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Abstract: This article highlights advantages of entropy-based genetic diversity measures, at 

levels from gene expression to landscapes. Shannon’s entropy-based diversity is the 

standard for ecological communities. The exponentials of Shannon’s and the related 

“mutual information” excel in their ability to express diversity intuitively, and provide a 

generalised method of considering microscopic behaviour to make macroscopic 

predictions, under given conditions. The hierarchical nature of entropy and information 

allows integrated modeling of diversity along one DNA sequence, and between different 

sequences within and among populations, species, etc. The aim is to identify the formal 

connections between genetic diversity and the flow of information to and from  

the environment. 

Keywords: entropy, information, genes; DNA sequence; subdivision; dispersal; migration; 
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expression; gene regulation; disease phenotypes 

 

1. Introduction 

Because of the interdisciplinary nature of this article, the appendix contains definitions of some 

terms and symbols. There has also been an attempt to limit jargon to terms which have workable, 

generally understandable definitions on web sources such as Wikipedia. 
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1.1. Mathematical Approaches to Predictive Biological Science 

Biology is moving towards the idea that we should be able to use mathematical methods not only to 

analyse data from experiments or surveys, but also to make detailed predictions for outcomes of 

underlying processes in natural systems, or experiments. This will bring it into line with the other 

sciences, where mathematical modeling crept into practice during the 19
th

 century (despite some 

prominent opposition), and is now entrenched. The predictive, or “front-end” mathematics starts from 

the behaviour of microscopic components of a system, such as molecules in a gas, allelic variants in a 

population of genes, or members of various species in an ecological community. Equations are then 

constructed which allow predictions of macroscopic properties such as pressure in a gas, range of 

detectable phenotypes in a population, or composition of an ecological community. These predictive 

equations are usually specific to certain conditions of past history (e.g., population size) and current 

boundaries, and require simplifying assumptions. The equations are essentially detailed hypothetical 

models that can be validated by simulations, and preferably by application to real-world data in which 

the past and present microscopic conditions are known from independent data [1]. If these hypotheses 

are retained, the equations may provide very explicit insights into the underlying mechanisms–the goal 

of science. 

Despite its rather unflattering name, “back-end” mathematics is also crucial to science. It is the set 

of statistical methods used to assess the fit of models or hypotheses, whether they derive from front-

end mathematics or from elsewhere. Where else might such hypotheses come from? For a long time, 

the most usual source in biology was past experience–a prediction that measure X will be higher under 

conditions A than under conditions B, simply because this is what had happened in the past, or through 

verbal combinations of past experiences with components of the system. Increasingly, this approach is 

being augmented by retro-fitting methods such as GLMM (Generalised Linear Mixed Models) which 

trial various mathematical combinations of potential driver variables, to assess their predictive power 

for one or more dependent variables. Note that although both past-experience and retro-fitting 

approaches provide numerical assessments of dependencies among variables, they offer only a broad-

brush view of the underlying processes. Thus, while both front-end and back-end approaches are 

susceptible to the criticism that a good fit does not necessarily show causality [2,3], the lower level of 

mechanistic detail in the back-end approach restricts testing of causal links, as well as limiting 

extensions to other conditions. 

This article will focus on front-end mathematics from statistical mechanics, in particular the 

application of entropy- and information-related concepts to genetic diversity. 

1.2. Entropy, Information, and Related Approaches in Genetics 

Entropy- or information-based measures of diversity provide a general tool for using microscopic 

behaviour to make macroscopic predictions, under given conditions. In general, the likely stable 

outcome is the outcome that can be achieved in the greatest number of different ways [4,5,6]. 

Maximum Relative Entropy has been shown to be a useful predictor for ecological community 

composition, giving correspondence with pre-existing fragmented theory under the same  

conditions [5,7], and an entropy approach has been used to assess energy flow through food-webs [8]. 
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A huge range of methods, only loosely connected to statistical mechanics, are termed “entropy” or 

“entropy-like”. Mathai and Haubold [9] discuss a few of these, and other genetic measures are 

scattered throughout their article. In some publications, the connection with entropy seems to be simply 

that an equation tends to be logarithmically scaled under certain conditions. Such equations include 

“front-end” approaches, but there are also numerous ad hoc “back-end” additions, with only limited 

verbal justification. Although I will mention the more descriptive and ad hoc approaches, I will focus 

on a small number of statistical-mechanical concepts that have been chosen for their past or increasing 

use in genetics, and for their potential use in predicting macroscopic behaviour from  

microscopic properties. 

Kimura [10] and Ewens [11,12] pioneered the genetical use of the Fokker-Plank (or reverse 

Kolmogorov) equation from statistical mechanics. One can use this approach to model the microscopic 

behaviour of allelic variants in a single population at equilibrium, predicting two aspects of genetic 

diversity: the number of different allelic variants (richness); and the heterozygosity expected under a 

simple model of mutation and stochastic transmission (called “drift” by geneticists). Heterozygosity is 

measured as the chance that two randomly chosen alleles have a different DNA sequence: 

∑
=

−=
S

i

ie pH
1

2
1  (1)  

where ip  is the proportion of entities of type i in some group (e.g., proportion of the total population of 

alleles that belong to type i, or proportions of different species in an ecological community), while S is 

the total number of extant types of alleles or species. Heterozygosity is also called by other names in 

genetics (e.g., haplotype diversity, nucleotide diversity) and ecology (Simpson or Gini-Simpson  

index) [1,7]. For a two allele system, Heterozygosity is also the binomial variance. A form of 

Simpson’s index has been used as a null model for ecological community diversity, capitalising on the 

predictive power of analogous modelling in genetics [13]. In linguistics, there is a similar measure 

called “coefficient of coincidence” which takes various forms including ( )eHS −1  [14,15]. 

Heterozygosity can be translated into an estimate of the number of equi-frequent elements that 

would be needed to give the same heterozygosity as the actual sample; this is called the “effective 

number of alleles–heterozygosity” [12,16]: 

( )eeH Hn −= 1/1  (2)  

Although heterozygosity and Simpson’s index may not immediately seem related to entropy, below 

I discuss a form of Simpson’s index called “Quadratic Entropy” [17]. 

An alternative approach to summarizing and forecasting genetic diversity can be based Shannon’s 

diversity or entropy [18-21]: 

∑
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The usual symbol H is modified here to avoid confusion with heterozygosity, eH . Shannon entropy 

was originally proposed in the context of transmission of electronic messages, where ip  is the 

proportion of each of the different letters or syllables in the message. Its exponential is the number of 
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equi-frequent letters (or alleles, or species) that would be required to provide that same HS  value. This 

is the “effective number of alleles–entropy”:  

H

eS

S

en =   (4)  

This is the entropic analogue of the “effective number of alleles–heterozygosity” (Equation 2). HS  

is the most-frequently used diversity measure in ecology [22,23]. It has seen only rare use in genetics, 

which is now increasing [24-29]. For both genetic and ecological uses, its shortcoming has been a lack 

of equations predicting its expected value under given conditions, so that until recently, it could only 

be a “back-end” summary. However, Ewens [11] made the first attempt to provide predictive 

equations, and these were extended by Sherwin et al. [1] to provide predictions of HS  for the same 

conditions as Heterozygosity–a single population with random drift, and mutation. Two different types 

of mutation were analysed–stepwise and infinite alleles. These predictions have been validated by 

simulations and also showed good fit to real genetic data [1]. The predictions have not yet been 

extended to use with ecological community data, in the way that Hubbell [13] has transferred 

predictions for a close analogue of Simpson’s index from genetic theory to community theory. 

Each of these methods, and others which are not related to entropy, should be appraised for  

three features: 

(a)  the ability to express and partition diversity in a way that makes intuitive sense; for example 

when pooling K equally diverse groups which share no alleles, one might expect that the pooled 

diversity should be K times the diversity of each group [1,30-34] 

(b) the ability to model the full range of interactions between genes, and between genes and 

environment in a subdivided population [1,35,36], and  

(c)  incorporability into a model-fitting or statistical testing framework. 

2. Ability to Express Diversity in a Way That Makes Intuitive Sense 

2.1. Diversity Measures and Partitioning Diversity in Genetics and Ecology 

Genetics, and biology as a whole, is about diversity, but what exactly do we mean when we say 

that? The answer depends to great extent on the reason for which we are quantifying the diversity. 

Despite great interest in this area, there are surprisingly few examples of connection between diversity 

and function. Polley et al. [37] and Boyero et al. [38] discuss the question of whether diversity actually 

makes any difference to the function of ecological communities. In conservation genetics, Westermeier 

et al. [39] showed that manipulating the genetic diversity of a failing population of prairie chickens 

increased the recruitment rate. Moreover, diversity of sequences in humans and their pathogens has 

important implications for medicine, as we discuss below. Each application of diversity measures 

might have different mathematical requirements, depending on its intent, but wherever possible, we 

should seek a unified approach. Jost [30,31] pointed out that we need a diversity estimate that: (a) 

increases in an intuitively obvious way when one adds two different areas with the same diversity but 

no shared species and (b) responds in an expected way to changes, for example, more mutation or 

speciation yields more diversity. 
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Stirling [40] identified three basic components of diversity; irrespective of the relative hierarchy of 

these measures, each carries important information about diversity, so I will examine each component 

in this review: 

Variety–“the number of categories into which system elements can be apportioned” [40]. This is 

also called “richness” in biology, e.g., the number of different allelic types or the number of 

different species, termed S in this article.  

Balance–“a function of the pattern of apportionment of elements across categories” [40]. This is 

based on pi–e.g., the proportions of each different type of allele. 

Disparity–“the manner and degree in which the elements may be distinguished” [40]. This has been 

given a large number of names in biology, some of which will be introduced later.  

There are measures that combine variety and balance, with different emphasis. There is a range of 

mathematically related measures with higher or lower emphasis on rare and common  

entities [1,31,41-44]. Equations (1) and (3) show that Shannon’s and Simpson’s (Heterozygosity) 

indices both include variety (S) and balance ( ip ). Shannon’s index is more sensitive to variety (S) than 

is Heterozygosity [1,30,43,44]. In each case, it is often best to convert to a measure which is “the 

number of equally frequent entities that gives the measured value of the diversity index” (Equations 2 

or 4). Jost [30] states that the overall best diversity measure, without undue emphasis on rare or 

common entities, is the exponential of Shannon’s index, or the number of equally-frequent entities that 

would be needed to provide the same diversity of information. 

“Evenness” is a transform of one of these indices to make explicit the departure from the most 

diverse case: equal numbers of each type of allele, in which case we expect SHS log= . Evenness is: 

S
HE

S

log
=  (5) 

or in the exponential scale [45,46]:  

S
eE

HS

='   (6) 

Evenness can also be expressed with Heterozygosity and its derived allelic richness (Equations 1 

and 2) [45]. Jost 2010 [45] showed that richness is composed of two independently varying 

components: evenness (E’) and balance expressed as neS (or their equivalents for heterozygosity). Thus 

two of Stirling’s [40] components of diversity–richness (variety) and balance–cannot be considered to 

be independent, because balance is a component of richness. There has not been further consideration 

of the relationship of these to Stirling’s other component, disparity. 

For some purposes, it is reasonable to focus on diversity at one chosen level. But when we also need 

to account for diversity at another level, disparity becomes important. For example, when assessing 

diversity within a population, one might wish to somehow weight this by how different the alleles are–

their “disparity” to use Stirling’s term above. The disparity between the different allele types depends 

upon the diversity in the bases that make up each allele’s DNA sequence. Thus, a population with 100 

copies of each of two alleles that differ by one base, and another population with 100 copies of each of 

two alleles that differ at 13 base positions would both have allelic 1=HS  (or 5.0=eH ) but we might 

consider that the second population was more diverse, because of the diversity at the base-level which 
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creates greater disparity between the two alleles. In general, there is a series of levels of diversity to 

consider, including levels of:  

DNA sequence diversity and linkages along DNA in the genome; 

Sequence diversity between different alleles within one individual, for organisms with more than 

one genome (e.g., diploids such as humans); 

Diversity of alleles within one population; 

Diversity of allele proportions in different populations of the same species; 

Diversity of interactions between genes and environmental factors; 

Diversity of genetics, morphology, etc., between species; 

Diversity of types of species within a community; 

and so on. 

When combining diversity measures over many levels, the tendency is to make some ad hoc 

additions to the diversity measure itself, often using qualitatively different mathematical tools at 

different levels. Of course, what would be most useful is to develop ways of making diversity 

summaries which work seamlessly across all these levels, using similar equations. Progress towards 

that goal will be one major theme of this review. 

2.2. “One-part” Diversity Measures 

It is relatively simple to integrate across multiple levels that are basically comparable. An example 

is to consider the allelic diversity within a population, and diversity between two sub-populations of 

the same species. For heterozygosity, Wright [47] defined STF , which has since been calculated in 

many ways, but can be seen as a function of the average heterozygosity in the two subpopulations, SH  

and the heterozygosity when considering the two as a single population, TH : 

T

ST

ST
H

HH
F

−
=   (7)  

However, this index has a number of shortcomings, in particular, the diversity between populations 

STF is heavily dependent upon the allelic richness S within subpopulations [1]. Jost [32] points out that 

FST is only very weakly related to the differentiation between populations, and produced a related index 

which does not suffer from most of the identified shortcomings of STF : 

11 −−

−
=

n

n

H

HH
JostD

T

ST  (8)  

where n is the number of subpopulations being considered. In a meta-analysis, FST and JostD measures 

were often similar [48]. 

Shannon’s index has the advantage of being completely hierarchical, so that each level of diversity 

can be nested within the next, and the value of one is not affected by the other. Table 1 shows this for 

the case of two subpopulations, with allelic variants at a single locus in the genome, X. HS can be 

calculated following Equation 3 for individual subpopulations ( 1HS & 2HS ) or for the summed 

population ( U

S
H ). The differentiation between the subpopulations can then be expressed by 

subtraction to give what is called the allelic Mutual Information: 
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2211 HrHrHMI
SS

U

S −−=   (9)  

where r1 = N1/Ntot and r1 = 1-r2 (MI was called UA

S
H Sherwin et al. [1], also see Equation 9a by  

Lande [7]). Mutual information is more formally defined in the Glossary (Appendix 1) and in 

introductory texts [19-21], but it can be appreciated as the information that one variable supplies about 

another: mutual information between allelic identity and population membership is high when 

knowledge of one provides good information about the other. For example, in the two-population case, 

if all individuals in population 1 have allele Xa, and all in population 2 have allele Xb, then MI is 

maximal at U

S
HMI = . In other words, all diversity is between subpopulations, and there is no diversity 

within either subpopulation: 0 21 == HH SS . 

Table 1. Entropy and Mutual information of allelic diversity in two subpopulations. Each 

cell entry is a frequency f calculated from N the total number of individuals in the 

subpopulation at location 1 or 2, and p the proportion of the particular allele in  

that subpopulation. 

Location 
Allele 

Marginal Total 
Allele Xa Allele Xb 

1 fa1 = N1pa1 fb1 = N1pb1 N1 = r1 Ntot 

2 fa2 = N2pa2 fb2 = N2pb2 N2 = r2 Ntot 

Summed 

Populations, or 

Marginal Total 

Na = N1pa1 + N2p a2 Nb = N1p b1 + N2p b2 Ntot = N1 + N2 

Lande [7] suggested that partitioning of diversity should utilize a contingency approach. Calculation 

of mutual information is made easy when it is realized that mutual information based on the p-values in 

Table 1 is linearly related to the log-linear chisquare, G, for a contingency test of the  

f-values in the same table: G = 1.3863 MI x Ntot when working in Shannon’s original log 2 scale [1]. 

If considering only two levels, there is alpha diversity within one location, and various definitions of 

beta and gamma diversity between locations [49]; however, there is no reason to be restricted to only 

two levels with entropy-related statistics. The contingency-table structure (Table 1) makes it clear how 

to incorporate diversity at one level as disparity at the next hierachical level of biological organization. 

We can add any number of dimensions to Table 1–as many as there are levels of diversity to consider–

so that the table can be extended upwards from the single population more or less indefinitely, to 

incorporate diversity within and among different habitats, landscapes, etc., each information layer 

becoming the measure of disparity at the next hierarchical level. Because G and MI are completely 

additive, MI between populations (Equation 9) is unaffected by allelic richness within populations, a 

property it shares with Jost D (Equation 8) [32], but not with STF  [1]. Thus Shannon entropy and 

mutual information offer a possible route for integrating diversity across all levels of biological 

organization [25]. Here we are only concerned with using the contingency framework to estimate the 

size of various components of diversity. The alternative approach of performing a statistical test is 

discussed later, in Section 4. 
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Note that the contingency structure automatically accounts for different relative sizes of the 

populations at the two locations (r1 and r2). This property might be very important for some 

applications. For example, the overall biodiversity in a system that has one population with 1 Xa and 

200 Xb, and another with 1 Xa and zero Xb alleles, might be considered to be quite different to the 

overall biodiversity of a similar system in which the second population still contains only Xa alleles, 

but has 200 of them. However, if the relative sizes of the populations are not known (as is frequently 

the case), r1 and r2 can be set to be equal. This is in fact a common assumption of most of the methods 

described in this paper, entropic or otherwise. 

In a structure such as Figure 1, MI can be calculated for any desired interactions, using standard log-

linear contingency-tests, as available in most common statistical packages [50,51]. The multiway 

contingency table can be interrogated by models investigating two-way interactions between any of the 

variables. By choice of appropriate analytical model, one can also calculate MI for interactions between 

higher groupings of variables. For example, a three -way interaction between alleles, habitats and 

species, would be identified because, in habitat K, the proportion of allele Xa is higher in species A 

(Na = 70, out of 100 alleles) than B (Na = 30, out of 100 alleles), but in habitat L, Xa is higher in 

species B than in A. 

Figure 1. Generalisation of Table 1 to incorporate allelic variation (Xa, Xb) in two different 

locations (1,2 or 3,4) in each of two species (A, B) in two different habitat  

types (K,L). 
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When constructing models of the partition of diversity, there are always some limitations. Some 

variables are stratified; for example, locations 1 and 2 do not occur in habitat L, where instead 

locations 3 and 4 occur, therefore one would not include a location-by-habitat term in the model, or in 

higher interactions that included those two variables. Thus the G-value for interaction of alleles, habitat 

and species above would be based on the sums over locations for each species (Na Nb) in each 

quadrant of Figure 1. Also, the G-value for the interaction between species, locality, and allele would 

use the full data for either habitat K or habitat L, but could not combine the data for the two habitats. 

There will also be cases where attributes are missing, either because they were not measured, or for 

some good biological reason [52]. To illustrate the latter, one could extend the dimensions of Figure 1 

by duplicating it to represent allelic variation at a second locus Y, with alleles Ya, Yb and Yc. There are 

standard ways of summing the information from the locus-Y table with the information from the table 

for locus X [53]. However, it is possible that species B in habitat L simply does not have the Y locus in 

its genome–it has lost the chromosomal segment that codes for the alleles of locus Y. The same 

problem arises when considering morphological information–for example in analyzing lizard diversity, 

there will be no toe-length measurements available for a legless-lizard species. Of course, the presence 

and absence of the locus or trait is itself informative, and wherever possible this information should be 

represented as rows in the table whose cells contain zeros. Where the aim is to simply calculate the 

contribution of each interaction, as proposed here, these empty cells provide important information 

about differentiation. If significance testing is desired in such a situation, one would have to use 

methods that allow for “structural zeros”–an approach that is appropriate when there is a real-world 

reason why a part of a table would never ever have any entries [54]. 

As was pointed out in 1.1 and 2.1 above, it is often best to use an exponential transform to convert 

HS to a measure which is “the number of equally frequent entities that gives the measured value of the 

diversity index”. This can be extended to the exponential of the mutual information; because of the 

additivity embodied in Equation 9, the exponentials will be multiplicative [30,31]. The exponential of 

the mutual information (and closely related statistics) is one of the few measures of diversity between 

populations which behaves in an intuitive manner under most situations, for example always increasing 

with addition of new unshared alleles, irrespective of allele proportions [34,55]. 

2.3. Two-part Approaches to Diversity  

Although missing data and structural zeros can both be surmounted, given enough time and 

resources, these and other considerations have led a number of authors to take a “two-part” approach to 

characterizing diversity, with different approaches above and below some level of subdivision. If this is 

done, then detailed modeling can be complex because of the break between the mathematical 

treatments above and below the specified level. Therefore, these methods have not yet been subjected 

to modeling from microscopic to macroscopic levels, with the consequence that only verbal predictions 

can be made. Nevertheless, science must go on, while the theory tries to catch up, so these methods are 

useful. 

The first such measure was a generalisation of Simpson’s index/Heterozygosity, called quadratic  

entropy [17]: 
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where ijδ  represents some estimate of difference between the types (e.g., difference of morphology of 

species, or number of non-shared bases between alleles). The term ijδ  is an example of what  

Stirling [40] called “disparity”. When all ijδ  values are 1, Q is equal to Simpson’s index. The 

important thing to note is that the measurements used to calculate ijδ  do not have to be qualitatively 

similar to the measurements used to calculate ip and jp , freeing the investigator from many 

restrictions, including missing data and structural zeros. An example of a ijδ  distance might be one 

based on the number of mismatched bases between pairs of alleles (sometimes called the Hamming 

index, [56]) which is not easily characterisable on the same scale as ip . Q and a related measure can be 

decomposed into an ANOVA (analysis of variance) approach, giving something analogous to the 

treatment in Figure 1 [57]. For molecular data, the program AMOVA (analysis of molecular variance) 

provides such an approach [58]. On the downside, the summarization of differentiation into a single 

distance measure misses much important information, which is why in phylogenetics, distance-based 

approaches are usually used not at all, or in parallel with computationally-intensive methods that use 

more of the information in the dataset [59]. Hardy and Jost [60] pointed out a number of other 

problems of Rao’s Q. Ricotta and Szeidl [61] show that Q can be converted to an estimate of the 

number of equally abundant and maximally dissimilar species that would give the same Q as the actual 

value ( )QQ −= 1/1ˆ . 

Allen et al. [62] have devised a Shannon-based equivalent to Q: 

∑−=
b

P bpbpbH )(ln)()(�   (11)  

where summation is over all branches b of a phylogenetic tree, and disparity is represented by branch 

lengths )(b�  that are measured on some scale such as number of substitutions in the DNA sequence, 

and )(bp  is the proportion of individuals in the present-day community who are descendants of branch 

b. Q and PH  will often be similar [62]. Guiaşu [63] had previously proposed this “weighted entropy” 

for other purposes, and analysed its properties under various conditions. In particular, the most useful 

form seems to occur when the weight of a branch leading to two taxa A and B ( )AB� can be calculated 

as follows: 

)()(

)()()()(
)(

BpAp

BpBApA
AB

+

+
=

��
�  (12)  

This may not be true of branch lengths for some types of phylogenetic analyses. Note however that 

Guiaşu [63] showed that this property was not necessary for all applications, including calculations of 

maximum weighted entropy. 

Pavoine et al. [64] used a form of the generalized diversity equation [41-44] to show that 

phylogenetic weighting could be applied to any of the major indices: richness, Shannon, and Gini-

Simpson. They used a variety of other weightings as well, for such things as sample size. In the light of 

Guiaşu’s [63] findings about weights, Pavoine et al.’s approach probably needs further rigorous 

statistical analysis. 
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Also, Ricotta and Szeidl [61] show links between Q and dH - a measure similar to PH : 

∑ ∑
= ≠











−−=

S

i

S

ji

iijjd ppH
1

1ln δ   (13)  

However, the different indices were not exactly equivalent. In trials on a bat dataset, with data on 

abundance and on divergence at mitochondrial and nuclear genes, PH  was maximized by a 

conservation approach that retained all species, whereas maximization of Q and dH  was achieved by 

elimination of rare species [62]. 

There are other similar measures, often with conservation applications [65] including one that is 

based only on variety or richness, which would be appropriate if relative abundances ip  are not 

relevant to the question at hand [66]. 

Cadotte et al. [67] extend PH  to incorporate abundance and divergence across the entire clade, not 

just for pairwise comparisons. They create an array of different diversity measures, based on verbal 

arguments. Several of these were called “entropy-like” because their equations are of the form xlnx. Of 

these, their H-AED is the closest equivalent to PH . In one plant data set, the entropic-like measures 

actually give similar results to a simple Shannon approach, but it is possible that the measures will give 

contrasting information to one another, when applied to other datasets. Such a result would open the 

way for use for these different indices to reveal different aspects of diversity. It would be useful to see 

microscopic modeling of the underlying genetics and ecology, to assess the properties of each of these 

indices. 

In fact, all of these “two-part” approaches to incorporating divergence are known, or highly likely, 

to worsen problems for intuitive partitioning of diversity [60]. Therefore, they would benefit from 

formal modeling of underlying processes, and multiple or replicated tests of the work in cases where 

the underlying processes are known, so that the observations can be compared with  

theoretical expectations. 

Intuitively, the theoretical modelling might well be easier for cases where the same mathematical 

approach is used above and below the specified level, rather than the “two-part” weighting approaches 

which are rather ad-hoc. In fact, the two-part methods are now facing strong competition from by joint 

estimation methods that use all the information simultaneously. Traditional phylogenetic 

reconstruction steps begin by aligning sequences with inclusion of “indels” (insertions or deletions in 

one or more of the sequences) to allow better alignment, followed by either using the sequences 

directly in character-based reconstruction methods, or via estimating disparities (distances) such as the 

mismatch frequency (or Hamming index) which then forms the basis of the evolutionary reconstruction 

[59]. Of course, this staged approach is not ideal, because the generation of indels is an important part 

of the real evolutionary process, and how they are added during the alignment process will affect the 

outcome of the later, separate, stages of phylogenetic reconstruction. There is increasing interest in 

joint estimation methods that perform the phylogenetic analysis without first aligning the sequences. 

These methods perform adequately [68,69], and some of them are based on entropy/information 

approaches to compressibility and distortion of signals [19-21,70-72]. Some of these can deal with 

complexities such as horizontal transfer of sequences between branches of the phylogeny, which makes 
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discordant trees in different parts of the genome [71]. The most recent entropy-based methods have not 

yet been extensively compared with other approaches [73]. 

The next two sections will examine ways in which entropy-related statistics have begun to permeate 

analyses, ranging from DNA base sequence level, upwards through genotype, phenotype, and 

interaction with environment levels, thus opening the way for fully integrated entropic treatment over 

all levels of biological organization. 

3. Integrating Genetic Diversity Measures with Natural Processes such as Selection and Dispersal 

Analysis of genetic diversity focuses on the processes which create and maintain this diversity. 

Generation of diversity: This is generated by mutation plus creation of new combinations of these 

new variants (recombination). This diversity-generation can be thought of as equivalent to generation 

of new species in ecological community theory [13]. 

Genetic drift: This refers to stochastic sampling events in transmission between generations, 

especially in small populations. 

Selection: Selection is seen when there is higher or lower survival and reproduction (“fitness”) of 

some genetic types, relative to others; an obvious example is when certain allelic variants cause a 

disease phenotype in humans. 

Subdivision: This incorporates any limitation of exchange of genes, for example non-random mating 

such as inbreeding within certain families, or limited genetic exchange between  

adjacent localities. 

Attempts to identify these factors at work often start with analysis of genome-wide diversity, 

searching for associations between some detectable phenotype, such as disease status, and underlying 

genetic or environmental variation. Such analyses can provide preliminary insight into potential causal 

relationships which require further study [74]. 

Much of the existing ecological and genetic theory springs from a null model based on neutrality–all 

entities (species or genetic variants) are equivalent in some way, so that generation of diversity, and its 

stochastic transmission between generations, are the only factors to be considered in (null) predictive 

models. At the level of ecological communities, this means that each species is assumed to have the 

same rate of recruitment (e.g., Hubbell [13] for heterozygosity related measures). At the level of genes 

within populations of one species, this means that each genotype is assumed to have the same fitness 

[1,11,75]. There have been criticisms of neutral theory, but we are beginning to see extensions at the 

ecological level [76,77], as well as many non-neutral extensions of heterozygosity-related theory at the 

population genetic level [78]. Moreover, neutral theory itself has had enormous utility in genetics, 

when properly treated as a null model or null hypothesis. I will discuss the extension of 

entropy/information theory to cases which are more complex than a single random-mating population 

with neutral alleles at independent loci. 

3.1. Subdivision 

The analyses in Section 2.2 are clearly appropriate for situations where there is geographic 

subdivision within a species, with some genetic exchange between sub-populations. Allelic mutual 

information can be readily converted to an estimate of the dispersal rate per generation [1]. Compared 
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to all other approaches for analyzing such data, this method is robust to a wide range of dispersal and 

population sizes. The method has been used to assess current and historical subdivision in rainforest 

trees [79]. Jost’s D [32] fixes most of the problems with Fst, but Jost’s D is too sensitive to the 

(unknown) mutation rate to be much help for general dispersal measurement [80]. This is not 

necessarily a bad thing for other applications, however, because a good differentiation measure should 

be sensitive to mutation–the generation of new variants [33]. 

Another type of subdivision to be considered is not geographically-based. There is often some 

degree of inbreeding, ie mating with close relatives or its opposite, inbreeding avoidance. Inbreeding 

creates familial structure within a geographically cohesive population. Mating patterns also create a 

difference of information content between single alleles and diploid genotypes. For example, with high 

inbreeding, there would be strong correlation between the pairs of alleles received from the two 

parents, because the parents are relatives. This creates a high number of homozygote genotypes–

individuals with two copies of the same allele at diploid loci–relative to random mating expectations. 

This can be dealt with by conventional heterozygosity statistics, but also by entropy- based methods. 

The partitioning of entropy and information between allelic and genotypic levels follows a scheme 

similar to that shown in Figure 1 (Sherwin et al. 06 supplement [1]). In parallel work, Kosman and 

Leonard [81] provide a variety of genetic diversity measures, based on both genotypic and allelic 

information, with extensions to cases where there is asexual or mixed-mode reproduction. Kosman and 

Leonard [81] show that the various diversity measures are not generally strongly correlated with one 

another, echoing findings of Sherwin et al. [1] for a more limited array of measures, based only on 

entropy. Understanding why there is or is not correlation under given conditions will require formal 

modelling of the population genetic processes underlying each measure. Kosman and Leonard [81] also 

provide transforms of Shannon entropy to give different emphasis on evenness and richness. Non-

random mating will affect all loci simultaneously, increasing apparent “linkage disequilibrium” 

between the loci, which is discussed below. 

3.2. Gene Interactions 

Genes can interact through their linked inheritance and through expression networks, which include 

gene-gene interactions as well as gene-environment interactions. The end result will be a particular 

detectable phenotype, such as a particular colour of feathers, susceptibility to a disease, or a high or 

low reproductive rate. One of the simplest gene-gene interactions is dominance between the two alleles 

at the same locus. For example, many human genetic diseases are caused by recessive alleles in 

homozygotes–individuals with two copies of the same (defective) allele. Individuals with only one 

copy of the defective allele do not show the disorder, because the allele’s expression is prevented by 

the other (dominant) allele. 

Attempts to scan the genome for regions that affect particular phenotypes such as disease resistance 

in humans, or environmental tolerances in agricultural or wild species, are sometimes termed GWAS–

“genome-wide association studies”, which search for regions of the genome (“target genes”) that affect 

the phenotype either directly, or through interactions such as affecting the regulation of other genes and 

physical linkage on the same DNA molecule (which can be broken by “recombination”). The number 

of possible interactions is very large, because the typical genome has billions of bases, each with four 
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alternative variants (A, C, T, G), and any part of the genome might affect phenotypes. Therefore some 

authors have suggested that GWAS is not the best use of our resources [82], but others have pointed 

out that GWAS has unearthed hitherto unsuspected candidate loci for human  

disorders [83] As is usually the case with bitter disputes, the truth is that both approaches are useful. 

Moreover, entropic methods can assist either, by viewing genes and their interactions as microstates, 

some of which underlie phenotypes such as human disease [84]. Compared to other approaches, such 

as multiple regression, contingency/entropy methods may have more power to detect interaction 

between genetic variants which individually have no direct effects on the phenotype (i.e., no “marginal 

effects” in a table such as Figure 1, where “Species A” and “Species B” were replaced by “diseased” 

and “non-diseased” phenotypes) [85]. 

Kang et al. [84] consider the entropy of a system of loci which potentially interact in determining 

disease status, for example, the two single-nucleotide polymorphisms (SNPs) in Table 2. If there is no 

interaction between the SNP loci, then the occurrence of each combination g1,…g9 should be governed 

entirely by the proportion of each single-locus genotype (e.g., the proportion of CC, TT individuals 

would be P(CC) x P(TT). These expected proportions can be used in Equation 3 to calculate the 

expected entropy expH
S . This entropy can be compared with the observed entropy obs

S
H , calculated 

from the proportions of the two-SNP genotypes in the sample, g1,…g9. A departure from independence 

might indicate interaction between the loci. The sample could be taken from individuals showing the 

disease phenotype, or from the general population. Kang et al. [84] subtract entropies from one 

another, in a manner similar to conditional or relative entropies, or Kullback-Liebler distances [19-21]. 

This produces obsHHH −=∆ exp , which is distributed like a chi-square statistic, for reasons that will 

be obvious, due to its similarity to Figure 1 and associated equations. Kang et al. [84] also calculated a 

ratio of entropies ( )
exp/1 HHI obs−= . A similar statistic was proposed by Smouse and Ward [25]. 

Kang et al. then created specific models of interactions with mathematically explicit effects on the two-

locus genotype proportions g1,…g9. They simulated data under these models, and used the results to 

compare the power of H∆  with more conventional chi-square tests for interaction. H∆  showed better 

type I and type II errors, and also performed well on real data for two diseases–schizophrenia and 

malaria. Their I statistic proved to be useful for graphical display of  

significant results. 

Table 2.  Diploid individuals, with two single-nucleotide polymorphism loci (SNPs), each 

of which have two allelic variants, say bases A and C at SNP locus 1, and G and T at SNP 

locus 2, giving nine possible two-locus genotypes, in proportions g1,…g9. 

 
SNP 1 

AA AC CC 

SNP 2 

GG g1 g2 g3 

GT g4 g5 g6 

TT g7 g8 g9 

 

Similarly, Dong [86] calculated mutual information between each of two SNPs and disease status, 

then showed that there is an additional gain of information from considering interaction between SNP1 
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and SNP2. After successful use in simulations, they then tested the methods with susceptibility to 

malaria infection, demonstrating the expected negative epistasis between the effects of two globin 

polymorphisms (sickle-cell and a-thalassemia). 

Chanda et al. [87] took on the general question of assessing potential gene-gene interactions and 

gene-environment interactions on a massive scale, focusing on identifying strengths of association 

rather than significance testing. They used a mutual-information-like approach to summarise  

gene-gene-environment dependencies, most notably in their KWII or “K-way interaction information”. 

For three factors A, B, C there would be a three-way contingency table (Table 3). KWII is then  

calculated as: 

H(ABC)-  H(BC)  H(AC)  H(AB)  H(C)  H(B)-  H(A)-   C)B,KWII(A, SSSSSSS +++−=   (14)  

S
H(A), 

S
H(B), 

S
H(C) would each be calculated from the marginal totals in Table 3 for that variable. 

Thus 
S
H(A) would be calculated using Equation 2 on the proportions of the three genotypes in the 

whole dataset, ie the p-values: 116/364, 155/364 and 93/364. 
S
H(AB) would be calculated using 

Equation 2 on the proportions in a table that had been summed over all categories of factor C, giving p-

values 24/364; 56/364; 36/364; 49/364; 26/364; 80/364; 23/364; 20/364; 50/364. Chanda et al. also use 

a related variable, TCI, which assesses only the extent to which the marginal entropies 
S
H(A), 

S
H(B) 

and 
S
H(C) are independent of the highest-level interaction, in this case 

S
H(ABC): 

H(ABC)-   H(C)  H(B)  H(A)   C)B,TCI(A, SSSS ++=  (15)  

and finally, a measure called phenotype-associated information, PAI, which compares the TCI with and 

without the phenotypic variable (e.g., 
S
H(C)) to evaluate the difference in dependencies with and 

without the phenotypic information. In the three-way case of our example,  

B)TCI(A, -  C)B,TCI(A,  C)B,PAI(A, =   (16)  

Table 3. Interaction between three factors: A one diallelic gene, B one environmental 

variable, and C one phenotype (diseased/non-diseased). 

(a) 

C-diseased 
B ENVIRONMENT–temperature 

low mid high 

A the SNP 

GG 12 43 18 

GT 45 13 2 

TT 20 10 0 

(b) 

C-non-diseased 
B ENVIRONMENT–temperature 

low mid high 

A the SNP 

GG 12 13 18 

GT 4 13 78 

TT 3 10 50 
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Where there are multiple genes, multiple environmental factors, and multiple phenotypes, there is a 

very large number of potential interactions, each of which can be given a value of KWII, and there are 

similarly large numbers of TCI and PAI values. These values can be visually presented in a histogram, 

allowing the user to parsimoniously select interactions for further study, for example, those with the 

largest KWII. Chanda et al. [87] trialed the method on a simulated dataset based on public data on SNP 

genotypes and rheumatoid arthritis, to which there had been added deliberate interactions at various 

levels from first-order marginals to multiway interactions. They compared its performance with three 

methods: two types of multifactor dimensionality reduction (MDR), and a pedigree disequilibrium test. 

Each method was provided with its optimal dataset from the simulated data, though it should be noted 

that pedigree data would typically be much more difficult to obtain than the non-pedigreed case-control 

data required by Chanda’s method and MDR. Chanda et al. found that KWII performed adequately in 

comparison with the other approaches, though no method found all the known interactions that had 

been engineered into the dataset. One great benefit of Chanda’s method seems to be its easily-used 

visual display, but even this becomes difficult when the method is expanded to cope with 10
6
 or 10

7
 

loci from a typical SNP genotyping array. Thus they resort to a program, AMBIENCE, which first 

searches for marginal interactions (one-way interaction of a single SNP locus and disease status), then 

the program only analyses higher-order interactions between those SNPs, using a search strategy which 

could potentially miss some higher interactions, especially those which do show any  

marginal effects. 

Of course, many diseases and other phenotypes cannot be coded “present” and “absent” as in  

Table 3, but have a continuous distribution which might nevertheless be different in individuals with 

different SNP genotypes and environmental exposure. The entropy of such a continuous distribution 

(“differential entropy” h) can be calculated by simply using continuous version of Equation 3, based on 

the frequency distribution for each variable, e.g., (f(a)) for variable A [88]:  

( )e2ln da f(a)ln  f(a)- πσ== ∫Ah   (17)  

where σ is the standard deviation of variable A. This depends only upon the variance of A, as expected, 

and assumes that the data have been transformed to achieve normality. An analysis of a simulated 

dataset based on public data on SNP genotypes and rheumatoid arthritis showed that PAI performed 

similarly to a competing analysis termed the “restricted partitioning method” [88]. Again the algorithm 

(CHORUS) used a search which could be entrapped by locally optimal values, so further development 

is needed to deal with massive datasets. 

Another approach to the analysis of interactions between genes might benefit from analogy with 

ecology. Volkov et al. [89] used a maximum entropy approach to investigate the interactions between 

abundances of the 20 most abundant tree species at Barro Colorado Island, which had previously been 

analysed under simpler assumptions such as all species having equal demographic rates (b/d or b-d, 

where b is birth rate and d is death rate) [13]. Volkov et al. showed that the maximum entropy 

approach provided results which were comparable to a more conventional transition matrix approach 

which allowed for variation in recruitment rate. 

The treatment of single SNPs and their pairwise interactions has been criticised as missing 

information that is contained in whole haplotypes–blocks of DNA containing multiple SNPs, and 
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coding for one or more genes and regulatory regions. Various approaches are being investigated as 

possible ways to identify appropriate haplotype blocks for GWAS and other purposes. Even 

approaches that are not directly founded on entropy, such as Bayesian methods, sometimes include 

components that are best termed “relative entropy” (see Appendix) [90]. Cui [91] extend beyond single 

SNP-disease association to incorporate all SNPs in a gene simultaneously, using an entropy measure to 

summarize the interaction between all SNPs and the disease state. They showed that this has greater 

power than an approach that deals with each SNP independently. 

Interactions between loci are not only because of their effects on the phenotype. For example, a 

block of DNA might contain two SNPs, one with alleles A or C, and the other with alleles G or T. This 

stretch of DNA could then have ___A___G___ or ___A___T___ or ___C___G___ or ___C___T___ 

in different “haplotypes”. This linkage of the SNPs means that inheritance of allelic variants at one 

SNP locus is not statistically independent of alleles at the other, and thus the probability of observing 

particular haplotypic combinations of alleles at the different loci, is not equal to the product of the 

allele proportions at the loci. This non-independence, resulting from physical linkage on the same 

DNA molecule, is often called “linkage disequilibrium”, and can be eliminated by “recombination”–

breakage and rejoining of DNA molecules. Linkage disequilibrium can also be eliminated or 

intensified by stochasticity in transmission in small populations (“random genetic drift”), which alters 

the proportions of haplotypes without the need for recombination. Linkage disequilibrium has become 

of intense interest for reasons that include: its great resolution for fine-scale gene mapping [92,93], 

especially in cases of admixture [94]; importance in forensics; and use in identification of regions of 

the genome that are under selection [95-97]. Conversely, a great many population genetic analyses 

assume linkage equilibrium, so the possibility of disequilibrium must be evaluated before proceeding 

with further analysis [94]. 

Apparent linkage disequilibrium can actually result from many causes, only some of which are to do 

with actual physical linkage. One such source of apparent disequilibrium is selective advantage or 

disadvantage for particular combinations of alleles at different loci (called “epistasis” for fitness), 

irrespective of whether the loci are linked in the same DNA molecule. Thus there are investigations of 

multi-locus selection on unlinked loci [98]. 

A variety of methods have been proposed to infer and estimate apparent linkage from population 

data, some methods being based on summary statistics, others on Bayesian or likelihood approaches, 

and some on hybrids between the two [92,93,99-102]. Zhang [103] used mutual information between 

pairs of loci such as the two SNP loci in Table 2, as a measure of linkage disequilibrium, and showed 

that it is proportional to the correlation between haplotypes in the diploid genotype 2r . Hampe [104] 

used entropy-based methods to deal with the very important operational problem of which SNPs to 

type before embarking on a GWAS. Once one or more SNPs have been chosen, the choice of which is 

the best SNP to add depends upon which additional SNP will give the greatest increase of power for 

the GWAS. The increase of power is a function of the new SNP’s variability, its position relative to the 

SNPs already chosen, its linkage disequilibrium relative to the prior SNPs, and its position relative to 

target genes: regions of DNA code which directly or indirectly affect the phenotype being investigated, 

such as a human disease. Hampe [104] provides a method to choose the best additional marker on the 

basis of greatest increase of mutual information with the target gene. Of course, at this preliminary 
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stage of the GWAS, the identity and location of target gene(s) is unknown, or only guessed. Methods 

must therefore be generalized over all possible target genes [104]. The method saves up to 30% of 

genotyping load, compared with simply typing equidistant SNPs, or pairwise maximization of linkage 

disequilibrium between SNPs [104]. Shannon’s index has also been used as the basis of a measure of 

founder informativeness for optimizing quantitative trait locus mapping with any level of inbreeding or  

outbreeding [105]. 

3.3. Selection 

When different genotypes code for phenotypes with different survival or reproductive rates, we say 

that the genotypes differ in fitness. Essentially, GWAS is searching for the genomic regions underlying 

one or more aspects of total fitness. Genotypes with higher fitness will obviously become relatively 

more numerous, and this “selection” is the basis of adaptation to environmental conditions. Because 

genetic variants provide the raw material for this process, it is thought that genetic diversity is crucial 

for continued adaptation to the changing environment [106]. There are surprisingly few direct 

demonstrations that increased genetic diversity raises recruitment rate in wild populations, and these 

can be disputed in many cases [39,106-108]. Thus there is scope for many further studies of the 

interaction between environmental factors and genetic diversity, and entropy-based measures can assist 

here. 

Selection comes in three basic forms. The first is directional selection, which eliminates one genetic 

variant in favour of the other, such as loss of all A alleles from SNP1 in Table 2. Subtypes of 

directional selection include negative selection which considers the loss of A, and positive which 

considers the effect on C. Secondly, stabilising or balancing selection refers to various types of 

selection which tend to maintain variants, for example preferential survival of AC heterozygotes, 

relative to individuals with the homozygous AA and CC genotypes in Table 2, which would result in 

persistence of both A and C alleles. Balancing selection, of various types, is suspected in the major 

histocompatability loci which affect immune response, mate choices, and reproductive success in 

humans and other vertebrates [109]. Finally, divergent or disruptive selection is when the intermediates 

such as AC are at a disadvantage. This is clearly an unstable situation, but may occur  

in hybrids.  

Directional selection has recently been analysed by statistical-mechanical approaches. Saakian and 

Fontanari [110], without explicitly mentioning entropy, use an information-based approach to 

analyzing selection in what appears to be a haploid system. Barton and Coe [6] used an information-

like entropy, first developed by Sella and Hirsch [111], to show that with selection, a genetic system 

tends towards the state that can be realized in the largest number of ways, reflecting other findings in 

uses of entropy in biology, such as maximum relative entropy [3-5]. Barton and Coe [6] provide some 

discussion of whether to regard the allelic variants, or the diploid genotypes, as the microscopic 

entities. This could be resolved by partitioning entropy/information into genotypic and allelic 

components [1 supplement, 81]. Barton and Coe [6] point out that their approach is yet to be validated 

by simulations and natural studies. Iwasa [112] modeled a variety of situations, from selection for 

codon usage through to evolution of continuously-variable “quantitative” traits, and showed that these 

can be modeled using an equation called “free fitness” whose general form is: 
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Free fitness = selection component + entropy term (18)  

The first term is always based on the mean fitness of individuals in the population (W ), while the 

second is based on the entropy of the array of allele proportions (Equation 3), and its evolution 

incorporates stochastic processes such as mutation and random genetic drift. Using Iwasa’s 

formulation, Barton and de Vladar [113] showed that additive directional selection on a quantitative 

trait will tend to maximize relative entropy. The results strictly apply to cases with relatively high 

mutation (4Neµ >1, where Ne is effective population size and µ is mutation rate), but can be extended to 

lower mutation rates. Within this work, there is an abundance of parallels with statistical mechanics: 

adaptive landscapes of fitness can be seen as analogous to energy gradients, and the entropic approach 

has a close analogue of the additive genetic covariance matrix [113]. Adami [35] briefly mentions a 

parallel approach to entropy and directional selection, in the context of selection on gene  

regulatory networks. 

Other forms of selection can be analysed by entropy-based treatments, and at a simplistic level, they 

are not necessarily difficult. For balancing selection where the relative survivals of AA, AC and CC in 

Table 2 are 1-s1, 1, and 1-s2 ( )1,0 21 ≤≤ ss , then the expected equilibrium proportion of A would be 

s/s  P(A) 2=  where 21 ss  s += , [78]. Therefore, at equilibrium, Equation 3 gives the allelic entropy for 

SNP1 to be: 

( ) ssssssH /logloglogˆ
2211 +−=   (19)  

where the first component is the effect on entropy of the overall strength of selection, and the second is 

sensitive to the effect of the fitness-differential between the two homozygotes, AA and CC. Barton and 

de Vladar [113] extended their entropy-based analysis of additive selection on quantitative traits to 

include other interactions such as dominance and epistasis. Mustonen and Lassig [114] define fitness 

flux as the product of selection coefficients and rate of change of allele proportions, and show that this 

unifies and extends many other theories of adaptation, including Iwasa’s relative-entropic approach. 

The predictions of the fitness-flux theory are consistent with evolution of bacteria, which evolved to a 

state showing increased fitness and decreased fitness flux [114]. 

Schwanz and Proulx [115] used entropy and information methods to model a type of balancing 

selection due to frequency-dependence–when the fitness of a genotype depends upon its frequency. If 

this dependence is negative, so that rare genotypes are favoured, then this will maintain multiple 

genotypes. They applied it to temperature-dependent sex determination, such as occurs in turtles. 

Clearly there can be frequency dependence in selection on sex-ratio. If a rare genetic variant tends to 

make its carriers into males at prevailing temperatures, then this variant will be at an advantage if all 

other variants make females at those temperatures. Half the alleles in the next generation will be 

provided by the few carriers of the male-determining variant. The same advantage would accrue to a 

rare female-determining variant, so that both male- and female-determining variants will tend to be 

maintained in the population. The evolution is determined by interaction between different genetic 

variants with different threshold temperatures for male and female determination, and the variation of 

the temperature regime over many generations. These authors [115] used mutual information as a 

measure of the interaction between genotypes and environmental conditions (called the “reaction 

norm” in quantitative genetics) and of the evolution of this relationship. They simulated the extent to 
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which temperature affects sex under different levels of environmental variation, and with different 

levels of overlap of generations, which affects the number of temperature regimes experienced by each 

generation. Their model identified that mutual information increases if a “switch-like” variant exists, 

with a sharp transition from male-determination to female-determination at some temperature within 

the natural range. 

4. Ability to be Incorporated into an Inclusive Statistical Framework 

There are two broad approaches to statistics: to test hypotheses, or to make estimates of parameters 

for particular models, with appropriate confidence limits. The latter is gaining popularity, and this 

review has emphasized it. For either purpose, an ideal statistical framework would allow partitioning of 

diversity over the full scope of living systems, from spatial structure of an ecological community 

through to genetic structure at the scale of the single base pair in the genome [1]. To approach this 

goal, diversity estimators such as Fst and derivatives have been used in an ANOVA type framework, 

and developed further as spatial autocorrelation, AMOVA [58], spatial AMOVA, etc. For the entropy-

based measures, the candidate is mutual information. For partitioning of diversity, mutual information 

has two great advantages over the heterozygosity-based measures: it is completely additive over 

hierarchical levels, and it has a close relationship to the log-linear contingency test [1,25]. Mutual 

information is linearly related to the log-linear chisquare, G, for a contingency test of the same table 

(e.g., Figure 1) G = 1.3863 MI x Ntot when working in Shannon’s original log2 scale [1]. The user can 

choose whether to use the resulting values of mutual information as estimates of effects on diversity of 

particular combinations of factors, or for conversion to p-vales for a statistical test. As noted above, 

when statistical testing is desired, there are some additional restrictions on the use of the data [54]. 

Moreover, there is additional information available if the linkage or other associations of allelic 

variants at different genes (loci) are considered. Each locus might respond differently to some 

processes, such as fitness differences that affect carriers of an allele at only one locus. However, the 

loci will behave similarly under other processes, such as non-random mating, or immigration, which 

affect all loci. Therefore there have been attempts to unite linkage (or gametic) disequlibrium with 

spatial genetic structure measures such as Fst [116-118]. However, the hierarchical structure of the 

entropy-based measure mutual information makes it particularly powerful in this regard [25,119] 

The small number of practitioners of genetic entropy analyses have been relatively good at actually 

validating the methods that they propose. Three levels of validation are used. Firstly, simulations allow 

good replication and controls, but can never incorporate all the complexities of real living systems, 

which are, after all, the desired use-point. Secondly, there are sometimes implementations with data 

from real populations. These include cases where the observations can be compared with expected 

results forecast from a knowledge of the underlying driver variables [1,120]. However, in comparison 

to simulations, these typically have poorer replication and sometimes few or no controls. Finally, the 

entropy statistics can be calculated from observations in real populations, but without any independent 

data that can be used to create expectations for the entropy statistics. Such analyses are quite common, 

and are important to show that the methods can be implemented with real data, but cannot be said to be 

a critical test of the method in the formal scientific sense, and most authors are careful not to make 

such a claim. 



Entropy 2010, 12  

 

 

1785

How good does an entropy-based approach need to be to become acceptable? Chanda et al. [87,88] 

used simulations and real data to assess the power of their entropy-based method, relative to 

contenders, and concluded that its statistical power was “acceptable”–probably too weak a statement to 

get a new method widely used. However, entropy-based methods have another point in their favour. 

Most of the competing analyses are post hoc methods–such as regression [85]–which can identify 

association, but which lead to less insight into the underlying mechanisms. This is because, unlike 

entropy, they are not firmly based on a model of underlying microstates–the network of interacting 

genes and environmental effects. It is up to the researcher to choose the level to treat as “microscopic”. 

For various applications, alleles, individuals, populations, or species might be appropriate microscopic 

levels. Of course the hierarchical nature of entropy and information systems means that these can be 

nested within one another almost seamlessly. 

It should be noted that all measures in this article, entropic or otherwise, can suffer from estimation 

problems when samples are small [121,122]. The correction for number of effective alleles neH 

(Equation 2) is in Neilsen et al. [123], and for other non-entropy measures, corrections are available in 

introductory texts [78]. For entropy-based statistics, small sample corrections are also available [124]. 

Chao and Shen [125] have further developed the theory of sampling for Shannon diversity. 

5. Future Directions 

In some ways, the data are considerably ahead of the theory–people can collect data for which there 

are no theoretical predictions, except rather broad-brush verbal suggestions. In other ways, the theory is 

considerably ahead of the data: in many cases, theory is already available (and waiting to be tested), but 

the appropriate data have yet to appear. The necessary data may come soon with improvements in high-

throughput genetic techniques. Again and again, entropy-based approaches emerge as a solution to a 

problem in analysis of genetic variation and its interactions at all scales. 

For an overall integrated approach to genetic modelling via entropy, a very important field is the 

integration of variation along a DNA sequence, with variation between different sequences within and 

between populations, species, landscapes etc. There have been descriptive uses of entropy in DNA 

sequence analysis, including: genome organization [126]; synonymous codon usage biases in humans 

and mice [127]; viral DNA sequences [56,128]. However, what will be ultimately needed are methods 

that formally connect diversity along DNA sequences to the flow of information to and from the 

environment, thus making a predictive framework for the way that genetic diversity interacts with 

environmental diversity. This work therefore will have strong connections to network theory, as 

reviewed by Gatenby and Frieden [36]. 

The field of modeling and analyzing diversity along DNA sequences is very much in its infancy, but 

there have been some interesting applications of entropy theory. Schneider [129] used entropy 

calculations to analyse the information contained in a particular DNA region, such as a splicing sites 

which must be recognized against the background of the other information in the entire genome. 

Schneider [129] considers the amount of information that the site must contain to differentiate it from 

all others in the genome, and shows how this can evolve to a predictable value. Schneider [129] also 

shows correspondence between rate of evolution as bits per generation, and the (rarely used) 

evolutionary measures of Darwins or Haldanes, both logarithmic time-and-rate scaling conventions. 
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In a very clear review, Adami [35] made a case that entropy, or the information derived from 

comparison of equilibrium and non-equilibrium states, could be a useful tool for making predictive 

models of DNA sequence evolution, including prediction of protein structure from the sequence of the 

DNA code. However, Adami did not actually evaluate whether the method works better than other 

approaches. Sanchez and Grau [130] extend the idea of DNA’s triplet code or amino acids as a 

Boolean information system, and from this suggest that the distribution of amino acids in a protein 

might follow a Boltzmann distribution. Long ago, Iwasa [112] wrote theory for evolution of codon 

usage bias in entropic terms, and this has recently been rediscovered in analysis of codon usage in yeast 

[131]. Loewenstern and Yianilos [132] show that the entropy of natural DNA is less than its theoretical 

maximum of 2 bits per site. 

There are some cases where entropy and information theory have allowed us to improve our 

understanding of the phenotypic effects of particular DNA sequences and their mutations. In the genes 

for two human blood-clotting factors, there are various mutations that affect the splicing of RNA that 

carries the code to the cell to be converted to the protein that makes the clotting factors. Some 

mutations result in excessive bleeding in the patient, but it is not logistically possible to examine all the 

possible mutations [120]. However, information analysis of splicing sites has been used to predict 

accurately which mutants would lead to clinical symptoms [120]. 

Entropy and information theory has been used several times in analysis of complex regulatory 

networks of genes and environmental signals. Diaz et al. [133] have used entropy methods to model 

the behaviour of ERF, a master gene which regulates plants’ response to ethylene, and the consequent 

behaviour of the ethylene signaling pathway. Adami and Hintze [134] have extended this to 

incorporate multiple nodes in the information pathway in an artificial evolution situation, and showed 

that fitness, information, and number of nodes all increase. Presumably there is some limit to this 

increase, due to energetic considerations or other tradeoffs. Lezon et al. [135] used entropy 

maximization to infer the presence of strongly interacting pairs of genes in regulatory networks. They 

claimed that the method preferentially identified master-slave gene pairs in preference to pairs of slaves 

with the same master, but a direct comparison with alternative ways of making such identifications has 

yet to be constructed. 

There is increasing incorporation of entropy methods in user-friendly genetic analysis platforms, so 

that entropy-based measures can now be readily estimated from datasets. Shannon information and 

mutual information are now available in GENALEX 6.3 [136]. Given data transferability between 

programs, entropy methods can therefore be used with genetic data sourced from most other shareware 

population genetic analysis programs. Hickerson has incorporated Shannon information and mutual 

information into MSBAYES, an Approximate Bayesian Computation program for molecular  

evolution [137]. This program chooses various statistics, depending on their ability to create rapid 

convergence to a solution. Other programs which include entropy statistics for summarizing genetic 

diversity include MSA [138] and a program aimed at analysis of polyploid genotypes [139,140]. 

Entropy- and non-entropy-based measures might also be used together, to capture different aspects 

of the data. Pielou [141] suggested displaying diversity as a plot of each type of diversity index, for 

example, the orders of Hill’s [42] generalized index (whose powers include richness, and Equations 1 

and 3). However, note that this comparison can give starkly contradictory results depending upon 
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whether the researcher uses the additive measures such as Equations 1 and 3, or the multiplicative 

measures such as Equations 2 and 4 [34]. Chao [55] has generalized the Morisita-Horn index, which is 

also closely related to Simpson’s index, and Jost et al. [34] have shown that this could form an 

important link between the different indices, as well as going some way to reconcile additive and 

multiplicative approaches. Additionally, the entropic version of the Horn index allows incorporation of 

weighting by absolute abundances [142], which may be a very useful property, as discussed above  

for MI. 

Finally, in the same way that the predictive power of other population genetic analyses is being 

transferred to ecology [13], the predictive power for entropy-based approaches derived in population 

genetics [1] could be transferred to ecology. 

6. Summary 

The entropy and information biodiversity measures are the most-frequently used diversity measures 

in ecology, but until recently have been used only sporadically in genetics. They promise to provide 

explicit mechanistic insights by allowing modeling of microscopic behaviour to make macroscopic 

predictions. Using entropy/information theory, predictive equations have recently been developed for 

various genetic systems ranging from a single locus in a single population with random drift and 

mutation, to continuously variable traits with selection of various types. 

Entropy and information methods are particularly good at partitioning data to investigate effects. 

Mutual information is obtained when entropy is partitioned, for example between geographic regions 

or between genetic or phenotypic classes. This has been used for a wide range of purposes including: 

making very robust estimates of the dispersal between populations, investigating mating patterns, 

analysing gene-gene-environment interactions in production of phenotypes such as disease states, and 

analysing linkage between genes. When partitioning genetic diversity, the exponentials of entropy and 

information are some of the few measures of diversity which behave in an intuitive manner under  

most conditions. 

The hierarchical nature of entropy and information allows integrated modeling of diversity across all 

levels of biological organization: gene regulation; prediction of protein and disease phenotypes; 

genome organization such as codon usage; variation along one DNA sequence; variation between 

different sequences within and among populations, species, etc. Thus, we can model the full range of 

interactions between genes, and between genes and environment in a subdivided population. There 

needs to be further exploration of the flow of information to and from the environment and the 

genome. 

Entropy approaches are easily incorporated into a model-fitting or statistical testing framework, and 

have been especially useful for efficiently dealing with the huge numbers of potential interactions in 

genome-wide association studies of human diseases. However, further work is needed to improve their 

reliability and efficiency. There is increasing incorporation of entropy methods into user-friendly 

genetic analysis platforms. 

The predictive power for entropy-based approaches to genetics might well be usefully extended to 

ecology and other fields of science. 
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Appendix: Glossary 

Allele: alternative versions of the DNA sequence at a locus; see pi. 

Balance: “a function of the pattern of apportionment of elements across categories”. This is based on 

what is called ip  in this article.  

Balancing selection: various types of selection which tend to maintain variants. Also called stabilizing 

selection in multilocus cases. 

Base: a component of DNA, also (somewhat loosely) called a nucleotide. There are four possible bases, 

A C T and G. The sequence of bases in DNA spells out the code. In the case of portions that code 

for amino acids, the code is read in triplets of bases. 

ijδ : represents some estimate of difference between the types (e.g., difference of morphology of 

species, or number of non-shared bases between alleles). See disparity. 

Diploid: This is when cells contain two genomes, one from each parent individual, so that each gene 

might be represented by two different alleles in the one individual. Much of the information in 

humans is diploid. Where there is only one genome, as for the Y-chromosome or mitochondrial 

or chloroplast DNA, this is called haploidy (not mono- or uni-ploidy, as one might expect!). 

Polyploidy is when there are more than two genomes in each cell. 

Differential entropy h: A continuous version of Shannon entropy. See Equation 17. 

DNA: carries the genetic code. Composed of bases. Some parts of the code are in triplets. 

Disparity: the manner and degree in which the elements of a group (e.g., the different allele types) may 

be distinguished. See ijδ . 

Directional selection: selection which eliminates one genetic variant in favour of another. Also called 

positive selection when the focus is on the favoured variant, or negative when the focus is on the 

disadvantageous variant. 

Disruptive or divergent selection: when phenotypically intermediate genotypes are at  

a disadvantage. 
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Dominant: in heterozygotes, where the two different alleles from each parent are not the same type, 

sometimes it is only possible to detect the phenotypic effect of one allele–the dominant allele. 

The other allele is said to be recessive. 

Drift: random processes in transmission of genes from one generation to the next. 

Effective number of alleles (entropic) neS: neS is the number of equi-frequent alleles that would be 

required to provide the same HS  value as the actual sample–see Equation 4. This is the entropic 

analogue of neH. 

Effective number of alleles (heterozygosity) neH: neH is the number of equi-frequent alleles that would 

be needed to give the same heterozygosity as the actual sample–see Equation 2. Also see neS. 

Effective population size: see Ne. 

Epistasis: interaction between the effects of two different loci, in production of the phenotype. 

Evenness: a transform of one of the diversity indices (usually Shannon’s) to make explicit the 

departure from the most diverse case: equal numbers of each type of allele–see Equations 5 and 

6. 

Fitness: a function of the survival and reproduction of carriers of a certain genotype. Genotypes with 

higher fitness will tend to become more numerous over the generations. See also “selection”. 

Gametic disequilibrium: see “linkage”. 

Gene: this word is used variously to mean locus or allele. In the present review, it is restricted to 

meaning a protein-coding locus. The word should probably be abandoned, due to its sloppy use. 

Genome: a complete set of genetic information, coded as base sequence of DNA. Some of this code is 

in triplets which each specify an amino acid in a protein. Other parts of the genome have other 

functions, such as regulating the expression of parts of the genome. 

Genotype: the alleles contained in an individual for one or more loci. 

HS : see Shannon entropy. 

eH : see heterozygosity. 

h: see differential entropy. 

Haploid: see diploid. 

Haplotype: a block of DNA containing multiple SNPs, and coding for one or more genes and their 

regulatory regions. Haplotypes are an example of genetic linkage.  

Haplotype diversity: see Heterozygosity. 

Heterozygote: an individual whose genotype has one copy of each of two different alleles, at a  

diploid locus. 

Heterozygosity, eH : the chance of drawing two different alleles at random (with replacement) from a 

population: see Equation 1. Note that in this review, I do not also discuss the observed  

heterozygosity–the actual occurrence of heterozygous individuals. See supplement of Sherwin  

et al. 06 [1] for more discussion of this, as well as its information- theoretic applications. 

Heterozygosity is also called “Simpson index” when applied to species in ecological 

communities, “Haplotype Diversity” when it is the chance of drawing two different haplotypes at 

random, or “Nucleotide Diversity” when it is the chance of drawing two different nucleotides at 

random. 

Homozygote: an individual whose genotype has two copies of the same allele at a diploid locus. 

Indel: an insertion or deletion which appears in one sequence when compared to another sequence. 

These occur naturally during evolution of DNA. During reconstruction of phylogenies, the size 

and relative positions of indels must be estimated in a trade-off with the number of mismatched 

bases at other positions [59]. 

Infinite alleles model (IAM): see mutation. 

Information gain: see Kullback-Liebler. 
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Kullback-Liebler divergence: for a given set of observed proportions of different types ip , this is a 

comparison of the entropy based on an underlying distribution which really is given by ip , 

versus the entropy if the underlying proportions follow some other distribution, iq . Also called 

relative entropy or information gain. 

( ) 
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Linkage: Linkage of two different genetic loci in the genome is when the inheritance of allelic variants 

at one locus is not statistically independent of alleles at another. Apparent linkage between two 

loci is called “linkage disequilibrium” or a more correct term “gametic disequilibrium” which 

recognizes that apparent linkage can be due to causes other than actual physical linkage. 

Linkage disequilibrium: see “linkage”. 

Locus: a position in the genome. Sometimes restricted to a protein-coding region, other times applied 

to any region of DNA at a fixed location in the genome, such as a SNP. 

µ: see “mutation”. 

Mutation: a change to the genetic code. Note that this is best called a change, not an error–all current 

codes, advantageous and deleterious, were derived via multiple mutations. Various different 

types of mutation occur. Two contrasting types that are commonly modeled are infinite allele 

model (IAM), and stepwise mutation model (SMM). In IAM, every mutation makes a novel 

allele, which is a reasonable approximation of the evolution of a coding region made up of 

thousands of bases, each with four alternatives, A C G T, and a per-base mutation rate such as  

µ = 10
-9

 per generation. SMM or similar is seen in repetitive regions such as 

CACACACACACA, where repeats (CA) are added or subtracted, so that alleles of the same 

length are re-created regularly. 

Mutual information : For two variables, the mutual information between them is the reduction in 

uncertainty of the level of one variable, when there is information about the level of the other 

variable. Or, roughly stated, this is the ability of one type of information to enlighten us about 

another. For example, if two populations have no shared genetic variants, then knowing the 

genotype of an individual would give a perfectly accurate guide to the individual’s population 

membership, so there is said to be high mutual information between the genes and the population 

membership. Conversely, if the two populations have exactly the same arrays of genetic variants, 

then knowledge of the genes gives no indication of population membership, so mutual 

information is zero. See Equation 9. 

Ne : effective population size: This depends not only upon actual population size, but also on any other 

factor that alters the rate at which random processes affect genetic quantities such as the 

heterozygosity eH  [78] 

eHn , eSn : see effective number of alleles. 

Negative selection: see directional selection. 

Nucleotide: see base. 

Nucleotide diversity: see heterozygosity. 

ip : the proportion of entities of type i in some group (e.g., numbers of different allelic variants 

encountered in a population, or numbers of different species encountered in an ecological 

community).  See balance. 

Phenotype: the detectable effect of genetic and environmental information. This might be shape, 

chemistry, or colour of the organism carrying a certain genotype, or the survival and reproduction 

of that individual. 

Phylogeny: a reconstruction of the evolutionary history of a number of separate groups, usually based 

only upon present-day data from those groups [59]. 
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Polymorphism: the occurrence of more than one variant within a population, e.g., two different alleles 

at the same locus. 

Polyploid: see diploid. 

Positive selection: see directional selection. 

Q, or Quadratic Entropy: a generalization of Simpson’s index/Heterozygosity:  

∑∑
==

=
S

j

jiij

S

i

ppQ
11

δ (Equation 10) 

where ijδ  represents some estimate of difference between the types (e.g., difference of morphology of 

species, or number of non-shared bases between alleles). 

r1,r2: the proportion of a species that is in each of two populations 1 and 2. This may sometimes also be 

used as the relative sizes of the samples form the two populations, when performing significance 

testing. Note that these symbols are not to be confused with the correlation between uniting 

gametes, r
2
, used in linkage analysis. 

Reaction norm: a measure of the interaction between genotypes and environmental conditions, in 

production of phenotypes. 

Recessive: see dominant. 

Recombination: this occurs when two haplotypes from different genomes break and rejoin to make 

new combinations of the alleles at the different loci, ie new haplotypes. 

Relative entropy: see Kullback-Liebler. 

Richness: see variety. 

RNA: a molecule similar to DNA, e.g., messenger RNA which carries the DNA code to the cell to be 

converted to an amino acid sequence in a protein. 

S: see variety. 

s: see selection. 

HS  see Shannon’s diversity or entropy. 

Selection: the consequence of fitness differences. Genotypes with higher fitness will tend to become 

more numerous over the generations. See also directional, balancing and disruptive selection. 

Relative fitness of different genotypes is often expressed by selection coefficents s, where one 

genotype is arbitrarily assigned maximum fitness of 1, and other genotypes are given fitnesses 

reduced by a selection coefficient s, so their fitness is 1-s ( 10 ≤≤ s ). 

Shannon’s diversity or entropy: ∑
=

−=
S

i

ii

S
ppH

1

log  (Equation 3) 

Simpson index: see heterozygosity. 

Single-nucleotide-polymorphism: Where there is variation at one base position, this is called a “single-

nucleotide-polymorphism” or SNP. Thus the alleles of a SNP locus are alternative bases A C G 

or T. 

SNP: see “single-nucleotide-polymorphism”. 

Splicing: after RNA code is transcribed from the DNA code, often portions of the code are removed, 

between two splice sites, before the code is used to direct the production of proteins. 

Stepwise mutation (SMM): see mutation. 

Variety: “the number of categories into which system elements can be apportioned”. Also called 

“richness” in biology, e.g., the number of different allelic types or the number of different 

species, termed S in this article. 
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