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Abstract: Dynamics of many complex systems can be described by replicator equations 

(RE). Here we present an effective method for solving a wide class of RE based on 

reduction theorems for models of inhomogeneous communities. The solutions of the RE 

minimize the discrimination information of the initial and current distributions at each 

point of the system trajectory, not only at the equilibrium, under time-dependent 

constraints. Applications to inhomogeneous versions of some conceptual models of 

mathematical biology (logistic and Ricker models of populations and Volterra’ models of 

communities) are given. 

Keywords: replicator equation; selection system; model reduction; discrimination 

information; cross-entropy 
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1. Introduction 

 

Replicator equations describe the dynamics of distributions in heterogeneous populations and 

communities under selective forces, when the heterogeneity implies existence of selective differences 

between individuals. One of the first replicator equations was used by Fisher, Haldane, and Wright to 

study the evolution of multi-allelic one-locus gene frequencies under the force of natural selection (for 

more information see [1]). Another well-known source of replicator equations comes from the 

evolutionary game theory [2,3]. 
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A very high or even infinite system dimensionality is one of the most fundamental difficulties in the 

study of replicator equations. Another approach to inference of unknown distribution p  subject to 

some given testable information (constraints) about the system can be based on the Principal of 

minimum discrimination information, MinxEnt (in equivalent terms, the Principle of maximum 

information entropy, MaxEnt). The divergence between the distribution p and reference distribution 

m can be measured with information discrimination ]:[ mpI  (known also as KL-divergence between p 
and m, see s.2 for definitions). The MinxEnt principle [4] states that, given new information, a new 

distribution p should be chosen in such a way as to minimize ]:[ mpI ; see also [5,6] for rationalization 

and applications of the MaxEnt principle. 

A grave objection against this approach is that the MaxEnt principle does not follow from the basic 

laws and fundamental theories and hence may or may be not postulated as an independent assertion. 

The problem can be eliminated for some particular systems if one can derive the MaxEnt principle 

from the system dynamics. 

Generally, in applications to dynamical systems the MinxEnt principle is used to estimate the 

unknown distribution p  at given constraints when the system is in equilibrium. Recently it was shown 

that the MinxEnt principle is valid as an exact theorem for a wide class of selection systems not only in 

equilibrium states but also at every point along the system trajectory. More precisely, it was proven  

in [7], that: 1) some complex models of selection systems can be reduced to an escort system of 

ordinary differential equations; 2) the solutions of corresponding RE have the form of time-dependent 

Boltzmann distributions (in other terms, they belong to the exponential family of distributions), and 

conversely, every time-dependent Boltzmann distribution satisfies a replicator equation; for a 

simplified model of the selection system it was shown in [8] that 3) the Dynamical principle of 

minimum of discrimination information (MinxEnt) is valid: the solution to the RE minimizes the KL–

divergence of the initial and current distributions under some natural constraints at every instant; these 

constrains can in turn be computed explicitly at every moment from the system dynamics. The 

obtained results were illustrated on some simple models of free growing Malthusian  

inhomogeneous populations. 

In this paper we consider a more general version of selection systems with self-regulation then the 

systems studied in [7]; it allows us accounting for a possible dependence of reproduction rate on 

different statistical characteristics of the set of traits given in the model, such as mean values, 

covariance and higher moments of the system distribution. 

We formulate the reduction theorem (Section 3) and Dynamical MinxEnt principle for such systems 

(Section 4); the main results of these sections are similar to those obtained in [7,8], but they are 

relevant for more general selection systems. In Section 5 the results are applied to inhomogeneous 

versions of classical logistic and Ricker population models. In Section 6 we give the “conjugate” 

description of the solution to RE based on the Dynamical MinxEnt principle; we show that the KL-

divergence is the Legendre transform of the logarithm of the partition function for corresponding time-

dependent Boltzmann distributions; we also show that the solution to the escort system and the current 

mean values of the “traits” accounted for by the selection system are conjugate variables. In Section 7 

we extend the reduction theorem and Dynamical MinxEnt principle to models of inhomogeneous 

communities and apply them to some classical Volterra’ type models of mathematical biology. 

Overall, three fundamental mathematical objects are under consideration in this paper: 
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MinxEnt principle, Exponential families of distributions, and Replica dynamics (selection system). 

There exist close interconnections between these objects (loosely speaking, they are in some sense 

equivalent). In particular, 

(A) The Kullback’ (or Jaynes’, for MaxEnt) theorem states that the MinxEnt distribution belongs to 

the Exponential family, implying that MinxEnt => Exponential family; 

(B) It is almost evident (and was mentioned in the literature [8,9]), that if the distribution belongs to 

the exponential family, then it satisfies the MinxEnt, suggesting the inverse implication: Exponential 

family =>MinxEnt. 

(C) Any time-dependent exponential distribution solves corresponding replicator equation, so the 

implication: time-dependent Exponential family => Replicator equation becomes trivial; 

(D) The major focus of this paper is on the inverse implication: Replica dynamics (selection  

system) => time-dependent Exponential family. It is composed of the reduction theorem and formulas 

for the system distribution and current constraints. Not only the Dynamical MinxEnt principle but also 

the reduction theorem follow from the fact that the solution to the replicator equation belongs to the 

exponential family. In this case all current statistical characteristics of the system can be computed 

with the help of the moment generating function (or, more generally, by generating functional) for the 

initial distribution. This implies that one can construct a closed escort system for auxiliary variables, 

whose time derivatives are equal to the “weights” of the traits, defining the reproduction rate. These 

variables coincide with the Lagrange multipliers for time-dependent MinxEnt distribution. The 

dimensionality of the escort system does not depend on the dimensionality of the initial model and is 

equal to the number of traits. Exact formulations are given in s.3 and Mathematical Appendix. 

 

2. The KL-Divergence and MinxEnt Principle 

 

In the case of continuous distributions the discrimination information, or the KL - divergence of the 

distribution p from m, is: 

 

][ln
)(

)(
ln)(]:[

m

p
Edx

xm

xp
xpmpI p

A
== ∫  (2.1) 

The value ]:[]:[ mpImpS −=  is known also as the relative entropy. The probability density 

function (pdf) m  is assumed to be given. The inference of p  by minimizing ]:[ mpI  (equivalently, 

by maximizing ]:[ mpS ) is known as the Principle of minimum discrimination information, MinxEnt 

(accordingly, the Principal of Maximum relative or cross-entropy, MaxEnt).  

Assume that expected values sA  of some variables nss ,...1, =ϕ  over the pdf p  are known: 

ssp AE =][ϕ . Then the “MinxEnt distribution” *p  that minimizes the discrimination information 

]:[ mpI  subject to these constraints is:  
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)][exp()( ϕλλ  is known as a partition function and the Lagrange multipliers sλ  

solve the system:  
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ss AZ =∂∂ λ/ln  (2.3) 

Distributions of the form (2.2) belong to the exponential family of distribution [10]. The minimized 

value of the discrimination information is:  

∑
=

+−=
n

s

ss AZmpI
1

)(ln]:*[ λλ  (2.4) 

In the MinxEnt distribution (2.2), the information concerning the constraints sA  is encoded in the 

set of Lagrange multipliers sλ  via equation (2.3), given the reference pdf m ; conversely, if sλ  in (2.2) 

are known, then the MinxEnt distribution is also known and hence the mean values sA  can be 

computed. In other words, the MinxEnt principle implies the equivalence of description of the 

distribution by the set of constraints and by the set of Lagrange multipliers. Below (see Section 6) we 

show that for replica dynamics this equivalence is universal and does not depend on the MinxEnt 

principle. 

 

3. Selection Systems with Self-regulation and the Reduction Theorem 

 

The selection system is a mathematical model of an inhomogeneous population, in which every 

individual is characterized by a vector-parameter a=),...( 1 naa  that takes on values from set A . The 

parameter a specifies an individual's inherited invariant properties and does not change with time; the 

set of all individuals with a given value of the vector-parameter a  in the population is called a -clone. 

Let ),( atl  be the density of the population at the moment t  over the parameter a , so that the total 

population size:  

∫=
A

dtltN aa),()(  (3.1) 

and the current population distribution )(/),(),( tNtltP aa = . Denote ),( atF  to be the per capita 

reproduction rate (Malthusian fitness) at the moment t . We suppose that the reproduction rate of every 

a -clone does not depend on other clones but can depend on a  and on some general population 

characteristics such as the total population size. These quantities evolve with time providing some  

self-regulation of the system dynamics. For example, the reproduction rate for the logistic model is 

proportional to )/)(1( BtN−  where B is the upper boundary of the population size; the reproduction 

rate of the Ricker’ model is proportional to ))(exp( tNβ− .  

An abstract selection system (or, in the author's terms, a system with inheritance) was studied in 

[11] (see also references to earlier work therein) where a general selection theorem was proven.  

In [7] a class of selection systems with self-regulation was studied and a reduction theorem was 

proved; the theorem gives an effective algorithm for investigation of the selection systems and 

corresponding replicator equations. Below we formulate a more general version of this theorem. 

It was assumed in [7] that the individual reproduction rate can depend on two types of integral 

characteristics of the system (“regulators”): the extensive characteristics, which depend on the total 

size of the system (as in most population models) and intensive characteristics, which do not depend 

on the total size but only on the population frequencies (as in most genetic models). The intensive 

characteristics are of the form:  
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][),()()( kt

A

kk hEdtPhtH == ∫ aaa  
(3.2) 

and the extensive characteristics:  

][)(),()()( it

A

ii gEtNdtlgtG == ∫ aaa  
(3.3) 

where ki hg ,  are appropriate weight functions. 

Overall, we specify for each model a finite set of the extensive regulators )(),...()( 1 tGtGt m=G , 

which contains the total population size; we assume that the individual reproduction rate can depend 

on this set of regulators at each time moment. 

If we assume the overlapping generations and smoothness of ),( atl  in t  for each A∈a , then the 

population dynamics can be described by the following master model:  

),(),(/),( aaa tFtldttdl =  (3.4) 

∑
=

=
n

i

ii tutF
1

)(),(),( aGa ϕ  
(3.5) 

here ),( Gtui are continuous functions . 

The initial distribution P(0,a) and the initial population size N(0) are assumed to be given. The 

current system distribution )(/),(),( tNtltP aa = solves the replicator equation: 

])[),()(,(/),( FEtFtPdttdP t−= aaa  (3.6)  

The mathematical form of the fitness (3.5) suggests (from a biological point of view) that the 

individual fitness depends on a given finite set of traits. 

The function )(aiϕ  in (3.5) may describe quantitative contribution of a particular i-th trait to the 

total fitness and then ),( Gtui  describes the relative importance (weight) of the trait contributions, 

which at every time moment can depend on the state of the environment, population size, the mean, 

variance, covariance, and other statistical characteristics of the traits. We emphasize that the model 

accounts for the interactions between the traits only with the help of a given set of regulators. For 

example, if one needs to account for all moments up to the 2
nd

 order, the following set of regulators 

should be used:  

,),()( ∫=
A

dtltN aa ,),()()( aaa dtltG
A

ii ∫= ϕ aaaa dtltG
A

kiik ),()()()( ∫= ϕϕ  
(3.7)  

Then, the covariance between the traits ki ϕϕ , at the moment t is the function of these regulators:  

)(/)()()(/)()](,[),( 2
tNtGtGtNtGtCovtu kiikkii −== ϕϕG  (3.8)  

Clearly, this way one can account for the dependence of the fitness on mixed moments of any order; 

however, the approach that is described below is truly useful only when considers just a few 

regulators. 

In model (3.5)-(3.6) the regulators and hence the reproduction rate ),( atF  are not given explicitly 

but should be computed using the current pdf ),( atP  at each time moment, so in the general case, the 
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model is a nonlinear equation of infinite dimensionality. Nevertheless, it can be reduced to a Cauchy 

problem for the escort system of ODE. For a less general version of the model (which allows 

dependence of the functions iu
 
on a single regulator only) the reduction theorem was proven in [7]. 

Below we formulate a more general version of this theorem, which gives an effective algorithm for 

investigation of the selection systems and the corresponding replicator equations.  

Introduce the generating functional: 

∑∫
=

=Φ
n

i

ii

A

dPrr
1

),0())(exp()();( aaaaλ ϕλ  (3.9) 

where ),...( 1 nλλ=λ , and )(ar  is a measurable function on A.  

Define auxiliary variables as a solution to the escort system of differential equations: 

niqttudtdq iii ,...1,0)0()),(*,(/ === G  (3.10) 

where )(*),...(*)(* 1 tGtGt m=G , and:  

))(,()0()(* tgNtG kk qΦ= , ))(),...(()( 1 tqtqt n=q  (3.11) 

Denote: 

))()(exp()(
1

∑
=

=
n

i

iit tqK aa ϕ  (3.12) 

Theorem 1. Let ∞≤< T0  be the maximal value of t  such that Cauchy problem (3.10) has a 

unique global solution )}({ tq  at ),0[ Tt ∈ . Then the functions:  

)(),0(),( aaa tKltl =
 

))(),(;()0()(*)( ttgNtGtG ikk sqΦ==  
(3.13) 

satisfy system (3.4)-(3.5) at t∈[0,T). 

In particular the total size of the population: 

][)0())(;1()0()( 0 tKENtNtN =Φ= q  (3.14) 

As a corollary, we obtain the central formula for the current distribution of the system: 

][/)(),0(),( 0 tt KEKPtP aaa =  (3.15) 

In particular, ][/][][ 00 ttt KEfKEfE =  for any (measurable) function. 

Equality (3.12) shows that pdf (3.15) belongs to the exponential family of distributions [10]. In 

more “physical” terms, the pdf is the time-dependent Boltzmann distribution of the form 

ZBPtP /)exp(),0(),( aa = with the Boltzmann factor )exp(B  where: 

∑
=

=
n

i

ii tqtB
1

)()());(( aaq ϕ
 

 (3.16) 

and the partition function: 
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][)]);(([exp())(( 00 tKEtBEtZ == aqq  (3.17)  

Remark that in our case the partition function is completely known, given the initial pdf ),0( aP  and 

the solution to the Cauchy problem (3.10). Within the frameworks of selection system (3.5)-(3.6) the 

partition function has a clear biological meaning: )0(/)())(( NtNtZ =q  is proportional to the current 

population sizes, which follows from formula (3.14).  

 

4. Dynamical MinxEnt Principle 

 

Comparing the distribution (3.15) with the MinxEnt distribution (2.2) one can conclude that under 

time-dependent constraints ][ iti EA ϕ=  the solution to replicator equation (3.6) minimizes the KL-

divergence of the initial and current distributions not only at the equilibrium but also at each point of 

the system trajectory. These constrains in turn can be computed explicitly at every instant depending 

on the system dynamics. The following theorems collect together corresponding  

mathematical assertions.  

Theorem 2. 

1) Let ),( atPPt =  be the solution (3.15) of replicator equation (3.6). Then at every moment t the 

distribution tP  provides minimum of ]:[ 0PPI t  over all probability distributions compatible with the 

constraints ][)( iti EtA ϕ= , ni ,...1= ; 

2) The values of constraints evolve due to escort system (3.10) and at each time moment can be 

computed using the formula: 

))(;1(/))(;(][/][)( 00 ttKEKEtA ittii qq ΦΦ== ϕϕ  (4.1) 

3) Dynamics of the constraints are determined by the covariance equation: 

],[/)( iti FCovdttdA ϕ=  (4.2) 

Theorem 3. The discrimination information ]:[ 0PPI t  solves the covariance equation: 

],[
]:[ 0 FBCov

dt

PPdI
t

t =  (4.3) 

and can be computed using the following formulas: 

][ln][/][]:[ 0000 tttt KEKEBKEPPI −=  

))0(/)(ln(][]:[ 0 NtNBEPPI tt −=  
(4.4) 

where ),( atFF = , ));(( aq tBB = . 

In the following section we demonstrate how Theorems 1-3 can be applied to some classical 

population models. A similar theory can be developed for replicator equations with discrete time and 

corresponding selection systems (maps) [13]. 
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5. The Ricker’ and Logistic Inhomogeneous Models and the Dynamical MinxEnt Principle  

 

5.1. Inhomogeneous Logistic Model  

 

Many particular models of selection systems have the form of inhomogeneous logistic equation:  

))](())(()[(,;(/),;( 21 tNftNftldttdl µβµβµβ −=  (5.1)  

The general solution to this equation with distributed parameters was obtained in [7], example 5. 

Let )][exp(),( 21021 µλβλλλ += EM  be the mgf of the joint initial distribution of β  and µ . Then 

))()(exp(),;0(),;( 21 µβµβµβ tqtqltl += where 21,qq  solve the escort system: 

)),()0((/ 2111 qqMNfdtdq =  

)),()0((/ 2122 qqMNfdtdq −=  

0)0(1 =q , 0)0(2 =q  

(5.2)  

The total population size ))(),(()0()( 21 tqtqMNtN =  and the current distribution: 

))(),((/))()(exp(),;0(),;( 2121 tqtqMtqtqPtP µβµβµβ +=  (5.3) 

Now we are able to apply the results of s.4. The discrimination information at moment t:  
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The distribution (5.3) provides the minimum of discrimination information, which is equal to (5.4) 

at each time moment among all distributions subject to the given mean values of birth and death rates 

at this moment:  
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+
=  (5.5)  

A particular case of equation (5.1): 

))()(,;(/),;( tNtldttdl µβµβµβ −=  (5.6)  

was studied in [12] for independent uniformly distributed parameters β  and µ , ],[ 11 ba∈β , 

],[ 22 ba∈µ  and )))(/((1),;0( 2211 ababP −−=µβ . It was proven in [7] that then 

);();(),;( 21 µβµβ tPtPtP =  where:  
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The current mean values of the birth and death rates:  

1
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1
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))exp((1
][ b
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bEt →−

−−

−
−=β
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2222
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))()exp((1
][ a

tqtqab
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bEt →−

−−

−
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(5.8)  

Distribution (5.7) provides the minimum of discrimination information at each time moment among 

all distributions concentrated in the rectangle ],[],[ 2211 baba ×  subject to the mean values of the birth 

and death rates (5.8). 

In a general case, the solution to (5.6) is given by (5.3) at ttq =)(1
 and )(2 tq  that solves the 

equation ),()0(/ 202 qtMNdtdq −= , 0)0(2 =q . The asymptotical behaviors of the solution to equation 

(5.6) vary dramatically depending on the initial distribution. Let the positive parameters β, µ be 

independent again, and the initial distributions of both parameters be exponential, )exp()( iii xssxP −= . 

Let 1, 21 == sTs , and 1)0( =N  for simplicity. Then ttq =)(1 , )/1ln(211)(2 TtTtq −−−=  . The 

current system distribution );();(),;( 21 µβµβ tPtPtP =  where both marginal distributions are  

again exponential: 

))(exp()();(1
tTtTtP −−−= ββ  

)/1ln(21exp()/1ln(21);(2
TtTTtTtP −−−−−= µµ  

(5.9)  
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)/1ln(21
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)(1
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2 TtTtq
Et

−−
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−
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(5.10)  

Hence, the solution to equation (5.6) with the initial exponential distribution exists only up to the 

moment Tt = . The total population size })/1ln(21)/1/{()0()( TtTTtNtN −−−=  tends to infinity 

as Tt → and the population vanishes in any finite interval of values of both parameters, β  and µ . 

The discrimination information for );();( 21 µβ tPtPPt =   

))/1ln(21ln()/1ln(1
)/1ln(21

1
]:[ 0 TtTTt

TtTtT

t
PPI t −−+−+−

−−
+

−
=  (5.11)  

The exponential distribution );();(),;( 21 µβµβ tPtPtP =  provides the minimum of the 

discrimination information over all the distributions subject to the mean values of the birth and death 

rates (5.10), and this minimum is equal to (5.11).  

 

5.2. Inhomogeneous Ricker’ Model 

 

Let us consider the inhomogeneous version of the well known Ricker’ equation: 

)]))(exp()[(,;(/),;( µβµβµβ −−= tcNtldttdl  (5.12)  
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The general solution to this equation with distributed parameters was obtained in [7], example 6. 

Let ),( 210 λλM  be the mgf of the joint initial distribution of β  and µ . Then:  

))(exp(),;0(),;( µβµβµβ ttqltl −=  (5.13)  

where the auxiliary variable )(tq  solve the Cauchy problem: 

0)0()),,()0(exp(/ 0 =−−= qtqMcNdtdq  (5.14)  

The total population size )),(()0()( ttqMNtN −= , and the system distribution: 

)),((/))(exp(),;0(),;( ttqMttqPtP −−= µβµβµβ  (5.15) 

Applying the results of s.4 we can compute the discrimination information at moment t  : 

)),((ln)),((/)])(exp())([(]:[ 00 ttqMttqMttqttqEPPI t −−−−−= µβµβ  (5.16) 

The current mean values of the parameters are given by: 
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−
=  (5.17) 

The pdf (5.15) provides minimum of the discrimination information at every time moment subject 

to the constraints (5.17), and this minimum is equal to (5.16). 

For example, let the parameters β  and µ  be independent and exponentially distributed in [0,∞) 

with the means s1 and s2 at the initial instant. Then )))(/((),( 2121 tsqssstqM +−=− , and: 

0)0())),)(/(()0(exp(/ 2121 =+−−= qtsqssscNdtdq  (5.18) 

This equation has a stable state 1sq = . As ∞→t , 1)( stq → , the total population size tends to 

infinity and the population density concentrates at the value 0=µ  of the parameter µ  and vanishes in 

any finite interval of values of the parameter β . The distribution: 

2121 /))()()(exp(),;0(),;( sstsqsttqPtP +−−= µβµβµβ  (5.19) 

provides minimum of the discrimination information subject to the constraints: 
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1
][

1 tqs
Et

−
=β ,

ts
Et

+
=
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1
][µ  (5.20) 

and this minimum is equal to: 

)ln())(ln()ln(
))((

)(

))((
]:[ 2112
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1
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2
0 sstqsts
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tqst
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tstq
PPI t −−+++
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−
−
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+
=  (5.21) 

6. “Conjugative” Approach to the Selection System Dynamics 

 

In the previous section we presented solutions to inhomogeneous logistic and Ricker models using 

the corresponding auxiliary variables and escort systems. These solutions minimize the information 

discrimination under certain constraints and hence can be found throw solving a conditioned 

optimization problem. Similar results can be obtained for other models of inhomogeneous populations. 

Let us clarify the interconnections between these two approaches. 
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Let us first come back to logistic model (5.1). Formally, the values )(),( 21 tqtq  at t  moment can be 

found independently on the system (5.2) by minimization of discrimination information (5.4) subject 

to the mean values ][βtE , ][µtE . We should emphasize that these constraints cannot be assigned 

arbitrarily but are completely defined by the system dynamics at the given initial distribution. Hence, if 

][βtE , ][µtE  can be estimated independently, e.g., by data processing, then they must coincide  

with (5.5). 

It implies that if a distribution tP  is such that ]:[ 0PPI t  is equal to (5.4) and the mean values of the 

traits µβ ,  over tP  are equal to the estimated ones then tP  coincides with (5.3) and hence the values 

)(),( 21 tqtq  are equal to the solution to system (5.2). Practically this means that we can solve  

equations (5.5) for )(),( 21 tqtq  and this solution must coincide with the solution to system (5.2). To be 

more specific, let us consider a simple model (5.6) with exponentially distributed birth and death rates 

at the initial moment. For this model:  

][/1)(1 βtETttq −==  

][/11)/1ln(211)(2 µtETtTtq −=−−−=  
(6.1)  

We see that the mean values ][βtE , ][µtE , if known, completely determine the auxiliary variables 

)(),( 21 tqtq  and hence the solution to selection system (5.6) and the corresponding replicator equation 

given the initial distribution. 

These arguments can be made rigorous for any selection system (3.5) and replicator equation (3.6). 

The following theorem states that the information discrimination ]:[ 0PPI t  is the Legendre transform 

of the logarithm of partition function (3.17); the auxiliary variables )(tqi  and the constraints 

][)( iti EtA ϕ=
 
are conjugate under this transform (see MA for some definitions and proof). 

Theorem 4.  

i) The information discrimination ]:[ 0PPI t  as a function of constraints )(tAi  is the Legendre 

transform of ][ln 0 tKEW =
 
as a function of variables )(tqi , and conversely; 

ii) the variables )(tq  are conjugate to the constraints )(tA ; 

iii) for given constraints )(tA , the values of the variables )(tq  and ]:[ 0PPI t  
can be found as a 

solution to optimization problem: 

)}()(:sup{]:[
1

0 αα WtAPPI
n

i

iit −= ∑
=

α  (6.2) 

and *)( ii tq α=  where *iα
 
is the value at which the right hand side of (6.2) reaches its supremum. 

It follows from the theorem that dynamics of the selection system and the corresponding replicator 

equation can be equally described either in terms of the auxiliary variables )(tqi or in terms of the 

constraints, i.e., the current mean values of the traits,
 

][ itE ϕ , and this equivalence does not depend on 

the MinxEnt principle. Technically, the former approach is more appropriate as the auxiliary variables 

can be found from the escort system. The latter approach is of principal importance, because it shows 

that for in order to completely determine the dynamics of system (3.5) and its distribution at any time 

moment it is enough to know only the mean values of the traits at this moment together with the  

initial distribution.  
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7. Inhomogeneous Models of Communities 

 

7.1. Reduction Theorem and Dynamical MinxEnt 

 

Consider the model of a community consisting from r  interacting populations. We suppose again 

that every individual is characterized by their own value of vector-parameter a . Let ),( atl
j

 be the 

density of j-th population at moment t. In this section we consider the model of an inhomogeneous 

community where the reproduction rates can depend on current characteristics of every population in 

the community composing a “regulator”. Formally, we consider the set of m regulators, each of which 

is the r-dimension vector-function ))(),...(()(
1

tGtGtG
r

iii =  ,  ni ,...1=
 
where: 

aaa dtlgtG
j

A

i

j

i ),()()( ∫=  
(7.1) 

Each regulator corresponds to appropriate weight function .ig  A finite set of the regulators 

corresponds to each specific model; we denote this set as ))(),...(()( 1 tGtGt n=G .  

The current population sizes ∫=
A

jj
dtltN aa),()(  compose the regulator of a special importance, 

))(),...(()( 1
tNtNtN

r= . We assume that )(tN  is included in the set of the model’ regulators. The 

distribution of j-th population in the community is by definition )(/),(),( tNtltP
jjj

aa = . 

The model of inhomogeneous community considered here is of the form: 

),(),(/),( aaa tFtldttdl
jjj =  (7.2) 

∑
=

=
n

i

i

j

i

j
tutF

1

)(),(),( aGa ϕ  (7.3) 

where the functions 
j

iu can be specific for each trait and each population. The initial pdf-s ),0( a
j

P  

and the initial population sizes )0(j
N  are assumed to be given. The current pdf ),( atP

j
 solves the 

replicator equation: 

])[),()(,(/),( jj

t

jjj
FEtFtPdttdP −= aaa  (7.4) 

The theory for inhomogeneous community model (7.1)-(7.4) is similar to the theory presented in 

Sections 3 and 4 for inhomogeneous populations up to more complex technical details. Theorem 5 (see 

MA for complete formulation) reduces complex model (7.1)-(7.3) to an escort system of ordinary non-

autonomic equations of dimension nr ×  and gives the solution to replicator equation (7.4). Theorem 6 

(MA) establishes the Dynamical MinxEnt Principle for the inhomogeneous community model and 

gives explicit formulas for discrimination information and constraints at each time moment. Let us 

apply the general theory to some classical models of biological communities consisting of interacting 

inhomogeneous populations.  
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7.2. Inhomogeneous Prey-predator Volterra’ Model 

 

The prey-predator Volterra’ model in its simplest form reads: 

xyaxadtdx 21/ −=  

xyayadtdy 43/ +−=  
(7.5) 

where )(tx  and )(ty denote prey and predator densities, 1a  is the reproduction rate of the prey 

population, 2a is the per capita rate of the consumption of prey by the predators, 3a  is the death rate of 

the predator, and 24 / aa  is the fraction of prey biomass, which is converted into predator biomass.  

Let us consider the inhomogeneous version of this classical model supposing that parameters 1a , 2a , 

and 3a  are distributed and the ratio 24 / aa  is fixed (and hence could be chosen equal to 1). We also 

suppose that the reproduction and death processes are specific for each subpopulation, while the 

consumption is driven by the interaction of the prey (predator) subpopulation with the entire predator 

(prey) population. Let ),;( 21 aatx , );( 3aty  be the densities of the prey and predator populations over 

parameters 21 ,aa  and 3a  correspondingly, and:  

∫∫ ==
AA

daatytYdadaaatxtX 332121 );()(,),.;()(  
(7.6) 

be the total sizes of the populations. The initial population sizes and initial distributions 

);0(),,;0( 2

2

21

1
aPaaP  are assumed to be given. The total rate of consumption is equal to: 

][)()(),;()( 2

1

21212 aEtXtYdadaaatxatY t

A

=∫  
(7.7) 

Assuming the “proportional distribution” of prey among the predators we can write the 

inhomogeneous version of Volterra’ model in the form: 

))()(,;(/),;( 212121 tYaaaatxdtaatdx −=  

))()(;(/);( 333 atGatydtatdy −=  
(7.8) 

where ][)(),;()( 2

1

21212 aEtXdadaaatxatG t

A

== ∫ . 

Theorem 5 gives a method for studying this model and a more general model (7.2); the principal 

step is a reduction of the model to the escort system of ODE. It is instructive to deduce the escort 

system and the main results informally to clarify the main idea of the method in application to 

community models. 

It is natural to suppose that the parameter 3a  is stochastically independent on the parameters 21,aa . 

Let ),( 21

1 λλM  be the mgf of the initial joint distribution of the parameters 21,aa , and )( 3

2 λM  be the 

mgf of the initial distribution of the parameter 3a .  

Introduce the auxiliary variables )(1 tq , )(2 tq as a solution to the Cauchy problem: 

)(/1 tYdtdq =  

][)()(/ 2

1

2 aEtXtGdtdq t==
 

0)0()0( 21 == qq  

(7.9) 
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Then system (7.8) can be written formally as: 

)/)(,;(/),;( 1212121 dtdqaaaatxdtaatdx −=  

)/)(;(/);( 3233 adtdqatydtatdy −=  
(7.10) 

Its solution is: 

))(exp(),;0(),;( 1212121 tqataaaxaatx −=  

))(exp(();0();( 3233 tatqayaty −=  
(7.11) 

Now we can express all values of interest with the help of the mgf-s of the initial distributions and 

the auxiliary variables:  

))(,()0(),;0())(exp()0()( 1

1

2121

1

121 tqtMXdadaaaPtqataXtX
A

−=−= ∫
 

)())(exp()0();0())(exp(()0()( 2

233

2

32 tMtqYdaaPtatqYtY
A

−=−= ∫  

(7.12) 

),;0())(,(/))(exp()(/),;(),;( 21

1

1

1

1212121

1
aaPtqtMtqatatXaatxaatP −−==

 

);0()(/)exp()(/);();( 3

23

333

2
aPtMtatYatyatP −−==  

(7.13) 

))(,(/)),;0())(exp((][ 1

1

2121

1

12122

1
tqtMdadaaaPtqataaaE

A

t −−= ∫ , hence  

))(,()0()(][ 1

1

2

2

1
tqtMXtXaEt −

∂

∂
=

λ  (7.14) 

Finally, we obtain a closed system of non-autonomous equations: 

)())(exp()0(/ 2

21 tMtqYdtdq −=  

),()0(/ 11

1

2

2 qtMXdtdq −
∂

∂
=

λ
 

(7.15) 

Now that we have a solution to the Cauchy problem for this system with zero initial values, we can 

get explicit formulas for total populations’ sizes (7.12) and current distribution of the parameters 

(7.13), which completely solve the problem. In particular, the current mean values of the parameters: 

)))(,(ln(][ 1

1

1

1

1
tqtMaE t −

∂

∂
=

λ
 

)))(,(ln(][ 1

1

2

2

1
tqtMaE t −

∂

∂
=

λ
 

))(ln(][ 2

3

3

2
tMaE t −

∂

∂
=

λ
 

(7.16) 

One can check that the obtained formulas coincide with the formulas, which follow from  

Theorem 5, MA. The current information discriminations for the inhomogeneous Volterra’ model:  
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))(,(ln))](,(/))(exp())([(]:[ 10
1

10
1

12112100
11

tqtMtqtMtqatatqataEPPI t −−−−−=
 

))(,(ln))](,(/))(exp())([(]:[ 10
1

10
1

1211210
2

0
22

tqtMtqtMtqatatqataEPPI t −−−−−=  

(7.17) 

The distributions (7.13) provide the minimum of information discriminations equaled to (7.17) over 

all distributions compatible with constraints (7.16). 

Integrating the equations of system (7.8) over the parameters we obtain the system: 

)][][(/ 2

1

1

1
YaEaEXdtdX tt −=  

])[][(/ 3

2

2

1
aEXaEYdtdY tt −=  

(7.18) 

These equations for total sizes of inhomogeneous populations have the same form as the initial 

Volterra’ system (7.5); the difference is that now the parameter values are not constants but vary over 

time according to formulas (7.16). The phase-parametric portrait of “homogeneous” Volterra’ model is 

well known (see, e.g., [14]). The dynamics of system (7.18) is determined by the parametric point 

( ])[],[],[ 3

2

2

1

1

1
aEaEaE ttt , which moves across the parametric portrait of model (7.5). This 

phenomenon, which may be referred to as “traveling across the parametric portrait of a homogeneous 

model” is a common feature of corresponding inhomogeneous models. It was well observed on the 

example of discrete-time models [13]. For Volterra-type model of two inhomogeneous populations 

with logistic reproduction rates and ratio-dependent predator functional response the phenomenon was 

studied in detail in [15]. 

 

7.3. Competition of Two Inhomogeneous Populations 

 

The dynamics of two populations competing for a common resource can be described by the 

following logistic-like model (see, e.g., [14], ch.4): 

)/)(1(/ Ayxaxdtdx α+−=  

)/)(1(/ Bxybydtdy β+−=  
(7.19) 

where BA,  are the capacities of the ecological niches for both populations, and βα ,  are the 

coefficients of interspecies competitions. A more general Allee-like model has a form: 

)))(((/ yxALxaxdtdx α−−−=  

)))(((/ xyBMybydtdy β−−−=  
(7.20) 

where ML, are the lower threshold sizes for both populations. 

Consider the inhomogeneous versions of these models, supposing that the reproduction rates ba,  

are distributed, and the competition is defined by the total sizes )(),( tYtX  of the population.  

Then instead of the logistic model we obtain the following model:  

)/))()((1)(,(/),( AtYtXataxdtatdx α+−=  

)/))()((1)(,(/),( BtXtYbtbydtbtdy β+−=  
(7.21) 

and correspondingly: 
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))())()()()((,(/),( tYtXALtXataxdtatdx α−−−=  

))())()()()((,(/),( tXtYBMtYbtbydtbtdy β−−−=  
(7.22) 

instead of the Allee-type model. Both systems have a form: 

))())(()(,(/),( tYtXuataxdtatdx α−=  

))())(()(,(/),( tXtYvbtbydtbtdy β−=  
(7.23) 

where vu,  are appropriate functions. 

Let );0(1
aP  and );0(2

bP be the initial distributions of the Malthusian rates ba,  and )(1 λM , 

)(2 λM  be corresponding mgf-s. In order to study model (7.23), we apply Theorem 5, MA and 

consider the 4-dimension escort system: 

)()0((/
1

2

1

1

11

1 qqMXudtdq α−=  

)()0(/
2

2

2

1

21

2 qqMYdtdq β−=  

))()0((/
2

2

2

1

22

1 qqMYvdtdq β−=  

)()0(/
1

2

1

1

12

2 qqMXdtdq α−=  

0)0()0()0()0(
2

2

2

1

1

2

1

1 ==== qqqq  

(7.24) 

Suppose that Cauchy problem (7.24) has a unique global solution at ),0[ Tt ∈ , ∞≤< T0 .  

Define ))()((exp()(
1

2

1

1

1
tqtqaaK t α−= , ))()((exp()(

2

2

2

1

2
tqtqbbK t β−= . 

Then the solution to model (7.23) is: 

))()((exp(),0()(),0(),(
1

2

1

1

1
tqtqaaxaKaxatx t α−==

 

))()((exp(),0()(),0(),(
2

2

2

1

2
tqtqbbyaKbybty t β−==

 

))()(()0()(
1

2

1

1

1 tqtqMXtX α−=  

))()(()0()(
2

2

2

1

2 tqtqMYtY β−=  

(7.25) 

The mean values of the Malthusian rates at t moment: 

)))()((ln(][
1

2

1

1

11
tqtqMaE t α

λ
−

∂

∂
=

 

)))()((ln(][
2

2

2

1

22
tqtqMbE t β

λ
−

∂

∂
=  

(7.26) 

The current pdf-s: 

))()((/))()((exp();0();(
1

2

1

1

11

2

1

1

11 tqtqMtqtqaaPatP αα −−=  

))()((/))()((exp();0();(
2

2

2

1

22

2

2

1

22 tqtqMtqtqbbPbtP ββ −−=  
(7.27) 

The information discrimination: 
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)]([exp(ln)]([exp(/)](exp()([]:[ 11

0

11

0

111

0

1

0

1
taQEtaQEtaQtaQEPPI t −=  

)]([exp(ln)]([exp(/)](exp()([]:[ 22

0

22

0

222

0

2

0

2
tbQEtbQEtbQtbQEPPI t −=  

(7.28) 

where we denoted:  

)()()(
1

2

1

1

1 tqtqtQ α−= , )()()(
2

2

2

1

2 tqtqtQ β−=  (7.29) 

The distributions 
j

tP  (7.27) for 2,1=j  at each moment t  provide minimum of ]:[ 0

jj

t PPI  given 

by (7.28) over all probability distributions compatible with the constraints (7.26). 

A simpler logistic model (7.21) can be reduced to a two-dimension escort system:  

)/)(()0(/ 2111
AqqtMXdtdq α+−=  

)/)(()0(/ 2122
BqqtMYdtdq +−= β  

0)0()0( 21 == qq  

(7.30) 

The solution to model (7.21) is given by the following formulas: 

)))/)()(((exp(),0(),( 21
Atqtqtaaxatx α+−=  

)))/)()(((exp(),0(),( 21
Btqtqtbbybty +−= β  

)/))()((()0()( 211
AtqtqtMXtX α+−=  

)/))()((()0()( 212
BtqtqtMYtY +−= β  

(7.31) 

The current pdf-s: 

)/))()(((/))/))()(((exp();0();( 2112111
AtqtqtMAtqtqtaaPatP αα +−+−=  

)/))()(((/))/))()(((exp();0();( 2122122
BtqtqtMBtqtqtbbPbtP +−+−= ββ  

(7.32) 

The mean values of the Malthusian rates at moment t : 

))/))()(((ln(][ 2111
AtqtqtMaE t α

λ
+−

∂

∂
=

 

))/))()(((ln(][ 2122
BtqtqtMbE t +−

∂

∂
= β

λ
 

(7.33) 

The information discrimination: 

)]([exp(ln)]([exp(/)](exp()([]:[ 11

0

11

0

111

0

1

0

1
taQEtaQEtaQtaQEPPI t −=

 

)]([exp(ln)]([exp(/)](exp()([]:[ 22

0

22

0

222

0

2

0

2
tbQEtbQEtbQtbQEPPI t −=  

(7.34) 

where we denoted:  

)/))()(()( 211 AtqtqttQ α+−= , BtqtqttQ /))()(()( 212 +−= β  (7.35) 

Distributions (7.32) provide the minimum (7.34) of discrimination information for model (7.21) at 

each time moment among all distributions subject the mean values (7.33). 
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8. Discussion and Conclusions 

 

In this paper we develop a method of solving selection systems that describe replica dynamics 

based on the reduction theorem, and show that the solutions obey the Principe of minimum 

discrimination information, MinxEnt.  

The selection system is a dynamical model of an inhomogeneous biological community or a 

population of individuals, each of which is characterized by a set of qualitative traits; the values of 

these traits determine the reproduction rate of the individual. The model takes into account the 

processes of replication and selection, but not mutation and immigration (at least, not explicitly). The 

main problem of interest is the dynamics of joint distribution of these traits in each population 

depending on the initial distribution, as well as on correlations between the traits and interconnections 

between the populations. The dynamics of a distribution of a selection system is governed by the 

replicator equation.  

The MinxEnt (in other equivalent form, the Principle of maximum information entropy, or cross-

entropy, MaxEnt), was successfully applied to various statistical, physical and biological problems as a 

method for inference of unknown distribution, subject to some given constraints. MinxEnt offers an 

efficient algorithm for construction of the minimum discrimination information probability 

distributions; the “MinxEnt distributions” are well known both in physics as the Boltzmann-Gibbs 

distributions, as well as in mathematics as the exponential family of distributions. The method can 

incorporate interactions between different traits and variables, i.e., in the form of moments of their 

joined distribution and requires only testable information in the form of mean values of the traits.  

There exists an “observer-dependent” view of the cross-entropy concepts (defended by  

Jaynes [5, 6] and, subsequently, by many other authors). Briefly, the authors claimed that entropy is a 

property of our description of a system rather than a property of the system itself. Then, if MaxEnt is 

fundamentally an algorithm of Bayesian statistical inference from partial information it is not clear 

why one can expect it to work as a description of nature. This problem has been discussed in many of 

papers over the last 50 years. An acceptable answer was formulated by Dewar [16]: “…MaxEnt 

predicts that behavior, which is selected reproducibly by nature under the imposed constraints”. In the 

recent paper [9] the author has suggested that MaxEnt “is not a physical principle but, rather, an 

inference algorithm that passively translates physical assumptions into macroscopic predictions”.  

Nevertheless, the problem cannot be considered to be completely solved. Actually, an approach to 

obtain a satisfactory solution was pointed out by A. Einstein [17], who argued that the statistics of a 

system should follow from its dynamics and, in principle, could not be postulated a priori. 

In this paper we show that, for a wide class of models for replica dynamics (the selection systems), 

the dynamical version of the Principal of minimal information production is neither inference 

algorithm no external principle but a mathematical assertion that can be derived from the system 

dynamics instead of being postulated.  

We provide an algorithmic approach to find the solution to the replicator equation throw reduction 

of the initial model (which may have infinite dimensionality) to a corresponding escort system of 

ordinary differential equations, which can be of significantly smaller dimensionality than the original 

system; the actual dimensionality is equal to the number of traits that define the reproduction rate. The 

solution to any replicator equation from the considered class is a time-dependent Boltzmann 
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distribution, whose parameters solve the escort system. With the solution to the replicator equation we 

can compute the current mean values of the traits at any instant. Then, treating these mean values as 

constraints, we can show that the “MinxEnt distribution” coincides with the solution of the replicator 

equation, which was obtained independently of the MinxEnt algorithm. Hence, the principle of the 

minimum of discrimination information can be considered as the variation principle that governs the 

selection system dynamics. Overall, both the reduction theorem and the Dynamical MinxEnt principle 

stem from the fact that the solution to the replicator equation belongs to the exponential family. 

On the other hand, it is easy to show that any Boltzmann distribution with time-dependent 

parameters solves the corresponding replicator equation [8] and hence provides the minimum of 

discrimination information for the distribution of the associated selection system. It means that the 

replica dynamics is the “natural habitat” for the MinxEnt principle; within the framework of selection 

systems, we cannot choose whether or not to ascribe the property of minimization of the information 

discrimination to the selection system. It is an intrinsic property of any solution to the replicator 

equations that is fulfilled due to the system dynamics at any point of the system trajectory. More 

generally, the MinxEnt principle is an internal property of the process of natural selection at every 

moment of the system evolution. 

We showed that the discrimination information is the Legendre transform of logarithm of the 

partition function; the auxiliary variables and the constraints are conjugated variables under this 

transformation. This assertion clarifies the meaning of the auxiliary variables and the role of the escort 

system. It also implies that the dynamics of selection system can be equally well described either in 

terms of the auxiliary variables or in terms of the constraints, which are the current mean values of the 

traits. Hence, the solution to the replicator equation is completely determined by the current mean 

values of the traits subject the important condition that the initial distribution is known.  

Our approach is illustrated for inhomogeneous versions of some conceptual models of mathematical 

biology, namely, the logistic and Ricker’ models of populations and the Volterra’ models of 

communities. Formally, the inhomogeneous versions can be written in the same form as the initial 

models, with their current mean values substituted for the fixed parameters, as it was done in s.7 for 

the Volterra’ system. As a result, one obtains a complex non-linear integro-differential system, which 

hardly can be studied directly. The developed approach allows us to reduce this complex model to a 

system of two non-autonomous differential equations, which is specific for every initial distribution of 

the parameters. The same method works for other models and allows us to find the distribution of the 

systems at any time moment. 

Looking beyond the formal solutions, we can now reveal a general optimization principle that 

governs the replica dynamics in many problems in mathematical biology, evolutionary game theory 

[3], the Eigen quasispecies theory [18], etc. As a result of the selection process, these systems evolve 

in such a way that the discrimination information is minimized at each time moment, given the mean 

values of the accounting traits. The values of the constraints and corresponding minimal value of 

discrimination information can be determined for each specific system by the developed method; we 

can conclude that for this type of models the MinxEnt principle follows from the system dynamics.  
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Mathematical Appendix 

 

1. Information Discrimination and the Legendre Transform 

 

Let us recall some definitions and statements (see e.g., [19], section 12 for rigorous definitions and 

theorems). Let )(αW  be a convex function of r-dimensional vector α . The Legendre transform of the 

function )(αW  is the function: 

)}(),(:sup{)( αβααβ WL −=  (A.1) 

where ∑
=

=
r

i

ii

1

),( βαβα . The function )(βL  is again a convex function, and its Legendre transform is 

)(αW . The functions )(αW and )(βL  are conjugate.  

If the function )(αW  is smooth, then the transform (A.1) coincides with the classical Legendre 

transform defined as follows. Let )(βαα =  be the solution of the equation:  

βα =∇ )(W , i.e., iiW βα =∂∂ /)(α . Then ))(()),(()( βαββαβ WL −=  

The variables βα,  are conjugate. Let 

])([exp(ln)(
1

0 ∑
=

=
n

i

iiEW aλ ϕλ  

where ),...( 1 nλλ=λ . It is a convex smooth function on ),...( 1 nλλ=λ . Then: 

])[exp(/])exp([/)(
1

0

1

0 ∑∑
==

=∂∂≡
n

i

ii

n

i

iijjj EEW ϕλϕλϕλβ λ  

Now, let )(tqii =λ . Then:  

][ln]))([exp(ln))(( 0

1

0 t

n

i

ii KEtqEtW == ∑
=

ϕq   

)(][][/][ 00 tAEKEKE jjtttjj === ϕϕβ  for all nj ≤  

Hence, taking )(tA jj =β , we obtain:  

))](([][)()(
11

tBEEtq t

n

i

itiii

n

i

qβ ==∑∑
==

ϕβλ  

][))(( 0 tKEW =βλ  and finally: 
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]:[][ln))](([))(()),(()( 00 PPIKEtBEWL ttt =−=−= qβλββλβ  

So, ]:[ 0PPI t  at given constraints )(][ tAE jjt =ϕ  solves the optimization problem: 

)}()(:sup{]:[
1

0 αα WtAPPI
n

i

iit −= ∑
=

α  (A.2) 

and hence *)( ii tq α=  where *iα  provide supremum in (A.2). 

We have thus proven Theorem 4. 

 

2. Inhomogeneous Models of Communities: the Main Theorems 

 

Below we formulate the main theorems about model of inhomogeneous community (7.1)-(7.4). We 

omit the proofs because these theorems are similar to the corresponding theorems for inhomogeneous 

populations ([7, 8]) up to more complex technical details.  

The model (7.1)-(7.4) can be reduced to an escort system of ordinary non-autonomous equations of 

dimensionality nr × : 

nirjqttudtdq
j

ii

j

i

j

i ,...1,,...1,0)0()),(*,(/ ==== G . (A.3) 

Here: 

))(),...(()( 1 tqtqt
j

n

jj =q  

))(;()0()(* tgNtG
j

i

jjj

i qΦ=  

in particular:  

))(;1()0()(* tNtN
jjjj

qΦ=  

and );( λr
jΦ  is the generating functional (2.5) for the initial distribution ),0( a

j
P . 

Denote ∑
=

=
n

i

i

j

i

j

t tqK
1

))()(exp()( aa ϕ . 

Theorem 5. Suppose that Cauchy problem (A.3) has a unique global solution at ),0[ Tt ∈ , 

∞≤< T0 . Then the functions:  

)(),0(),( aaa
j

t

jj
Kltl =  

))(;()0()( tgNtG
j

i

jjj

i qΦ=
 

))(;1()0()( tNtN
jjjj

qΦ=
 

satisfy system (7.1)- (7.3) at t∈[0,T). The pdf: 
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))(;1(/)(),0(][/)(),0(),( 0 tKPKEKPtP
jjj

t

jj

t

j

t

jj
qaaaaa Φ==  (A.4) 

 

solves the replicator equations (7.4). 

It follows from Theorem 5, that:  

)][),((/
1

∑
=

=
n

i

i

j

ti

j

i

jj
EtuNdtdN ϕG  

where ))(;1(/))(;(][ ttE
jjj

i

j

i

j

t qq ΦΦ= ϕϕ .
 

 

Theorem 6.  

i) Let ),( atPP
jj

t =  be the solution (A.4) to replicator equation (7.4). Then at each moment t  the 

distribution 
j

tP  provides minimum of ]:[ 0

jj

t PPI  over all probability distributions compatible with the 

constraints ][)( i

j

t

j

i EtA ϕ= , ni ,...1= ; 

ii) The constraint values can be computed at each time moment by the formula: 

))(;1(/))(;(][/][)( 00 ttKEKEtA
jjj

i

j

tti

jj

i qq ΦΦ== ϕϕ  

iii) The discrimination information ]:[ 0

jj

t PPI  can be computed with the help of the following 

formulas: 

))0(/)(ln()],([]:[ 0
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t
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t NtNtBEPPI −= a  

][ln][/][]:[ 0000

j

t

jj

t

jj

t
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where ∑
=

=
n

i

i

j

i

j
tqtB

1

)()(),( aa ϕ . 
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