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Abstract: The metabolic network of a cell can be decomposed into discrete elementary 

modes that contribute, each with a certain probability, to the overall flux through the 

metabolism. These modes are cell function supporting, fundamental pathways that 

represent permissible ‘quantum’ states of the metabolism. For the case that cellular 

regulatory mechanisms for pathway fluxes evolved in an unbiased way, we demonstrate 

theoretically that the usage probabilities of individual elementary modes are distributed 

according to Boltzmann’s distribution law such that the rate of entropy production is 

maximized. Such distribution can be observed experimentally in highly evolved metabolic 

networks. Therefore, cell function has a natural tendency to operate at a maximum rate of 

entropy generation using preferentially efficient pathways with small reaction entropies. 

Ultimately, evolution of metabolic networks appears to be driven by forces that can be 

quantified by the distance of the current metabolic state from the state of maximum entropy 

generation that represents the unbiased, most probable selection of fundamental pathway 

choices. 

Keywords: elementary flux modes; maximum entropy principle; metabolic networks; 

evolution 

 

1. Introduction 

Elementary modes represent unique, minimal sets of reactions enabling the operation of specific 

pathways that are embedded in a metabolic network [1–6]. The reactions produce or consume external 
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metabolites that accumulate in the system, and they link internal metabolites that are at steady state 

with constant concentrations in the cells. The number and the type of elementary modes can be 

rigorously determined with recently developed computational tools [7–10] providing a powerful means 

to quantitatively evaluate the complexity, robustness, and capabilities of a metabolic network [11–13]. 

The overall operation of the metabolism has to be viewed as a weighted average of all possible 

elementary modes that individually contribute to the metabolic flux in the cell [14]. The identification 

of these contributions is a challenging problem that has been previously addressed with different 

approaches [15,16]. We have previously made the experimental observation that the individual 

contributions of elementary modes to the overall metabolism appear to be correlated with the standard 

reaction entropy of individual elementary modes as defined by their overall reaction stoichiometry. 

Using concepts from statistical mechanics and statistical thermodynamics we develop here a theory 

that shows that such correlation is in fact expected. It is shown that the usage probability of individual 

elementary modes is distributed according to the Boltzmann distribution law such that the rate of 

entropy production is maximized. Moreover, the theory predicts the path that evolution takes when 

systems are not at the fully evolved, maximum entropy generating state. 

2. Results and Discussion 

An elementary mode can be formally represented by a vector whose elements define all the reaction 

rates (fluxes) of the metabolic network. The non-zero fluxes in such a vector define the pathway that 

represents a specific elementary mode. If cells use only glucose as the carbon and energy source, all 

pathways start with the uptake of glucose. The elements of the elementary mode vector are then 

conveniently normalized to the uptake rate of glucose. The metabolic flux through the network can be 

viewed as a weighted average of all elementary modes. Thus, the knowledge of all possible elementary 

modes provides a useful tool for evaluating metabolism in quantitative terms since the rate of 

individual reactions is the weighted average of all elementary modes, expressed as: 

1 1, 2 2, , ,

1

...
n

j j j n n j i i j

i

R w r w r w r w r


          (1) 

where the index j refers to the jth reaction step in the network and the index i to the i
th

 elementary 

mode. Rj is then the j
th

 reaction rate of the metabolic network, the reaction rates ri,j are defined by the n 

elementary modes, and wi is the fractional contribution of the i
th

 elementary mode to the reaction j. Due 

to the normalization step, the unit of Rj and of ri,j is the glucose uptake rate. The reactions leading to 

and from external metabolites are normally the transport reactions through the cell envelope. They 

define the overall reaction equation, and the ratios between their rates and the glucose uptake rate 

represent the yields or stoichiometry coefficients in the overall reaction equation. 

The utilization of individual elementary modes is subject to cellular regulation that must coordinate 

the expression and metabolic regulation of enzymes to support the operation of individual elementary 

modes at specific rates. This poses the challenging question whether the utilization of specific reaction 

sequences, as defined by elementary modes, follow certain principles and laws that govern the 

magnitude of the weighting factors that quantify the flux through specific elementary modes. The 
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identification of some law that is the basis for these quantities would provide an understanding of the 

principles that are responsible for the behavior of a cell and ultimately explain what drives evolution. 

The overall growth equation can be expressed on the basis of the overall reaction stoichiometry that 

connects the reactants (nutrients) to the products. The overall reaction is defined by the external 

metabolites. The rates of disappearance of reactants and accumulation of products in the cell 

environment are part of the metabolic network and represent individual reactions that meet the terms of 

Equation (1). However, the pathways expressed in individual elementary modes have different overall 

stoichiometries, relating the external metabolites, than the overall growth equation. But the overall 

growth equation is recovered through application of the linear combination of individual elementary 

modes as shown in Equation (1). 

Entropy is a path independent state function. Therefore, the reaction stoichiometry between the 

external metabolites of the overall growth reaction and between the external metabolites in individual 

elementary modes permits computation of the entropy of reaction as: 

1

k

m m

m

S v S


    (2) 

where S is the entropy of reaction. It represents the amount of entropy produced per mole of glucose 

reacted if the stoichiometry coefficient associated with glucose equals one. mS are the molar entropies 

of the k reactants and products that appear in the reaction equation with stoichiometry coefficients  

m [17]. Multiplication of the entropy of reaction with the rate of glucose consumption results in the 

rate of entropy production. However, the glucose consumption rate represents only a multiplication 

factor and effects related to entropy formation can be analyzed based on reaction entropies. 

In order to use these quantities for practical applications they have to be estimated. The molar 

entropy of individual compounds can be calculated from their enthalpy and their free energy of 

formation using the Gibbs relationship (S = (H – G)/T). The standard molar enthalpies and the standard 

molar free energies of the individual compounds can be estimated from correlations with the degree of 

reduction of the compounds [17,18]. In practical applications, an accurate value of the molar Gibbs 

free energy should account also for the concentration of the compound which may not be known in all 

situations. However, the concentrations change the standard values only to a small degree. For 

instance, the standard Gibbs free energy for glucose is 2,872 kJ/mole, and at a concentration of 10 mM 

glucose the free energy is 2,860 kJ/mole. Therefore, the standard molar quantities of the 

thermodynamic properties provide a reasonable approximation useful in practical applications because 

there is usually no other option to estimate the values [17,18]. 

The overall reaction entropy STOT can be computed based on the macroscopic reaction 

stoichiometry between external metabolites using Equation (2), or from:  

1 1 2 2

1

...
n

TOT n n i i

i

S w S w S w S w S


           (3) 

where the individual reaction entropies of elementary modes, Si, computed using Equation (2), 

contribute to the overall value with weighting factors wi. Since the reaction entropies are expressed per 

mole of glucose consumed, the total rate of entropy production is obtained when Si is multiplied with 

the rate of glucose consumption. 
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We have previously made the experimental observation that individual weighting factors appear to 

be correlated with the entropy of reaction defined by the overall stoichiometry of external metabolites 

in individual elementary modes according to:  

lni iS a b w    (4) 

where a and b are constants of the linear correlation [19]. Substitution of Equation (4) in (3) results in 

an expression for the overall reaction entropy that depends only on weighting factors: 

1

ln
n

TOT i i

i

S a b w w


     (5) 

This remarkable relationship is surprising as it is reminiscent of the Boltzmann distribution law 

describing the probability distribution of microstates that define the entropy content of a system. This 

relationship motivated the quest for further, theoretical investigations that could explain this result. In 

what follows, theoretical evidence is provided that the relationships expressed by Equations (4) and (5) 

are in fact expected expressions that can be derived in analogy to principles known from 

thermodynamics of irreversible processes and from familiar concepts in statistical mechanics. 

For an open system operating at a steady state, two seemingly contradicting principles for the rate of 

entropy production have been proposed. The principle of minimum entropy production rate derived by 

Prigogine [20,21] has been an inherent part of non-equilibrium thermodynamics and applied to the 

description of various processes in physics, chemistry and biology. In contrast, the principle of 

maximum entropy production appears to be equally applicable in many other situations and appears to 

have even a more general validity for a recent review see [22]. Both principles involve an extreme 

value of the rate of entropy production in an open system operating at steady state under  

non-equilibrium conditions. Without adopting a priori any of the two extremum principles we will first 

evaluate whether the rate of entropy production reaches such an extreme value under such conditions 

and show later the nature of the extreme value. 

The reaction entropy is an extensive function as expressed by Equation (3), i.e., it is the sum of 

reaction entropies generated by all contributing elementary modes present. Thus, the entropy of 

reaction of the overall process is the sum of reaction entropies of individual elementary modes 

weighted according to their respective usage as expressed by Equation (3). Therefore, the overall 

reaction entropy can be viewed as a function of the usage probabilities of individual elementary modes 

present in the system: 

1 2 3( , , ,..., )TOT nS S p p p p    (6) 

Please note that we interpret now the weighting factors as usage probabilities of elementary modes 

and use, therefore, the symbol p instead of w. The task is now to find out how the probability of using 

individual elementary modes is distributed among all elementary modes present such that the total 

entropy function reaches an extreme value. This assignment can be objectively done by satisfying  

the principle of Fair Apportionment of Outcomes [23] which represents a basic postulate of  

statistical mechanics. The Principle of Fair Apportionment states that in an unbiased and unconstrained 

system, all outcomes will be observed with the same probability, i.e., the system ‘treats each outcome 

fairly’ in comparison with every other outcome. While following this principle in the presence of 
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constraints, the extremum of the entropy generating function can be found with the method of 

Lagrange multipliers [23]. 

To find the functional form of the probability apportionment that defines the extreme value of the 

reaction entropy one can rewrite Equation (3) in many different ways by varying the magnitude of 

probability assigned to a given elementary mode. This is done to enforce that assigned probabilities 

satisfy the multiplication rule of probability theory which is a requirement of the Principle of Fair 

Apportionment. While many options are possible, only one possibility yields the extreme value of the 

rate of entropy generation. We can arrange the assigned probabilities in a m x n matrix defined by m 

ways of distributing the usage probability among n elementary modes. Each probability element in this 

matrix follows the product rule (pi,j = viuj), i.e., it is defined by the product of the sum of column 

elements and the sum of row elements. 

The method of Lagrange multipliers finds the extremum of the function S under the constraints 

that the sum of all probabilities must be equal to one and that the weighted sum over the columns and 

rows must sum to constant values (see Figure 1a) [23]. The optimization problem can be expressed as 

finding the solution to: 

,

1 1 ,

0
m n

i
i i j i i j

i j i j

S
S S dp

p
  

 

 
      

  
  (7) 

where and are the Lagrange multipliers that enforce the three constraints: 
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 (8) 

It is interesting to note that the problem statement [Equation (7)] does not assume any form of the 

reaction entropy function. The type of function obtained as the solution is entirely intrinsic to the 

nature of the problem. 

The solution to this problem is: 

1

ln
n

TOT i i

i

S b p p a


      (9) 

where b and a are constants. For STOT to have a positive value, b must be positive. In that case the 

extreme value is a maximum. The result can be rewritten as: 

1

( ln )
n

TOT i i

i

S p b p a


      (10) 

Comparison of the individual terms of Equation (10) with Equations (3) and (4) shows that the 

expression in brackets corresponds to the individual reaction entropies Si, and the probabilities to the 

weighting factors. Thus, the reaction entropies Si are linearly correlated with the natural log of the 

probability of usage of the corresponding elementary modes. This provides the theoretical justification 

for the relationship that has been previously observed.
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Figure 1. Entropy generation as a function of weighting factors of elementary modes for E. 

coli under anaerobic non-growth conditions. (a) Total entropy production without 

constraint (black) and with the applied constraint of weighting factor  

w1 = exp(–S1/b) = 0.549 (blue plane). The system shows a global maximum entropy 

production of 0.376 kJ/K-mole when entropy generation is uniformly distributed and a 

local maximum entropy production of 0.352 kJ/K-mole located at the intersection between 

the cone and the plane when entropies are constrained to the value of the reaction entropies 

of individual elementary modes. (b) Comparison of predicted, maximum entropy 

production ()with experimentally determined entropy generation () based on data 

reported by Aristidou et al. (1999) [24]. The weighted average of entropy production of any 

combination of existing elementary modes is located on the gray plane (Equation (3)) while 

the blue surface represents combinations of elementary modes distributed according to the 

Gibbs measure. The blue surface touches the gray plane at the location of the constrained 

maximum entropy production point. The experimentally determined point is located very 

close to the predicted maximum entropy generation point reflecting the highly evolved 

metabolism of wildtype E. coli cells. (see Appendix 1 for detailed data). 
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The constant a is expected to be zero since the solution applies to all temperatures. And at an 

absolute temperature of zero all entropies are zero and the probability of producing zero entropy with 

any elementary mode is 1. A detailed derivation of Equation (10) is provided in Appendix 2. 

An alternate way to get to the same result is by using the most likely distribution of probabilities of 

microstates of a system that is given, according to statistical mechanics, by the Boltzmann distribution 

law [23]. In this distribution the entropy content of the macrosystem is maximized according to:  

1

(ln )
n

i i

i

S k p p


    (11) 

The maximized entropy implies that the expression on the right side of Equation (11) is a 

maximum. If we recall that the reaction entropy of the macrosystem is composed of the weighted 

contributions of individual elementary modes [as stated also in Equation (3)]:  
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1

n

TOT i i

i

S p S


    (12) 

then the right side of Equation (12) is a maximum if probabilities are assigned such that:  

 (13) 

as this leads to the same expression as in Equation (11). Thus, the reaction entropy (and rate of entropy 

production if multiplied with the rate of glucose consumption) is maximized if the probabilities are 

distributed according to this relationship. 

Equation (10) has several further implications. The entropy of reaction for elementary mode i can be 

expressed as: 

lni iS a b p     (14) 

Or: 

i iS a S a

b b b
ip e e e

   

     (15) 

and with the definition of a probability, one obtains: 

i i i

i i

S S Sa

b b b b

i S Sa

b b b

i i

e e e e
p

Q
e e e

  

  

 

 

  

 
 (16) 

where Q is similar to a partition function known from statistical mechanics: 

iS

b

i

Q e



  (17) 

Comparing Equation (15) with Equation (16) and considering that a = 0, results in: 

1Q   (18) 

This provides a convenient relationship to evaluate the constant b which depends only on the 

number of elementary modes and on their reaction entropies. The constant b expresses the constant 

ratio between reaction entropies of individual elementary modes and the associated usage probability 

that results in the maximum rate of entropy production in the system. It represents the ultimate state of 

a fully evolved metabolic network. The constant b is a quantity analogous to the Boltzmann constant, 

but it is different as it has different units. 

The presented theory is supported by experimental data of byproduct secretion of wildtype  

E. coli [24] (see Figure 1b). The byproduct secretion pattern can be explained by the operation of four 

groups of elementary modes with the same overall stoichiometry (see Appendix 1). The total rate of 

entropy generation computed on the basis of the four experimentally determined weighting factors is in 

excellent agreement with the maximum entropy formation predicted by the presented theory because 

wildtype E. coli presumably is a highly evolved system. Furthermore, one would expect that 

experimental systems that are further away from the maximum entropy point of operation will 

eventually evolve in time towards that point (Figure 2a). An example of such evolution is shown in 

Figure 2b [25]. 

(ln )i iS k p  
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Figure 2. Total entropy production as a function of weighting factors for E. coli under 

anaerobic non-growth conditions. (a) Comparison of predicted maximum total entropy 

production with experimental entropy generation () reported in Wlaschin et al. (2006) 

[19]. The experimental point is on the gray plane and is expected to evolve in time towards 

the predicted maximum entropy generation point () (b) Time course of the entropy 

generation in an evolving system determined from data by Hua et al. (2006) [25]. The 

experimentally determined reaction entropies are located on the gray plane and move with 

time during adaptation towards the predicted maximum entropy production point: (), 

unevolved system; (), after 30 days of adaptation; (), after 60 days of adaptation. (c) 

Total entropy generation as function of evolution time. With time the system is expected to 

reach the maximum entropy generation where the elementary mode weighting factors are 

distributed according to Equation (16). (see Appendix 1 for detailed data analysis). 

 

 

The developed relationships for the total reaction entropy of the system is very similar to the 

concept of information content of a system that tends to reach a maximum degree of uncertainty and is 

expressed as entropy [26]. In fact the qualitative form of the relationship is the same. The maximum 
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degree of uncertainty, expressed as the Shannon entropy, has been recently used to evaluate the 

elementary mode composition of the metabolism [29]. 

The evolution of living systems has been often connected with Prigogine’s minimum entropy 

production principle [20,21]. However, this principle does not appear to apply for all cases. Rather, it is 

only applicable in situations where multiple reactions in an open system can occur in parallel. If one 

fixes the condition for one reaction and allows the others to adjust freely, then the other reactions will 

tend to reach equilibrium thus minimizing the rate of entropy formation. But this is evidently not the 

case in situations where reactions are enclosed by a cell envelope, and only a limited number of 

reaction metabolites reach the environment. In the open steady state system the individual reactions 

never reach a state of thermodynamic equilibrium since all pathways start with glucose as the carbon 

and energy source, and glucose is constantly replenished in the continuous operation of the open 

system. Thus, since individual reactions are all confined to the same cellular space and the reaction 

conditions cannot adjust independently, the principle of maximum entropy production applies. In fact it 

has been shown that for a continuous stirred tank reactor (CSTR) operating near equilibrium, the 

theorem of minimum entropy production does not apply due to the convective flows between CSTR 

and its surroundings [27]. 

The system selects a mixture of elementary modes in the most probable way. It is a direct reflection 

of this principle that an inherent advantage is given to more efficient, less entropy producing modes. 

This is a testable hypothesis that is already supported by some experimental evidence [19,28]. It will be 

interesting to see whether further experimental work that is directly aimed to investigate this 

relationship, can confirm this behavior. 
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Appendix 1. 

Appendix 1 describes in detail how the entropy production rates and the associated experimental 

weighting factors have been computed. The results of these calculations are displayed in Figure 1 and 

Figure 2 of the manuscript. 

(1) Entropy calculations in Figure 1b based on secretion data from Aristidou et al. [24]. The 

metabolic model used for the elementary mode analysis was the model for wildtype E. coli described 

by Carlson and Srienc (2004) [1] under anaerobic conditions. This model results in 21 elementary 

modes that can be grouped into four families of modes that have the same overall stoichiometry. The 

overall stoichiometries and the number of associated modes are shown in Table S1. The entropy of 

reaction has been computed from Equation (2) using the methods by Sandler and Orbey [17] for 

computing the standard entropies of formation for the individual components. With the entropies of 

reaction we computed the constant b from Equation (15) which resulted in a value of  

b = 0.1511 kJ/K-mole.  

Table 1. Stoichiometric equations of elementary mode families for strain GJT001.  

Family Reaction stoichiometry 
No. of 

EMs 

Si  

(kJ/K-mole) 

1 Glucose = Acetate + Succinate 3 0.1934 

2 Glucose = 2 Lactate 6 0.1604 

3 Glucose = Ethanol + Acetate + 2 Formate 6 0.2326 

4 Glucose = Ethanol + Acetate + Formate + CO2 6 0.2752 
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Table 2 shows the secretion rates as described by Aristidou et al. [24]. From these experimental data 

the weighting factors for the individual mode families have been computed as described in Wlaschin  

et al. [19]. Essentially, it involves the solution of: 

'R N w   

where R is the column vector of known metabolite secretion rates, N is the stoichiometry matrix of 

known mode families, and w is the vector of the corresponding unknown weights. 

Table 2. Measured metabolite flux vector for E. coli strain GJT001
1
. 

 Metabolic flux 

(mmole/g CDW h) 

Glucose −1.000 

Ethanol 0.457 

Acetate 0.180 

Lactate 0.699 

Succinate 0.566 

Formate 0.637 
1 

The fluxes are extrapolated to a zero growth rate from measured fluxes from a series 

of chemostats at different dilution rates as described by Aristidou et al. [24].  

 

Table 3 compares the weighting factors computed from the experimental data to the predicted 

values calculated from only the entropies of elementary modes 

Table 3. The weighting factors and entropies for each family of modes of E. coli GJT001. 

Family
 Si 

(kJ/K-mole)
 

Weighting factors
1 

Experimental 

values
 

Predicted 

values
 

1 0.1934 0.2681 0.2780 

2 0.1604 0.3688 0.3458 

3 0.2326 0.2865 0.2146 

4 0.2752 0.0766 0.1618 

STOT
  

0.1987 0.2037 
1 

The weighting factors are computed from the measured fluxes reported in 

Aristidou et al. [24]. The predicted weight factors are calculated from entropies 

of the family modes as described in Equation (14). The total entropies are 

calculated from the weighted sum of entropies of the family modes, wiSi. 

 

(2) Entropy calculations in Figure 2a of the main text contain the total entropy data as described by 

Wlaschin et al. [19]. The entropy calculations in Figure 2b are based on experimental data described by 

Hua et al. [25]. We used the metabolic model described by Carlson and Srienc [1] containing the two 

gene knockouts, adhEpta (Hua et al., [25]), for elementary mode calculations. The computation 

yielded 16 elementary modes that can be grouped into five families of modes with the same overall 
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stoichiometry. They are shown in Table 4 together with the entropies of reaction. Table 5 summarizes 

the weighting factor for the three time points during the adaptation.  

Table 4. Stoichiometric equations of elementary mode families for E. coli with deletions 

adhEpta. 

 

Family 

 

Reaction stoichiometry 
No. of  

EMs 

Si 

(kJ/K-mole) 

1 Glucose = 2 Lactate 8 0.2735 

2 Glucose = Lactate + 0.86 Succinate 3 0.2927 

3 Glucose = 0.49 Lactate + 1.28 Succinate 1 0.3022 

4 Glucose = 0.8 Lactate + 1 Succinate + 0.2 Formate 3 0.3027 

5 Glucose = 1.67 Succinate + 0.33 Formate 1 0.3222 

Table 5. The weighting factors and entropies for each family of modes of E. coli 

containing the deletions adhEpta during adaptive evolution. The total reaction 

entropies per mole glucose consumed, STOT, are the sums of products of individual 

weighting factors and associated family entropies Si. 

Family 
Si 

(kJ/K-mole) 

Weighting factors
1
 

adhEpta 

30-day 

evolved 

adhEpta 

60-day 

evolved 

adhEpta 

Predicted 

wi 

1 0.2735 0.7280 0.7000 0.7150 0.2258 

2 0.2927 0.1460 0.0710 0.0000 0.2054 

3 0.3022 0.0000 0.1410 0.1300 0.1960 

4 0.3027 0.1270 0.0880 0.1550 0.1955 

5 0.3222 0.0000 0.0000 0.0000 0.1776 

STOT  0.2818 0.2825 0.2848 0.2975 

1
 The experimental weighting factors are computed from the measured fluxes reported in  

Hua et al., [25] while the predicted weighting factors are calculated from entropies of the  

family modes. 

Appendix 2. Detailed Derivation of the Maximum Entropy Production 

The Lagrange multiplier method for finding the maximum of the entropy generation function  

is analogous to the derivation of the Boltzmann entropy as described in the textbook by Dill  

and Bromberg [23]. The problem involves finding the probabilities pi such that the macroscopic 

reaction entropy: 

 (A.1) 1 1 2 2 ...TOT n nS p S p S p S       
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is maximized while satisfying the principle of ‘Fair Apportionment of Outcomes’. To satisfy this 

principle the probabilities must obey the multiplication rule of probability theory. Therefore, it is useful 

to rewrite Equation (A.1) in m different ways and to generate a m x n probability matrix representing 

the individual probability elements of the equations. The arbitrarily assigned probabilities satisfy the 

multiplication rule such that the sum of probabilities across a row i is ui and over a column j is vj: 

,

1

,

1

,

m

i j j

i

n

i j i

j

i j i j

p v

p u

p u v













  (A.2) 

The method of Lagrange multipliers finds the extremum of the function S under the constraint that 

the sum of all probabilities must be equal to one and that the weighted sum over the columns and rows 

must sum to a constant value. The optimization problem can be expressed as finding the solution to: 

,

1 1 ,

0
m n

i
i i j i i j

i j i j

S
S S dp

p
  

 

 
      

  
  (A.3) 

where and are the Lagrange multipliers that enforce the three constraints: 

,

1

n

i i j i

j

S p S


     

(A.4) 
,

1

m

i i j j

i

S p S


     

,

,

1i j

i j

p   

By focusing on one probability element and omitting the subscript one can see that p(u,v) and:  

[ ( , )]
S

r p u v
p





 (A.5) 

The individual reaction entropies associated with the probabilities differ between elements but they 

are fixed quantities and do not depend on u and v. Because probabilities must always sum to 1,  is 

also independent of u and v. The bracket expression in (A.3) can be rewritten as: 

[ ( , )] ( ) ( )r p u v u S v S        (A.6) 

Taking the derivative and enforcing the multiplication rule results in: 

'

'

( )

( )

r r p r p
S v

v p v p v

r r p r p
S u

u p u p u





   
   

   

   
   

   

 (A.7) 

and:  
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' '( ) ( )r v S v u S u

p p p

   
 


 (A.8) 

This equality has to hold for any arbitrary value of u and v. This can only happen if the expressions 

in the numerator are equal and constant: 

 (A.9) 

(A.8) can be rewritten as: 

r b

p p

 



 (A.10) 

which can be integrated to get: 

1( ) lnr p b p c    (A.11) 

This expression can be substituted in (A.5). A second integration results in:  

1 2( ) ( ln )S p b p p p c p c       (A.12) 

Summation over all elements results in the desired expression:  

, ,

, ,

( ) ln .TOT i i j i j

i j i j

S S p b p p const        
(A.13) 

The row index can be omitted if it equals one. The result corresponds then to (A.1). Furthermore, 

the constant in (A.13) must be zero since at a temperature of absolute zero all entropies have a value of 

zero, and the probability of generating zero entropy is 1. 
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