott [15] page 151—none of which have been discarded to obtain the truncated sample.
This has also been the case in our application to real datasets.
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Finally, we remark that some of the key advantages of our method over Huber’s consist in the fact
that—since there exist divergences smaller than the Kullback–Leibler divergence—our method requires
a considerably shorter computation time and also in the superior robustness of our method.

6. Conclusions

Projection Pursuit is useful in evidencing characteristic structures as well as one-dimensional
projections and their associated distributions in multivariate data. Huber [2] shows us how to achieve it
through maximization of the Kullback–Leibler divergence.

The present article shows that our ϕ-divergence method constitutes a good alternative to Huber’s
particularly in terms of regression and robustness as well as in terms of copula’s study. Indeed, the
convergence results and simulations we carried out, convincingly fulfilled our expectations regarding
our methodology.
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Appendix

A. Reminders

A.1. ϕ-Divergence

Let us call ha the density of a⊤Z if h is the density of Z. Let φ be a strictly convex function defined
by φ : R+ → R+, and such that φ(1) = 0.

Definition A.1. We define the ϕ−divergence of P from Q, where P and Q are two probability
distributions over a space Ω such that Q is absolutely continuous with respect to P , by

Dϕ(Q,P ) =

∫
φ(
dQ

dP
)dP (A.1)

The above expression (A.1) is also valid if P and Q are both dominated by the same probability.

The most used distances (Kullback, Hellinger or χ2) belong to the Cressie–Read family
(see Cressie [16], Csiszár [17] and the books of Liese [18], Pardo [19] and Zografos [20]). They are
defined by a specific φ. Indeed,
- with the Kullback–Leibler divergence, we associate φ(x) = xln(x)− x+ 1

- with the Hellinger distance, we associate φ(x) = 2(
√
x− 1)2

- with the χ2 distance, we associate φ(x) = 1
2
(x− 1)2

- more generally, with power divergences, we associate φ(x) = xγ−γx+γ−1
γ(γ−1)

, where γ ∈ R \ (0, 1)
- and, finally, with the L1 norm, which is also a divergence, we associate φ(x) = |x− 1|.
Let us now present some well-known properties of divergences.

Property A.1. We have Dϕ(P,Q) = 0 ⇔ P = Q.
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Property A.2. The divergence function Q 7→ Dϕ(Q,P ) is convex, lower semi-continuous (l.s.c.)—for
the topology that makes all the applications of the form Q 7→

∫
fdQ continuous where f is bounded and

continuous—as well as l.s.c. for the topology of the uniform convergence.

Property A.3 (corollary (1.29), page 19 of Liese [18]). If T : (X,A) → (Y,B) is measurable and if
Dϕ(P,Q) < ∞, then Dϕ(P,Q) ≥ Dϕ(PT

−1, QT−1), with equality being reached when T is surjective
for (P,Q).

Theorem A.1 (theorem III.4 of Azé [21]). Let f : I → R be a convex function. Then f is a Lipschitz
function in all compact intervals [a, b] ⊂ int{I}. In particular, f is continuous on int{I}.

A.2. Miscellaneous

In the present section, all demonstrations can be found in Touboul [22].

Lemma A.1. The set Γc is closed in L1 for the topology of the uniform convergence.

Lemma A.2. For all c > 0, we have Γc ⊂ BL1(f, c), where BL1(f, c) = {p ∈ L1; ∥f − p∥1 ≤ c}.

Lemma A.3. G is closed in L1 for the topology of the uniform convergence.

Lemma A.4. Let consider the sequence (ai) defined in (2.3) page 1587.
We then have limn limkK(ǧ

(k)
n

fak,n

[ǧ(k)]ak,n
, fn) = 0 a.s.

In the case where f is known and keeping the notations introduced in Section 3.1, we have

Proposition A.1. Assuming (H1) to (H3) hold. Both supa∈Θ ∥čn(a)− ak∥ and γ̌n tends to ak a.s.

Theorem A.2. Assuming (H0) to (H3) hold, for any k = 1, ..., d and any x ∈ Rd, we have
|ǧ(k)(x)− g(k)(x)| = OP(n

−1/2) and
∫
|ǧ(k)(x)− g(k)(x)|dx = OP(n

−1/2) as well as
|K(ǧ(k), f)−K(g(k), f)| = OP(n

−1/2).

Theorem A.3. Assuming that (H1) to (H3), (H6) and (H8) hold. Then,
√
n(V arP(M(čn(γ̌n), γ̌n)))

−1/2(PnM(čn(γ̌n), γ̌n)− PnM(ak, ak))
Law→ N (0, I),

where k represents the kth step of the algorithm and with I being the identity matrix in Rd.

B. Study of the sample

Let X1, X2,..,Xm be a sequence of independent random vectors with same density f . Let Y1, Y2,..,Ym
be a sequence of independent random vectors with same density g. Then, the kernel estimators fm,
gm, fa,m and ga,m of f , g, fa and ga, for all a ∈ Rd

∗, almost surely and uniformly converge since we
assume that the bandwidth hm of these estimators meets the following conditions (see Bosq [23])—with
L(u) = ln(u ∨ e):

(Hyp): hm ↘m 0, mhm ↗m ∞, mhm/L(h−1
m ) →m ∞ and L(h−1

m )/LLm→m ∞.
Let us consider
B1(n, a) =

1
n
Σn
i=1φ

′{fa,n(a
⊤Yi)

ga,n(a⊤Yi)
gn(Yi)
fn(Yi)

}fa,n(a
⊤Yi)

ga,n(a⊤Yi)
and B2(n, a) =

1
n
Σn
i=1φ

∗{φ′{fa,n(a
⊤Xi)

ga,n(a⊤Xi)
gn(Xi)
fn(Xi

}}.
Our goal is to estimate the minimum of Dϕ(g

fa
ga
, f). To do this, it is necessary for us to truncate our

samples:
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Let us consider now a positive sequence θm such that θm → 0, ym/θ
2
n → 0, where ym is the almost

sure convergence rate of the kernel density estimator—ym = OP(m
− 2

4+d ), see Lemma D.7—y
(1)
m /θ2m →

0, where y(1)m is defined by |φ( gm(x)
fm(x)

fb,m(b⊤x)

gb,m(b⊤x)
)−φ( g(x)

f(x)
fb(b

⊤x)
gb(b⊤x)

)| ≤ y
(1)
m , for all b in Rd

∗ and all x in Rd, and

finally y
(2)
m

θ2m
→ 0, where y(2)n is defined by |φ′(gm(x)

fm(x)

fb,m(b⊤x)

gb,m(b⊤x)
)−φ′( g(x)

f(x)
fb(b

⊤x)
gb(b⊤x)

)| ≤ y
(2)
m , for all b in Rd

∗ and
all x in Rd.

We will generate fm, gm and gb,m from the starting sample and we will select the Xi and Yi vectors
such that fm(Xi) ≥ θm and gb,m(b⊤Yi) ≥ θm, for all i and for all b ∈ Rd

∗.
The vectors meeting these conditions will be called X1, X2, ..., Xn and Y1, Y2, ..., Yn.
Consequently, the next proposition provides us with the condition required for us to derive

our estimations.

Proposition B.1. Using the notations introduced in Broniatowski [11] and in Section 3.1, it holds
limn→∞ supa∈Rd

∗
|(B1(n, a)−B2(n, a))−Dϕ(g

fa
ga
, f)| = 0.

Remark B.1. With the Kullback–Leibler divergence, we can take for θm the expression m−ν , with
0 < ν < 1

4+d
.

C. Hypotheses’ discussion

C.1. Discussion of (H2).

Let us work with the Kullback–Leibler divergence and with g and a1.
For all b ∈ Rd

∗, we have
∫
φ∗(φ′( g(x)fb(b

⊤x)
f(x)gb(b⊤x)

))f(x)dx =
∫
( g(x)fb(b

⊤x)
f(x)gb(b⊤x)

− 1)f(x)dx = 0, since, for any

b in Rd
∗, the function x 7→ g(x)fb(b

⊤x)
gb(b⊤x)

is a density. The complement of ΘDϕ in Rd
∗ is ∅ and then the

supremum looked for in R is −∞. We can therefore conclude. It is interesting to note that we obtain the
same verification with f , g(k−1) and ak.

C.2. Discussion of (H4).

This hypothesis consists in the following assumptions:
• We work with the Kullback–Leibler divergence, (0)
• We have f(./a⊤1 x) = g(./a⊤1 x), i.e., K(g f1

g1
, f) = 0—we could also derive the same proof with f ,

g(k−1) and ak—(1)
Preliminary (A): Shows thatA = {(c, x) ∈ Rd

∗\{a1}×Rd;
fa1 (a

⊤
1 x)

ga1 (a
⊤
1 x)

> fc(c⊤x)
gc(c⊤x)

, g(x)fc(c
⊤x)

gc(c⊤x)
> f(x)} = ∅

through a reductio ad absurdum, i.e., if we assume A ̸= ∅.
Thus, our hypothesis enables us to derive
f(x) = f(./a⊤1 x)fa1(a

⊤
1 x) = g(./a⊤1 x)fa1(a

⊤
1 x) > g(./c⊤x)fc(c

⊤x) > f

since fa1 (a
⊤
1 x)

ga1 (a
⊤
1 x)

≥ fc(c⊤x)
gc(c⊤x)

implies g(./a⊤1 x)fa1(a
⊤
1 x) = g(x)

fa1 (a
⊤
1 x)

ga1(a
⊤
1 x)

≥ g(x)fc(c
⊤x)

gc(c⊤x)
= g(./c⊤x)fc(c

⊤x),
i.e., f > f . We can therefore conclude.
Preliminary (B): Shows thatB = {(c, x) ∈ Rd

∗\{a1}×Rd;
fa1 (a

⊤
1 x)

ga1 (a
⊤
1 x)

< fc(c⊤x)
gc(c⊤x)

, g(x)fc(c
⊤x)

gc(c⊤x)
< f(x)} = ∅

through a reductio ad absurdum, i.e., if we assume B ̸= ∅.
Thus, our hypothesis enables us to derive
f(x) = f(./a⊤1 x)fa1(a

⊤
1 x) = g(./a⊤1 x)fa1(a

⊤
1 x) < g(./c⊤x)fc(c

⊤x) < f
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We can therefore conclude as above.
Let us now verify (H4):
We have PM(c, a1) − PM(c, a) =

∫
ln( g(x)fc(c

⊤x)
gc(c⊤x)f(x)

){fa1 (a
⊤
1 x)

ga1 (a
⊤
1 x)

− fc(c⊤x)
gc(c⊤x)

}g(x)dx. Moreover, the

logarithm ln is negative on {x ∈ Rd
∗;

g(x)fc(c⊤x)
gc(c⊤x)f(x)

< 1} and is positive on {x ∈ Rd
∗;

g(x)fc(c⊤x)
gc(c⊤x)f(x)

≥ 1}.

Thus, the preliminary studies (A) and (B) show that ln( g(x)fc(c
⊤x)

gc(c⊤x)f(x)
) and {fa1 (a

⊤
1 x)

ga1 (a
⊤
1 x)

− fc(c⊤x)
gc(c⊤x)

} always
present a negative product. We can therefore conclude, since (c, a) 7→ PM(c, a1)−PM(c, a) is not null
for all c and for all a—with a ̸= a1.

D. Proofs

Preliminary remark :
Let us note that if K(g, f) ≥

∫
|f(x)− g(x)|dx, a simple reductio ad absurdum enables us to to infer

that K(g(1), f) ≥
∫
|f(x) − g(1)(x)|dx. Therefore, through an induction, we immediately obtain that,

for any k, K(g(k), f) ≥
∫
|f(x)− g(k)(x)|dx. Thus, for any k and from a certain rank n, we derive that

K(g
(k)
n , f) ≥

∫
|f(x)− g

(k)
n (x)|dx.

Proof of Lemma D.1.

Lemma D.1. We have g(./a⊤1 x, ..., a
⊤
j x) = n(a⊤j+1x, ..., a

⊤
d x) = f(./a⊤1 x, ..., a

⊤
j x).

Putting A = (a1, .., ad), let us determine f in basis A. Let us first study the function defined by
ψ : Rd → Rd, x 7→ (a⊤1 x, .., a

⊤
d x). We can immediately say that ψ is continuous and since A is a basis,

its bijectivity is obvious. Moreover, let us study its Jacobian.

By definition, it is Jψ(x1, . . . , xd) =

∣∣∣∣∣∣∣∣∣∣
∂ψ1

∂x1
· · · ∂ψ1

∂xd
· · · · · · · · ·
∂ψd
∂x1

· · · ∂ψd
∂xd

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
a1,1 · · · a1,d

· · · · · · · · ·
ad,1 · · · ad,d

∣∣∣∣∣∣∣ = |A| ̸= 0 since

A is a basis. We can therefore infer : ∀x ∈ Rd, ∃!y ∈ Rd such that f(x) = |A|−1Ψ(y), i.e.,
Ψ (resp. y) is the expression of f (resp of x) in basis A, namely Ψ(y) = ñ(yj+1, ..., yd)h̃(y1, ..., yj),
with ñ and h̃ being the expressions of n and h in basis A. Consequently, our results in the case where
the family {aj}1≤j≤d is the canonical basis of Rd, still hold for Ψ in basis A—see Section 2.1. And then,
if g̃ is the expression of g in basis A, we have g̃(./y1, ..., yj) = ñ(yj+1, ..., yd) = Ψ(./y1, ..., yj), i.e.,
g(./a⊤1 x, ..., a

⊤
j x) = n(a⊤j+1x, ..., a

⊤
d x) = f(./a⊤1 x, ..., a

⊤
j x).

Proof of Lemma D.2.

Lemma D.2. Should there exist a family (ai)i=1...d such that f(x) = n(a⊤j+1x, ..., a
⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x),

with j < d, with f , n and h being densities, then this family is an orthogonal basis of Rd.

Using a reductio ad absurdum, we have
∫
f(x)dx = 1 ̸= +∞ =

∫
n(a⊤j+1x, ..., a

⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x)dx.

We can therefore conclude.

Lemma D.3. infa∈Rd
∗
Dϕ(g

∗, f) is reached when the ϕ-divergence is greater than the L1 distance as well
as the L2 distance.
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Indeed, let G be {g fa
ga
; a ∈ Rd

∗} and Γc be Γc = {p; K(p, f) ≤ c} for all c>0. From Lemmas A.1,
A.2 and A.3 (see page 1605), we get Γc ∩ G is a compact for the topology of the uniform convergence,
if Γc ∩ G is not empty. Hence, and since property A.2 (see page 1605) implies that Q 7→ Dϕ(Q,P )

is lower semi-continuous in L1 for the topology of the uniform convergence, then the infimum is
reached in L1. (Taking for example c = Dϕ(g, f), Ω is necessarily not empty because we always have
Dϕ(g

fa
ga
, f) ≤ Dϕ(g, f)). Moreover, when the ϕ−divergence is greater than the L2 distance, the very

definition of the L2 space enables us to provide the same proof as for the L1 distance.
Proof of Lemma D.4.

Lemma D.4. For any p ≤ d, we have f (p−1)
ap = fap—see Huber’s analytic method -, g(p−1)

ap = gap—see
Huber’s synthetic method - and g(p−1)

ap = gap—see our algorithm.

As it is equivalent to prove either our algorithm or Huber’s, we will only develop here the proof for
our algorithm. Assuming, without any loss of generality, that the ai, i = 1, .., p, are the vectors of the
canonical basis, since g(p−1)(x) = g(x)f1(x1)

g1(x1)
f2(x2)
g2(x2)

...
fp−1(xp−1)

gp−1(xp−1)
we derive immediately that g(p−1)

p = gp.
We note that it is sufficient to operate a change in basis on the ai to obtain the general case.
Proof of Lemma D.5.

Lemma D.5. If there exits p, p ≤ d, such that Dϕ(g
(p), f) = 0, then the family of (ai)i=1,..,p—derived

from the construction of g(p)—is free and orthogonal.

Without any loss of generality, let us assume that p = 2 and that the ai are the vectors of the canonical
basis. Using a reductio ad absurdum with the hypotheses a1 = (1, 0, ..., 0) and a2 = (α, 0, ..., 0), where
α ∈ R, we get g(1)(x) = g(x2, .., xd/x1)f1(x1) and
f = g(2)(x) = g(x2, .., xd/x1)f1(x1)

fαa1 (αx1)

[g(1)]αa1 (αx1)
. Hence f(x2, .., xd/x1) = g(x2, .., xd/x1)

fαa1 (αx1)

[g(1)]αa1 (αx1)
.

It consequently implies that fαa1(αx1) = [g(1)]αa1(αx1) since
1 =

∫
f(x2, .., xd/x1)dx2...dxd =

∫
g(x2, .., xd/x1)dx2...dxd

fαa1 (αx1)

[g(1)]αa1 (αx1)
=

fαa1 (αx1)

[g(1)]αa1 (αx1)
.

Therefore, g(2) = g(1), i.e., p = 1 which leads to a contradiction. Hence, the family is free.
Moreover, using a reductio ad absurdum we get the orthogonality. Indeed, we have∫
f(x)dx = 1 ̸= +∞ =

∫
n(a⊤j+1x, ..., a

⊤
d x)h(a

⊤
1 x, ..., a

⊤
j x)dx. The use of the same argument as in the

proof of Lemma D.2, enables us to infer the orthogonality of (ai)i=1,..,p.
Proof of Lemma D.6.

Lemma D.6. If there exits p, p ≤ d, such that Dϕ(g
(p), f) = 0, where g(p) is built from the free and

orthogonal family a1,...,aj , then, there exists a free and orthogonal family (bk)k=j+1,...,d of vectors of Rd
∗,

such that g(p)(x) = g(b⊤j+1x, ..., b
⊤
d x/a

⊤
1 x, ..., a

⊤
j x)fa1(a

⊤
1 x)...faj(a

⊤
j x) and such that

Rd = V ect{ai}
⊥
⊕ V ect{bk}.

Through the incomplete basis theorem and similarly as in Lemma D.5, we obtain the result thanks to
the Fubini’s theorem.
Proof of Lemma D.7.

Lemma D.7. For any continuous density f , we have ym = |fm(x)− f(x)| = OP(m
− 2

4+d ).
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Defining bm(x) as bm(x) = |E(fm(x)) − f(x)|, we have ym ≤ |fm(x) − E(fm(x))| + bm(x).
Moreover, from page 150 of Scott [15], we derive that bm(x) = OP(Σ

d
j=1h

2
j) where hj = OP(m

− 1
4+d ).

Then, we obtain bm(x) = OP(m
− 2

4+d ). Finally, since the central limit theorem rate is OP(m
− 1

2 ), we
infer that ym ≤ OP(m

− 1
2 ) +OP(m

− 2
4+d ) = OP(m

− 2
4+d ).

Proof of Proposition 3.1.

Without loss of generality, we reason with x1 in lieu of a⊤x.
Let us define g∗ = gr. We remark that g and g∗ present the same density conditionally to x1. Indeed,

g∗1(x1) =
∫
g∗(x)dx2...dxd =

∫
h(x1)g(x)dx2...dxd = h(x1)

∫
g(x)dx2...dxd = h(x1)g1(x1).

We can therefore prove this proposition.
First, since f and g are known, then, for any given function h : x1 7→ h(x1), the application T , which

is defined by
T : g(./x1)

h(x1)f1(x1)
g1(x1)

7→ g(./x1)f1(x1)

T : f(./x1)f1(x1) 7→ f(./x1)f1(x1)

is measurable.
Second, the above remark implies that
Dϕ(g

∗, f) = Dϕ(g
∗(./x1)

g1(x1)h(x1)
f1(x1)

, f(./x1)f1(x1)) = Dϕ(g(./x1)
g1(x1)h(x1)
f1(x1)

, f(./x1)f1(x1)).

Consequently, property A.3 page 1605 infers:
Dϕ(g(./x1)

g1(x1)h(x1)
f1(x1)

, f(./x1)f1(x1)) ≥ Dϕ(T
−1(g(./x1)

g1(x1)h(x1)
f1(x1)

), T−1(f(./x1)f1(x1)))

= Dϕ(g(./x1)f1(x1), f(./x1)f1(x1)), by the very definition of T .
= Dϕ(g

f1
g1
, f), which completes the proof of this proposition.

Proof of Proposition 3.3. Proposition 3.3 comes immediately from Proposition B.1 page 1606 and
Lemma A.1 page 1605.
Proof of Theorem 3.1. First, by the very definition of the kernel estimator ǧ(0)n = gn converges
towards g. Moreover, the continuity of a 7→ fa,n and a 7→ ga,n and Proposition 3.3 imply that
ǧ
(1)
n = ǧ

(0)
n

fa,n

ǧ
(0)
a,n

converges towards g(1). Finally, since, for any k, ǧ(k)n = ǧ
(k−1)
n

fǎk,n

ǧ
(k−1)
ǎk,n

, we conclude by an

immediate induction.
Proof of Theorem 3.2. First, from Lemma D.7, we derive that, for any x,

supa∈Rd
∗
|fa,n(a⊤x) − fa(a

⊤x)| = OP(n
− 2

4+d ). Then, let us consider Ψj =
fǎj ,n(ǎj

⊤x)

ǧ
(j−1)
ǎj ,n

(ǎj⊤x)
− faj (a

⊤
j x)

g
(j−1)
aj

(a⊤j x)
, we

have Ψj =
1

ǧ
(j−1)
ǎj ,n

(ǎj⊤x)g
(j−1)
aj

(a⊤j x)

((fǎj ,n(ǎj
⊤x)− faj(a

⊤
j x))g

(j−1)
aj (a⊤j x) + faj(a

⊤
j x)(g

(j−1)
aj (a⊤j x)− ǧ

(j−1)
ǎj ,n

(ǎj
⊤x))),

i.e., |Ψj| = OP(n
− 1

2
1d=1− 2

4+d
1d>1) since faj(a

⊤
j x) = O(1) and g(j−1)

aj (a⊤j x) = O(1). We can therefore
conclude similarly as in the proof of Theorem A.2.
Proof of Theorem D.1.

Theorem D.1. In the case where f is known and under the hypotheses assumed in Section 3.1, it holds
√
nA.(čn(ak)− ak)

Law→ B.Nd(0,P∥ ∂
∂b
M(ak, ak)∥2) + C.Nd(0,P∥ ∂

∂a
M(ak, ak)∥2) and

√
nA.(γ̌n − ak)

Law→ C.Nd(0,P∥ ∂
∂b
M(ak, ak)∥2) + C.Nd(0,P∥ ∂

∂a
M(ak, ak)∥2)

where A = P ∂2

∂b∂b
M(ak, ak)(P

∂2

∂ai∂aj
M(ak, ak) +P ∂2

∂ai∂bj
M(ak, ak)), C = P ∂2

∂b∂b
M(ak, ak) and

B = P ∂2

∂b∂b
M(ak, ak) +P ∂2

∂ai∂aj
M(ak, ak) +P ∂2

∂ai∂bj
M(ak, ak).
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First of all, let us remark that hypotheses (H1) to (H3) imply that γ̌n and čn(ak) converge towards
ak in probability. Hypothesis (H4) enables us to derive under the integrable sign after calculation,
P ∂
∂b
M(ak, ak) = P ∂

∂a
M(ak, ak) = 0,

P ∂2

∂ai∂bj
M(ak, ak) = P ∂2

∂bj∂ai
M(ak, ak) =

∫
φ”(

gfak
fgak

) ∂
∂ai

gfak
fgak

∂
∂bj

gfak
fgak

f dx,

P ∂2

∂bi∂bj
M(ak, ak) = −

∫
φ”(

gfak
fgak

) ∂
∂bi

gfak
fgak

∂
∂bj

gfak
fgak

f dx, P ∂2

∂ai∂aj
M(ak, ak) =

∫
φ′(

gfak
fgak

) ∂2

∂ai∂aj

gfak
fgak

f dx,

and consequently P ∂2

∂bi∂bj
M(ak, ak) = −P ∂2

∂ai∂bj
M(ak, ak) = −P ∂2

∂bj∂ai
M(ak, ak), which implies,

∂2

∂ai∂aj
K(g

fak
gak
, f) = P ∂2

∂ai∂aj
M(ak, ak)−P ∂2

∂bi∂bj
M(ak, ak),

= P ∂2

∂ai∂aj
M(ak, ak) +P ∂2

∂ai∂bj
M(ak, ak) = P ∂2

∂ai∂aj
M(ak, ak) +P ∂2

∂bj∂ai
M(ak, ak).

The very definition of the estimators γ̌n and čn(ak), implies that

{
Pn ∂

∂b
M(b, a) = 0

Pn ∂
∂a
M(b(a), a) = 0

i.e.

{
Pn ∂

∂b
M(čn(ak), γ̌n) = 0

Pn ∂
∂a
M(čn(ak), γ̌n) + Pn ∂

∂b
M(čn(ak), γ̌n)

∂
∂a
čn(ak) = 0,

i.e.

{
Pn ∂

∂b
M(čn(ak), γ̌n) = 0 (E0)

Pn ∂
∂a
M(čn(ak), γ̌n) = 0 (E1)

Under (H5) and (H6), and using a Taylor development of the (E0) (resp. (E1)) equation, we infer
there exists (cn, γn) (resp. (c̃n, γ̃n)) on the interval [(čn(ak), γ̌n), (ak, ak)] such that
−Pn ∂

∂b
M(ak, ak) = [(P ∂2

∂b∂b
M(ak, ak))

⊤ + oP(1), (P
∂2

∂a∂b
M(ak, ak))

⊤ + oP(1)]an.

(resp. −Pn ∂
∂a
M(ak, ak) = [(P ∂2

∂b∂a
M(ak, ak))

⊤ + oP(1), (P
∂2

∂a2
M(ak, ak))

⊤ + oP(1)]an)
with an = ((čn(ak)− ak)

⊤, (γ̌n − ak)
⊤). Thus we get

√
nan =

√
n

[
P ∂2

∂b2
M(ak, ak) P ∂2

∂a∂b
M(ak, ak)

P ∂2

∂b∂a
M(ak, ak) P ∂2

∂a2
M(ak, ak)

]−1 [
−Pn ∂

∂b
M(ak, ak)

−Pn ∂
∂a
M(ak, ak)

]
+ oP(1)

=
√
n(P ∂2

∂b∂b
M(ak, ak)

∂2

∂a∂a
K(g

fak
gak
, f))−1

.

[
P ∂2

∂b∂b
M(ak, ak) +

∂2

∂a∂a
K(g

fak
gak
, f) P ∂2

∂b∂b
M(ak, ak)

P ∂2

∂b∂b
M(ak, ak) P ∂2

∂b∂b
M(ak, ak)

]
.

[
−Pn ∂

∂b
M(ak, ak)

−Pn ∂
∂a
M(ak, ak)

]
+ oP(1)

Moreover, the central limit theorem implies: Pn ∂
∂b
M(ak, ak)

Law→ Nd(0,P∥ ∂
∂b
M(ak, ak)∥2),

Pn ∂
∂a
M(ak, ak)

Law→ Nd(0,P∥ ∂
∂a
M(ak, ak)∥2), since P ∂

∂b
M(ak, ak) = P ∂

∂a
M(ak, ak) = 0, which leads

us to the result.
Proof of Theorem 3.3. We derive this theorem through Proposition B.1 and Theorem D.1.
Proof of Theorem 3.4. We recall that g(k)n is the kernel estimator of ǧ(k). Since the Kullback–Leibler
divergence is greater than the L1-distance, we then have

limn limkK(g
(k)
n , fn) ≥ limn limk

∫
|g(k)n (x)− fn(x)|dx

Moreover, the Fatou’s lemma implies that
limk

∫
|g(k)n (x)− fn(x)|dx ≥

∫
limk

[
|g(k)n (x)− fn(x)|

]
dx =

∫
|[limk g

(k)
n (x)]− fn(x)|dx

and limn

∫
|[limk g

(k)
n (x)]− fn(x)|dx ≥

∫
limn

[
|[limk g

(k)
n (x)]− fn(x)|

]
dx

=
∫
|[limn limk g

(k)
n (x)]− limn fn(x)|dx

Through Lemma A.4, we then obtain that
0 = limn limkK(g

(k)
n , fn) ≥

∫
|[limn limk g

(k)
n (x)]− limn fn(x)|dx ≥ 0, i.e., that∫

|[limn limk g
(k)
n (x)]− limn fn(x)|dx = 0.

Moreover, for any given k and any given n, the function g(k)n is a convex combination of multivariate
Gaussian distributions. As derived at Remark 2.1 of page 1585, for all k, the determinant of the
covariance of the random vector—with density g(k)—is greater than or equal to the product of a positive
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constant times the determinant of the covariance of the random vector with density f . The form of the
kernel estimate therefore implies that there exists an integrable function φ such that, for any given k and
any given n, we have |g(k)n | ≤ φ.

Finally, the dominated convergence theorem enables us to say that limn limk g
(k)
n = limn fn = f ,

since fn converges towards f and since
∫
|[limn limk g

(k)
n (x)]− limn fn(x)|dx = 0.

Proof of Corollary 3.1. Through the dominated convergence theorem and through Theorem 3.4, we get
the result using a reductio ad absurdum.
Proof of Theorem 3.5. Through Proposition B.1 and Theorem A.3, we derive theorem 3.5.
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