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Abstract: This review presents results obtained from our group‘s approach to model 

quantum mechanics with the aid of nonequilibrium thermodynamics. As has been shown, 

the exact Schrödinger equation can be derived by assuming that a particle of energy   is 

actually a dissipative system maintained in a nonequilibrium steady state by a constant 

throughput of energy (heat flow). Here, also other typical quantum mechanical features are 

discussed and shown to be completely understandable within our approach, i.e., on the 

basis of the assumed sub-quantum thermodynamics. In particular, Planck‘s relation for the 

energy of a particle, the Heisenberg uncertainty relations, the quantum mechanical 

superposition principle and Born‘s rule, or the ―dispersion of the Gaussian wave packet‖, 

a.o., are all explained on the basis of purely classical physics. 
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1. IntroductionFormel-Kapitel (nächstes) Abschnitt 1 

Considering a theory as emergent if it ―contains or reduces to another theory in a significant manner 

or if its laws are tied to those of another theory via mathematical connections‖ [1], it is proposed that 

quantum mechanics is such a theory. More precisely, it is proposed that quantum theory emerges from 

a deeper, more exact theory on a sub-quantum level. In our approach, one assumes that the latter can be 

described with the aid of nonequilibrium thermodynamics. We ask ourselves how quantum theory 
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would have evolved, had the ―tool‖ of modern nonequilibrium thermodynamics existed, say, a century 

ago. As has recently been shown, one can derive the exact Schrödinger equation with said tool, where 

the relation between energy E  and frequency  , respectively, is used as the only empirical input, 

E   [2,3], with the additional option that even the appearance of Planck‘s constant, , may have 

its origin in classical physics [4]. For an extensive review of refs. [2] and [3], and for connections to 

similar work, and, in particular, to Fisher information techniques, see [1]. As to approaches in a similar 

spirit, see, for example, [5-11], and [12].  

In the present review, we shall more generally summarize the results of our works relating to the 

derivation from purely classical physics of the following quantum mechanical features:  

 Planck‘s relation E   for the energy of a particle,  

 the Schrödinger equation for conservative and non-conservative systems,  

 the Heisenberg uncertainty relations,  

 the quantum mechanical superposition principle,  

 Born‘s rule, and  

 the quantum mechanical ―decay of a Gaussian wave packet‖.  

Moreover, the energy spectrum of a quantum mechanical harmonical oscillator is derived 

classically, as well as that of a ―particle in a box‖, the latter thereby providing both a resolution of an 

objection by Einstein, and a clarification w.r.t. the differences between the de Broglie-Bohm 

interpretation and the present approach, respectively. 

Further, it will be proven that free quantum motion exactly equals sub-quantum anomalous (i.e., 

―ballistic‖) diffusion, and, via computer simulations with coupled map lattices, it will be shown how to 

calculate averaged (Bohmian) trajectories purely from a real-valued classical model. This is illustrated 

with the cases of the dispersion of a Gaussian wave packet, both for free quantum motion and for 

motion in a linear (e.g., gravitational) potential. The results are shown to be in excellent agreement 

with analytical expressions as they are obtained both via our approach, and also via the Bohmian 

theory. However, in the context of the explanation of Gaussian wave packet dispersion, quantitative 

statements on the trajectories‘ characteristic behavior are presented, which cannot be formulated in any 

other existing model for quantum systems. Finally, an outlook is provided on some of the possible next 

steps of our thus presented research program. 

As is well known, the main features of quantum mechanics, like the Schrödinger equation, for 

example, have only been postulated, but never derived from some basic principles. (Cf. Murray  

Gell-Mann: ―Quantum mechanics is not a theory, but rather a framework within which we believe any 

correct theory must fit.‖ [13]) Even in causal interpretations of the quantum mechanical formalism, 

such as the de Broglie-Bohm theory, the quantum mechanical wave function, or the solution of the 

Schrödinger equation, respectively, is taken as input to the theory (sometimes even as a ―real‖ 

ontological field), without further explanation of why this should have to be so. Still, the Bohmian 

approach has brought some essential insight into the nature of quantum systems, particularly by 

exploiting the physics of the ―guiding equation‖ (in what is called ―Bohmian mechanics‖) or, 

respectively, by providing a detailed analysis of the ―quantum potential‖. The latter was shown, in the 

context of the Hamilton-Jacobi theory, to represent the only difference to the dynamics of classical 

systems. [14] 
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However, in 1965, Edward Nelson suggested a derivation of the Schrödinger equation from 

classical, Newtonian mechanics via the introduction of a new differential calculus. [15] Thus it was 

possible to show, e.g., that the quantum potential can be understood as resulting from an underlying 

stochastic mechanics, thereby referring to a hypothesized sub-quantum level. However, ambiguities 

within said calculus, e.g., as to the formula for the mean acceleration, as well as an apparent 

impossibility to cope with quantum mechanical nonlocality (which had become rather firmly 

established in the meantime) has led to a temporary decline of interest in stochastic mechanics. Still, it 

is legitimate to enquire also today whether the stochastic mechanics envisioned is not just one part of a 

necessarily larger picture, with the other part(s) of it yet to be established.  

Considering the history of quantum mechanics, for example, with its many differences in 

emphasizing particle and wave aspects of quantum systems, one must concede that in general the 

particle framework was the dominant one throughout the twentieth century. (Cf., as a representative 

example, Richard Feynman: ―It is very important to know that light behaves like particles, especially 

for those of you who have gone to school, where you were probably told about light behaving like 

waves. I‘m telling you the way it does behave — like particles.‖ [16]) However, a purely  

particle-centered approach may not be enough, as the quantum phenomena to be explained may just be 

more complex than to be reducible to a one-level point-particle mechanics only. In other words, it is 

possible that by the attempts to reduce quantum dynamics to simple point-by-point interactions, the 

phenomenon to be discussed would remain without reach, because it is too complex to be described on 

just one (i.e., an assumed ―basic‖) level. In still other words, a quantum system may be an emergent 

phenomenon, where a stochastic point-mechanics on just one level of description would still be a 

necessary ingredient for its description, but not the only relevant one. So, there may exist two or more 

relevant levels (e.g., on different time and/or spatial scales), where only the combination, or 

interactions, of them would result in the possibility to completely describe quantum systems. The latter 

may thus be more complex than it is assumed in any one-level stochastic mechanics model. In fact, 

recent results from classical physics suggest that this more complex scenario is even highly probable, 

since the said new results exhibit phenomena which previously were considered to be possible 

exclusively as quantum phenomena. 

One is here reminded of Feynman‘s famous discussion of the double slit, and his introductory 

remark: ―We choose to examine a phenomenon which is impossible, absolutely impossible, to explain 

in any classical way and has in it the heart of quantum mechanics. In reality, it contains the only 

mystery.‖ [17] However, the above-mentioned recent classical physics experiments not only disprove 

Feynman‘s statement w.r.t. the double slit, but prove that a whole set of ―quantum‖ features can be 

shown to occur in completely classical ones, among them being the Heisenberg uncertainty principle, 

indeterministic behaviour of a particle despite a deterministic evolution of its statistical ensemble over 

many runs, nonlocal interaction, tunnelling, and, of course, a combination of all these. I am referring to 

the beautiful series of experiments performed by the group of Yves Couder (see, for example, [18-21]) 

using small liquid drops that can be kept bouncing on the surface of a bath of the same fluid for an 

unlimited time when the substrate oscillates vertically. These ―bouncers‖ can become coupled to the 

surface waves they generate and thus become ―walkers‖ moving at constant velocity on the liquid 

surface. A ―walker‖ is defined by a lock-in phenomenon so that the drop falls systematically on the 



Entropy 2010, 12                    

 

 

1978 

forward front of the wave generated by its previous bouncings. It is thus a ―symbiotic‖ dynamical 

phenomenon consisting of the moving droplet dressed with the Faraday wave packet it emits. In 

reference [19], Couder and Fort report on single-particle diffraction and interference of walkers. They 

show ―how this wavelike behaviour of particle trajectories can result from the feedback of a remote 

sensing of the surrounding world by the waves they emit‖. Of course, the ―walkers‖ of Couder‘s group, 

despite showing so many features they have in common with quantum systems, cannot be employed 

one-to-one as a model for the latter, with the most obvious difference being that quantum systems are 

not restricted to two-dimensional surfaces. However, along with the understanding of how the 

Schrödinger equation can be derived via nonequilibrium thermodynamics ([2-3]), also the mutual 

relationship of particle and wave behaviour has become clearer. Just as in the experiments with 

walkers, there exists an average orthogonality also for particle trajectories and wave fronts in the 

quantum case. This is going to be of central importance for our modelling of quantum mechanics with 

the aid of an assumed sub-quantum thermodynamics. 

In the remainder of this introduction, a first sketch shall be given of how the said modelling can be 

carried out. At first, and foremost, we observe that the so-called ―vacuum‖ unambiguously turned out 

during the twentieth century to be permeated by what is generally called the ―zero-point energy‖, or 

―zero-point fluctuations‖, respectively, i.e., by a residual field in any accessible spacetime volume, 

even as the temperature T  goes toward 0T  . Also, any particle of nature has turned out to be 

characterized by a fundamental angular frequency 
0  (i.e., in its rest frame) such that its total energy 

E  is described by Planck‘s relation, 
0E  , where  is the reduced Planck‘s constant, 2h  . 

So, if there were only one particle in the world, the totality of such a universe would consist of an 

oscillator (i.e., our ―particle‖ characterized by 
0 ) and its environment, i.e., the all-pervasive field of 

the zero-point fluctuations. Therefore, to start with, we shall investigate possible models for the 

dynamics between the said oscillator and the said vacuum fluctuations. From a thermodynamical 

viewpoint, then, it is clear that one will in general have to employ a nonequilibrium scenario. For, any 

oscillating system in nature is the result of a dissipative process, so that the mentioned frequency 0  

can be understood as belonging to the properties of driven, off-equilibrium steady-state systems 

maintained by a permanent throughput of (kinetic) energy. Of course, for our single oscillator, the said 

energy must come from the zero-point energy, or, more precisely, the energy throughput for the 

maintenance of 
0  is determined, respectively, by the absorption from and the dissipation into the 

zero-point energy field of the particle‘s environment. 

In this context, it is helpful to return again to the above-mentioned experiments of Couder‘s group. 

To guide our imagination, the following analogy may be considered. As the ―bouncer‖ in the said 

experiments both oscillates due to being driven by the surrounding waves and causes the emission of 

radially symmetrical waves into the environment, with a self-sustained phase-locking mechanism 

guaranteeing coherent oscillations of bouncer and surrounding medium, respectively, one may in a first 

approximation also consider the frequency 0  of a quantum as representing a similarly emergent 

―symbiotic‖ process. In other words, we consider a quantum ―particle‖ as a dissipative phase-locked 

steady state, where an amount of zero-point energy of the wave-like environment is absorbed by the 

particle, and then, during a characteristic relaxation time 
01  , dissipated into the environment 

again. In the simplest scenario of a universe with only one particle in it, this dissipation will occur 
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radially-symmetrically, thus creating a (thermal) wave, or rather, maintaining the zero-point energy‘s 

wave-like structure through the phase-locking. 

In what follows it will be shown that if one considers such a corresponding free quantum particle 

along a single path, its description cannot be distinguished from that of a classical particle. That is, in 

this case the quantum potential will vanish identically. The said vanishing quantum potential is then 

proven to be exactly equivalent to a classical heat (diffusion) equation, the solutions of which are given 

as radially symmetric thermal diffusion wave fields. In other words, a non-vanishing quantum potential 

is thus generally an expression of a particle‘s surrounding diffusion wave field scenario when that 

radial symmetry is broken by ―something else‖ in the thus established more complex universe, i.e., in 

the cases when the particle is not free (or not facing a single, possible path, respectively). The gradient 

of the quantum potential will then be described as a completely ―thermalized‖ fluctuating force field, 

where the origin of the latter is exactly identical to the zero-point fluctuation field.  

So, our modelling approach will consist of two basic steps. In a first step, we just consider the 

simple ―one particle in the universe‖ scenario, with the particle as the origin of thermal waves in 

synchrony with the surrounding medium. (Note that these thermal waves themselves could be 

considered as emerging from millions of millions of individual sub-quantum Brownian motions, but 

we are here interested only in the emergent waves and their possible interactions with others.) 

In a second step, we consider the particle‘s environment to be more realistic, i.e., the simple regular 

zero-point energy oscillations will then have to be substituted by oscillations within constraints, as, 

e.g., given by an experimental setup in which our particle is embedded. Then, even a single particle 

may not be considered as being free in general. For example, even the description of a source of 

quantum particles represents constraints on an otherwise unconstrained zero-point energy environment. 

Representing an initial particle distribution in some experimental setup by a Gaussian, for example, 

already implies that the heat of the zero-point field will be ―squeezed‖ (i.e., within the limits of a 

―Gaussian slit‖, for example). This squeezing, then, is equivalent to a non-vanishing fluctuating force 

on the particle. In other words, the first step in our modelling procedure basically refers to an oscillator 

and a radially symmetric diffusion wave field. The second step, however, will have to employ a 

stochastic element in order to account for the interactions of many different (though phase-locked) 

diffusion waves, thus referring directly to the zero-point fluctuations of the embedding environment 

and the effective Brownian-type ―jumps‖ of our bouncer within the given geometric (and ―vacuum 

compressing‖) constraints of the setup. 

In the following chapters, we shall employ this two-steps strategy twice. To begin with, we shall 

concentrate on the question of the appearance of  in a classical context, i.e., in a simple ―driven 

harmonic oscillator‖ scenario, and then move to include a stochastic level, thus referring also to a 

fluctuating environment. Later, when concretely modelling the quantum mechanical dispersion of a 

Gaussian wave packet with classical means, we shall again start with the simple scenario of 

undisturbed diffusion waves, only to be modified in a second step to include the more realistic 

stochasticity of the processes involved. We shall then see that the model exactly reproduces the 

quantum mechanical results. 
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2. The “Walking Bouncer”: A Classical Explanation of Quantization  

Formel-Kapitel (nächstes) Abschnitt 1 

2.1. Introduction 

In references [2,3], the Schrödinger equation was derived in the context of modelling quantum 

systems via nonequilibrium thermodynamics, i.e., by the requirement that the dissipation function, or 

the time-averaged work over the system of interest, vanish identically. The ―system of interest'‖ is a 

―particle‖ in terms of a harmonic oscillator embedded in a thermal environment of non-zero average 

temperature (i.e., of the ―vacuum‖). In more recent papers, we have illustrated the ―particle‖ more 

concretely by using the concept of a ―bouncer‖ (or ―walker‖, respectively) gleaned from the beautiful 

experiments by Couder's group [18-21]. Thus we assume that the thermal environment is oscillating 

itself, with the kinetic energy of these latter oscillations providing the energy necessary for the 

―particle‖ to maintain a constant energy, i.e., to remain in a nonequilibrium steady state. Regarding the 

respective (―zero-point‖) oscillations of the vacuum, we simply assume the particle oscillator to be 

embedded in an environment comprising a corresponding energy bath. [4] 

 

2.2. A Classical Oscillator Driven by Its Environment’s Energy Bath: The ―Bouncer‖ 

Formelabschnitt (nächster) 

Let us start with the following Newtonian equation for a classical oscillator 

2

0 0= 2 cosmx m x mx F t          (2.2.1) 

Equation (2.2.1) describes a forced oscillation of a mass m  swinging around a center point along ( )x t  

with amplitude A  and damping factor, or friction,  . If m  could swing freely, its resonant angular 

frequency would be 
0 . Due to the damping of the swinging particle there is a need for a locally 

independent driving force 
0F . 

We are only interested in the stationary solution of Equation (2.2.1), i.e., for 1t   , where 1   

plays the role of a relaxation time, using the ansatz  

( ) = cos( )x t A t       (2.2.2) 

After a short calculation we find for the phase shift between the forced oscillation and the forcing 

oscillation that 

2 2

0

2
tan =




 



      (2.2.3) 

and for the amplitude of the forced oscillation  

0

2 2 2 2

0

/
( ) =

( ) (2 )

F m
A 

   
     (2.2.4) 

To analyse the energetic balance, we multiply Equation (2.2.1) with x  and obtain  

2 2

0 0= 2 cos( )mxx m xx m x F t x         (2.2.5) 

and thus, 
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2 2 2 2

0 0

d 1 1
= 2 cos( ) 0

d 2 2
mx m x m x F t x

t
  

 
    

 
   (2.2.6) 

where the first term within the brackets is the kinetic energy and the second one is the potential energy 

of the oscillator system. Therefore, the time-derivative of the sum must be zero since the sum is the 

whole energy of the system and has hence to be of constant value. 

Due to the friction the oscillator looses energy to the energy bath, represented by 22m x , whereas 

0 cos( )F t x  represents the energy which has to be regained from the energy bath via the force 

0 cosF t . The two terms on the right-hand side must also be zero and we can hence write down the net 

work-energy that is taken up from the bouncer in the form of heat during each period   as  

2 2 2 2 22
bouncer = 2 d = 2 ( )d =sin

t t

t t

W m x t m A t t m A

 

      
 

     (2.2.7) 

Inserting A  from Equation (2.2.4), we can see that d /d = 0W   at 
0=  , in which case the 

energy reaches its maximum. 

To derive the stationary frequency  , we use the right-hand side of Equation (2.2.6) together with 

Equation (2.2.2) and obtain  

02 = 2 sin( ) = cosm x m A t F t          (2.2.8) 

As all factors, except for the sinusoidal ones, are time independent, we have the necessary condition 

for the phase given by 

sin( ) = cos = 2
2

t t n


            (2.2.9) 

for all n . Substituting this into Equation (2.2.3), we obtain  

2 2

0

2
tan 2

2
n

 


 

 
      

 
    (2.2.10) 

and thus 

0=        (2.2.11) 

Therefore, the system is stationary at the resonance frequency 0  of the free undamped oscillator. 

With the notations 

0
0

0 0

2
= , := ( ) =

2

F
r A

m


 

  
    (2.2.12) 

we obtain 

2 2 2

bouncer bouncer 0 0 0= ( ) = = 2W W m r m r         (2.2.13) 

The Hamiltonian of the system is the term within the brackets on the left-hand hand side of 

Equation (2.2.6),  

2 2 2

0

1 1
= = const

2 2
mx m x     (2.2.14) 
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We introduce the angle 
0( ) :=t t   and substitute Equation (2.2.2) into Equation (2.2.14), thus 

yielding the two equations  

2

0 = 0r r r        (2.2.15) 

and 

2 = 0r r       (2.2.16) 

From Equation (2.2.16), an invariant quantity is obtained: it is the angular momentum 

2( ) = ( )L t mr t      (2.2.17) 

With 0=  , the quantity of Equation (2.2.17) becomes the time-invariant expression of a basic 

angular momentum, which we denote as 

2

0:= mr       (2.2.18) 

Thus, we rewrite our result (2.2.13) as 

bouncer = 2W       (2.2.19) 

 

2.3. Brownian Motion of a Particle: The ―Walker‖ 

Formelabschnitt (nächster) 

Now we concentrate on the motion of our ―bouncer‖ within a more irregular environment. That is, 

we now assume that the ―particle‖ is not only driven via harmonic oscillation of a wave-like 

environment, but that there is also a stochastic element in its movement, as, e.g., due to different 

fluctuating wave-like configurations in the environment. Therefore, our ―particle‘s‖ motion will 

assume a Brownian-type character. The Brownian motion of a thus characterized particle (which we 

propose to call a ―walker‖), is then described by a Langevin's stochastic differential equation with 

velocity =u x  and a force ( )f t ,  

= ( )mu m u f t       (2.3.1) 

with a friction coefficent  . The time-dependent force ( )f t  is stochastic, i.e., one has as usual for the 

time-averages 

( ) = 0 , ( ) ( ) = ( )f t f t f t t t       (2.3.2) 

where ( )t  differs noticeably from zero only for 1<t   . The correlation time 1   denotes the time 

during which the fluctuations of the stochastic force remain correlated. 

The standard textbook solution of Equation (2.3.1) in terms of the mean square displacements 2x  is 

given (e.g., in [22]) by the Ornstein-Uhlenbeck equation, with T now being the ―vacuum‖ temperature, 

 2 | |

2

2
= | | 1 e tkT

x t
m




      (2.3.3) 

Note that, on the one hand, for 1t    , and by expanding the exponential up to second order, 

Equation (2.3.3) provides that  
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2
2 2 2 2 20

0= =
mukT

x t t u t
m m

    (2.3.4) 

On the other hand, for 1t    one obtains the familiar relation for Brownian motion, i.e., 

2 2x Dt       (2.3.5) 

with the ―diffusion constant‖ D given by 

=
kT

D
m

      (2.3.6) 

Now we remind ourselves that we have to do with a steady-state system. Just as with the friction   

there exists a flow of (kinetic) energy into the environment, there must therefore also exist a  

work-energy flow back into our system of interest. For its calculation, we multiply Equation (2.3.1) by 

=u x  and obtain an energy-balance equation. It yields for the duration of time n , with the natural 

number > 0n  chosen so that n  is large enough to make all fluctuating contributions negligible, the 

net work-energy of the walker 

2 2

walker = d = ( )d

t n t n

t t

W m x t m u t t

 

 
 

      (2.3.7) 

We require that our particle attain thermal equilibrium ([2,3]) after long times so that, for each 

degree of freedom, the average value of the kinetic energy becomes, as usual,  

 

21 1
( ) =

2 2
mu t kT       (2.3.8) 

We thus obtain  

2

walker = ( ) = =
kT

W n m u t n m n kT
m

         (2.3.9) 

where
0= 2 /    equals the period of Equation (2.2.7), which is chosen in order to make the result 

comparable with Equation (2.2.19). The work-energy for the particle undergoing Brownian motion can 

thus be written as  

walker

0

2
=W n kT





     (2.3.10) 

2.4. The ―Walking Bouncer‖: Derivation of E   

Formelabschnitt (nächster) 

Let us summarize what we have achieved so far. We have for both systems, i.e., oscillator and 

particle in Brownian-type motion (or ―bouncer‖ and ―walker‖, respectively), obtained a net  

work-energy flow into each system, respectively, in order to compensate for the respective energy 

losses due to friction. There is a continuous flow from the bath to the oscillator, and vice versa. 

Moreover, and most importantly, during that flow, for long enough times n , the friction of the 

bouncer can be assumed to be exactly identical with the friction of the walker. For this reason we 

directly compare the results of Equations (2.2.19) and (2.3.10),  
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bouncer walker=nW W       (2.4.1) 

providing 

0

2
2 =n n kT


 


     (2.4.2) 

Now, one generally has that the total energy of a sinusoidal oscillator exactly equals twice its 

average kinetic energy. Moreover, despite having a nonequilibrium framework of our system, the fact 

that we deal with a steady state means that our oscillator is in local thermal equilibrium with its 

environment. As the average kinetic energy of the latter is always given by 2kT , one has for the total 

energy that 
totE kT . Now, one can express that energy via (2.4.2) in terms of the oscillator‘s 

frequency 
0 , and one obtains 

tot 0E kT





       (2.4.3) 

Assuming the same friction coefficient for both the bouncer and the walker, =  , we obtain the 

energy balance between oscillator and its thermal environment as 

0kT        (2.4.4) 

with the total energy of our model for a quantum ―particle‖, i.e., a driven steady-state oscillator system, 

being now derived as  

tot 0E        (2.4.5) 

Moreover, if we compare Equation (2.4.4) with the Langevin equation (2.3.1), we find the following 

confirmation of Equation (2.4.5). First, we recall Boltzmann‘s relation between the heat applied to an 

oscillating system and a change in the action function 
kinS E dt   , respectively, [2,3] providing 

 02Q S          (2.4.6) 

S relates to the momentum fluctuation via 

  :S m   p u      (2.4.7) 

where, as usual [2,3], 

2

P
m

P


 u      (2.4.8) 

Thus one obtains with (2.4.4) that the friction in (2.3.1) is given by  

=
2

P
m m m

m P
  


 u u     (2.4.9) 

Then, as /

0= e Q kTP P  , with Equation (2.4.4) for the thermal bath as above, and with Equation 

(2.4.6) one obtains 

02         (2.4.10) 

and the friction term  



Entropy 2010, 12                    

 

 

1985 

0= =
P

m Q
P

 


 u      (2.4.11) 

Note that with Equations (2.4.4) and (2.4.10), one obtains the expression for the diffusion constant 

2

kT
D

m m
       (2.4.12) 

which is exactly the usual expression for D  in the context of quantum mechanics. 

With (2.4.11) one can also introduce the recently proposed concept of an ―entropic force‖ [23]. That 

is, with the total energy equaling a total work applied to the system, one can write (with 
eS  denoting 

the entropy) 

2

0 0
t k 0

0

= 2 =: = = d = (circle) = 2 =
4 4

ot in eE E F x T S Q r Q


 


  

       
  

  (2.4.13) 

Equation (2.4.13) provides an ―entropic‖ view of a harmonic oscillator in its thermal bath. First, the 

total energy of a simple harmonic oscillator is given as 2 2

tot 0 0/2 =: /2E mr   . Now, the average 

kinetic energy of a harmonic oscillator is given by half of its total energy, i.e., by 
2 2

kin 0 0/4 = /4E mr   , which --- because of the local equilibrium --- is both the average kinetic 

energy of the bath and that of the ―bouncer‖ particle. As the latter during one oscillation varies between 

0  and 
0 / 2 , one has the following entropic scenario. When it is minimal, the tendency towards 

maximal entropy will provide an entropic force equivalent to the absorption of the heat quantity 

0= / 4Q  . Similarly, when it is maximal, the same tendency will now enforce that the heat 

0= / 4Q   is given off again to the ―thermostat'‖ of the thermal bath. In sum, then, the total energy 

throughput 
totE  along a full circle will equal, according to (2.4.13),  kin 0 0circle2 2 /2 =E   . In 

other words, the formula 
0=E   does not refer to a classical ―object‖ oscillating with frequency 0 , 

but rather to a process of a ―fleeting constancy‖: due to entropic requirements, the energy exchange 

between bouncer and heat bath will constantly consist of absorbing and emitting heat quantities such 

that in sum the ―total particle energy‖ emerges as 
0 [4]. 

 

2.5. Energy Spectum of the Harmonic Oscillator from Classical Physics 

Formelabschnitt (nächster) 

A characteristic and natural feature of nonequilibrium steady state systems is given by the 

requirement that the time integral of the so-called dissipation function t  (to be discussed in more 

detail in the next chapter) over full periods   vanishes identically [2]. Assuming that our oscillator has 

a characteristic frequency 0 2   , one defines the dissipation function w.r.t. the force in Equation 

(2.2.1) over the integral 

t

0 0

1 1 d ( )
d := = 0

F t
t

kT

 

 
       (2.5.1) 

Here, we assume a generalized driving force F to have a periodic component such that 0( ) e
i t

F t


 . 

Then one generally has that  
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( )
0 0

0

d e e
i t i t

F
  




       (2.5.2) 

and so the requirement (2.5.1) generally provides that  

0

0

d = 2 , for = 1,2,t n n



      (2.5.3) 

(Incidentally, this condition resolves the problem discussed by Wallstrom [24] about the  

single-valuedness of the quantum mechanical wave functions and eliminates possible contradictions 

arising from Nelson-type approaches to model quantum mechanics on a ―particle centered‖ basis alone.) 

So, we are dealing with a situation where a ―particle‖ oscillates with an angular frequency 
0  driven 

by the external force due to the surrounding (―zero-point‖) fluctuation field, with a period 
0

1 2
= =




 
. 

For the type of basic oscillation we have assumed a simple harmonic motion, or, equivalently [17], 

circular motion, and we generally have that the total (―zero-point‖) energy is  

2 2 0
0 0

1
= =

2 2
E mr


      (2.5.4) 

(In fact, (2.5.4) also turns out to equal the average quantum potential 0 2U  . [3]) Then, for slow, 

adiabatic changes during one period of oscillation, the action function over a cycle is an invariant,  

0 0

1 1
= d = d

2 2
S m

 
  p r r r      (2.5.5) 

with ˆ= r r r . This provides, in accordance with the corresponding standard relation for integrable 

conservative systems [2], i.e.,  

0
0

0

d
d =

E
S


      (2.5.6) 

that  

2

0 0

1
=

2
S mr       (2.5.7) 

However, the external driving frequency and the particle‘s basic frequency 
0 , respectively, are not 

just in simple synchrony, since one has to take into account also the type of energy exchanges of the 

―particle‖ with its oscillating environment as discussed in the previous section. Generally, there exists 

the possibility (within the same boundary condition, i.e., on the circle) of periods n

0

2
= =

n n


 
, with 

= 1,2,n , of adiabatical heat exchanges ―disturbing‖ the simple particle oscillation as given by 

Equation (2.5.4). That is, while we have so far considered, via Equations (2.5.5) and (2.5.6), a single, 

slow adiabatic change during an oscillation period  , we now also admit the possibility of several (i.e., 

n ) periodic heat exchanges during the same period, i.e., absorptions and emissions as in (2.4.13). The 

action integrals over full periods then more generally become 
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tot 0

0 0 0

d ( ) := d = d = dnS S t E t t

  

         (2.5.8) 

Thus, one can first recall the expressions (2.5.4) and (2.5.7), respectively, to obtain for the case of 

―no additional periods‖ ( = 0n ) the basic ―zero-point‖ scenario 

0 0 0

1
= , and = =

2 2
S E U      (2.5.9) 

Secondly, however, using (2.5.3), one obtains for n =1, 2,... that 

d ( ) = 2 =nS n nh       (2.5.10) 

This provides a spectrum of n  additional possible energy values,  

0( ) =E n n       (2.5.11) 

such that, together with Equation (2.5.9), the total energy spectrum of the off-equilibrium steady-state 

harmonic oscillator becomes  

0 0

1
= ( ) = ( ) = , with = 0,1,2, .

2

S
E n U E n E n n

t


  
    
  

 (2.5.12) 

Note that to derive Equation (2.5.12) no Schrödinger or other quantum mechanical equation has 

been used. Rather, it was sufficient to invoke Equation (2.5.2), without even specifying the exact 

expression for F . 

In this chapter we derived Planck‘s relation 
0E   from classical physics. This was made possible 

by the identification of  with the angular momentum (2.2.18), 2

0:= mr  , of our basic oscillator. 

What yet remains to be shown is the universality of this relation, i.e., that it holds for any particle with 

any mass m . Note, however, that there exists a possibly related explanation of the universality of  

based on a thermodynamic analysis of the harmonic oscillator, i.e., T. Boyer‘s derivation [25], given in 

the context of a classical physics in the presence of a (―classical‖) zero-point energy field.  

3. Derivation of the Exact Schrödinger Equation from Classical Physics 

Formel-Kapitel (nächstes) Abschnitt 1 

3.1. Introduction 

Based on the results of the foregoing chapter, it already follows from classical physics, that to each 

particle of nature one associates an energy 

 E        (3.1.1) 

As it is well known that oscillations in general are the result of dissipative processes, the frequencies 

  can be understood within the framework of nonequilibrium thermodynamics, or, more precisely, as 

properties of off-equilibrium steady-state systems maintained by a permanent throughput of energy 

from the environment. 

So, we deal here with a ―hidden‖ thermodynamics, out of which the known features of quantum 

theory should emerge. (This says, among other things, that we do not occupy ourselves here with the 
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usual quantum versions of thermodynamics, out of which classical thermodynamics is assumed to 

emerge, since we intend to deal with a level ―below‖ that of quantum theory, to begin with.) 

Of course, there is a priori no guarantee that nonequilibrium thermodynamics is in fact operative on 

the level of a hypothetical sub-quantum ―medium‖, but, as will be shown here, the straightforwardness 

and simplicity of how the exact central features of quantum theory emerge from this ansatz will speak 

for themselves. Moreover, one can even reverse the doubter‘s questions and ask for compelling 

reasons, once one does assume the existence of some sub-quantum domain with real physics going on 

in it, why this medium should not obey the known laws of, say, statistical mechanics. For, one also has 

to bear in mind, a number of physical systems exhibit very similar, if not identical, behaviours at vastly 

different length scales. For example, the laws of hydrodynamics are successfully applied even to the 

largest structures in the known universe, as well as on scales of kilometres, or centimetres, or even in 

the collective behaviour of quantum systems. In short, although there is no a priori guarantee of 

success, there is also no principle that could prevent us from applying present-day thermodynamics to 

the sub-quantum regime. 

What is proposed here can also be considered as a gedanken experiment: what if our knowledge of 

classical physics (including wave mechanics and nonequilibrium thermodynamics) of today had been 

available 100 years ago? The answer is as follows: One could have thus, without any further 

assumptions or any ad hoc choices of constants, derived the exact Schrödinger equation, both for 

conservative and non-conservative systems, using only universal properties of oscillators and 

nonequilibrium thermostatting. It is particularly the latter feature which is rather appealing, since the 

use of universality properties guarantees model independence. That is, it will turn out unnecessary to 

have much knowledge about the detailed sub-quantum mechanisms, as the universal properties of the 

systems in question will be shown to suffice to obtain the results looked for. Moreover, the approach to 

be presented here not only re-produces the Schrödinger equation, but also puts forward some new 

results, such as the sub-quantum fluctuation theorem, which can thus help shed light on problems not 

properly understood today within the known quantum formalism. 

In section 2 of this chapter, a short review is given of some results from nonequilibrium 

thermodynamics, which are particularly useful for our purposes. Section 3 then presents the application 

of the corresponding sub-quantum modelling of conservative systems, thus providing a straightforward 

derivation of the Schrödinger equation from modern classical physics. It is claimed that this represents 

the only exact derivation of the Schrödinger equation from classical physics in the literature. In section 

4, then, the scheme is extended to include the Schrödinger equation for integrable non-conservative 

systems. Finally, the more encompassing scope of the present approach is presented, culminating in a 

formulation and discussion of the ―vacuum fluctuation theorem‖, with particular emphasis being put on 

possible applications for a better understanding of quantum mechanical nonlocality.  
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3.2. Some Results from Nonequilibrium Thermodynamics 

Formelabschnitt 2 

In the thermodynamics of small objects, the interactions with their environments are dominated by 

thermal fluctuations. Since the 1980ies, new experimental and theoretical tools have been developed to 

provide a firm basis for a theory of the nonequilibrium thermodynamics of small systems. Most 

characteristic for such systems are the irreversible heat losses between the system and its environment, 

the latter typically being a thermal bath. In recent years, a unified treatment of arbitrarily large 

fluctuations in small systems has been achieved by the formulation of so-called fluctuation theorems 

(FT). One type of FT has been developed by G. Gallavotti and E. Cohen [26] and deals with  

steady-state systems.  

Steady-state systems are characterized by an external agent continuously producing heat which thus 

contributes to the small system‘s heat bath. The rate at which the system exchanges heat with this bath 

is given by the entropy production 
eS t   , where the entropy 

eS Q T  , with T  being the 

temperature and t  the time interval over which the system exchanges the heat Q . Gallavotti and 

Cohen associate the entropy production with a time-dependent probability distribution in phase space, 

 tP  , and their FT provides an expression for the ratio of the probability of absorbing a given amount 

of heat versus that of releasing it: 

 

 
lim   ln

t

t
t

Pk

t P






 
   

     (3.2.1) 

where k  is Boltzmann‘s constant. 

Practically, Equation (3.2.1) also holds to good approximation for finite times, i.e., as long as t  is 

much greater than a given decorrelation time. Equation (3.2.1) expresses the fact that nonequilibrium 

steady-state systems on average always tend to dissipate heat rather than absorb it. Nevertheless, it also 

gives an exact probability for heat absorption (negative  ), which still is non-zero. Generally, FTs 

give a new answer to an old question already discussed by Boltzmann and Loschmidt, among others: 

how does time-reversible Newtonian mechanics in the microscopic realm lead to the  

time-irreversible macroscopic equations of thermodynamics and hydrodynamics? FTs provide the 

answer by giving exact formulas for the ratio between the probability of a process in the forward-time 

direction and the corresponding probability in the reversed-time direction (cf. Equation (3.2.1)). If this 

ratio is equal to one, of course, one deals with the time-symmetric situation of classical mechanics. 

However, the new quality of FTs is given by the possibility to describe the transition from the  

time-reversible equations to those of irreversible macroscopic behaviour. It has turned out that 

microscopic violations of the Second Law for a finite time are possible (and have indeed been 

observed), but that the allowed fluctuations in the microscopic domain tend to become insignificant as 

soon as the system becomes macroscopic, because the above-mentioned ratio of probabilities grows 

exponentially with the system‘s size, or with the length of observation time, respectively. Thus, for large 

systems, the conventional Second Law emerges. (For an excellent review, see Evans and Searles [27].) 

Related to Equation (3.2.1), but actually more apt for our purposes, is a FT given by Williams, 

Searles, and Evans in 2004. [28] They consider what happens to a nonequilibrium dissipative system, 

where the initial conditions are assumed to be known, and where the system is maintained at a constant 
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temperature. (We recall that, as an application, we want to treat the particles of quantum mechanics as 

such ―small systems‖, and it is natural to start with the suggestion that they are held at some constant 

temperature, at least in the free-particle case.) 

If this small system is surrounded by a heat bath, and if the heat capacity of this thermal reservoir is 

much greater than that of the system, one can ―expect the system to relax to a nonequilibrium  

quasi-steady-state in which the rate of temperature rise for the … system is so small that it can be 

regarded as being zero.‖ [28] In their paper, Williams et al. give a detailed analysis to show how their 

―transient‖ fluctuation theorem (TFT) is independent of the precise mathematical details of the 

thermostatting mechanism for an infinite class of fictitious time reversible deterministic thermostats. 

They thus prove the factual independence of their TFT from the thermostatting details, a fact which we 

denote as ―universality of thermostatting‖ for nonequilibrium steady-state systems. 

The kinetic temperature of the heat reservoir is defined by 

1

1
 

rN

ir

kT
DmN 

  i ip p      (3.2.2) 

where D  is the Cartesian dimension of the system, 
rN  the number of reservoir particles, 

ip  their 

momenta and m  their individual masses. Since the reservoir is very large compared to the small 

dissipative system, one can safely assume that the momentum distribution in this region is given by the 

usual Maxwell-Boltzmann distribution. This corresponds to a ―thermostatic‖ regulation of the 

reservoir‘s temperature. Now, if the phase space distribution function of trajectories  tΓ , i.e., 

  f tΓ , for the thermostatted system is known, Williams et al. show how the TFT can be applied. 

Instead of using the entropy production   as in Equation (3.2.1), the TFT now has to be formulated 

with the aid of a more generalized version of it, the so-called dissipation function t . It is defined by 

the following equation [28]: 

  
  
  

  
0 0

0 ,0
:  ln   

,0

t t

t

f
t ds s s ds

f t
      

Γ
Γ Γ

Γ
  (3.2.3) 

where   0 ,0f Γ  is the initial  0t   distribution of the particle trajectories Γ ,  tΓ  is the 

corresponding state at time t ,   ,0f tΓ  the initial distribution of those time evolved states, and 

   Γ Γ Γ  the phase space compression factor. Similar to Equation (3.2.1), the TFT now provides 

the probability ratio 

 
 

 
t

t

At
p A

e
p A

 


  
      (3.2.4) 

The notation  tp A   is used to denote the probability that the value of t  lies in the range from 

A  to A dA , and  tp A    refers to the range from A  to A dA  . 

Because of the equilibrium distribution of the thermostat, or, equivalently, because the energy lost to 

the thermostat can be regarded as heat, the phase space compression factor is essentially given by the 

heat transfer Q , 
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  
0

  

t
Q

s ds
kT


  Γ      (3.2.5) 

and the first expression on the r.h.s. of Equation (3.2.3) is equal to the change of the total energy  

H , i.e.,  

  
  

0 ,0
ln  

,0

f H

kTf t




Γ

Γ
     (3.2.6) 

The authors are able to show that generally, when the number of degrees of freedom in the reservoir 

is much larger than the number of degrees of freedom in the small system of interest, the dissipation 

function is equal to the work W  applied to the system, 

    
 1

 t

W t
t H t Q t

kT kT


         (3.2.7) 

By definition, the latter is given by [28] 

  
0

   

t

W ds s V    e
J Γ F      (3.2.8) 

where the dissipative field 
eF  does work on the system by driving it away from equilibrium, J  is the 

so-called dissipative flux, and V  the volume of interest. This work is converted into heat, which is in 

turn removed by the thermostatted reservoir particles, thus maintaining a nonequilibrium steady state. 

Finally, substituting Equation (3.2.8) into Equation (3.2.4) provides the TFT implied by universal 

thermostatting (with the bars denoting averaging) [27]: 

1

1
 

kT

kT

AVt

p A

e

p A

 
   
  
 
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 

t e

t e

J F

J F

    (3.2.9) 

3.3. Merging Thermodynamics with Wave Mechanics: Emergence of Quantum Behaviour 

Formelabschnitt (nächster) 

3.3.1. The Basic Assumptions 

 

From the beginning, early in the twentieth century, and onwards, quantum phenomena have been 

characterized by both particle and wave aspects. Let us take Equation (3.1.1), E   , as the starting 

point for our approach, and note as an aside that the oscillations indicated by the frequency   can be 

considered as those of a carrier wave, which, depending on an observer‘s rest frame, are modulated 

such that the free particle‘s velocity is given by the group velocity of the associated wave. (The ―free 

particle‖ is an idealization, with the particle considered to be un-affected by the thermodynamic 

―disturbances‖, which will be introduced below. Still, in many cases, the average particle velocity will 

equal the group velocity even after those disturbances are accounted for.) From classical wave 

mechanics we then know that v
d

dk


 , but we generally also have that v

dE

dp
  (i.e., with wave number 
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k  and momentum p ), so that by comparison we thus obtain with Equation (3.1.1) that the particle‘s 

momentum is given by de Broglie‘s relation  .p k  

So, one can imagine a particle as an oscillating entity which is in contact with its surroundings via a 

wave-like dynamics related to its frequency  . As we want to consider a classical wave, we can note 

that the probability density  ,P tx  for the presence of such a particle (which thus is equal to the 

detection probability density) is such that it coincides with the wave‘s intensity    2, ,I t R tx x , with 

 ,R tx  being the wave‘s (real-valued) amplitude (Assumption 1): 

   2, , , with normalization  =1 nP t R t P d x x x    (3.3.1) 

Now let us propose a central argument of our approach. We assume that a sub-quantum 

(nonequilibrium) thermodynamics provides the correct statistical mechanics responsible for the 

understanding of the oscillatory behaviour of a single particle on the quantum level. The ―language‖ 

used is of course one of ensembles of (sub-quantum) particles, and the task is to find the appropriate 

transition to the ensemble behaviour of many particles (e.g., one particle in many consecutive runs of 

an experiment) on the quantum level. We propose that by merging the sub-quantum thermodynamics 

with classical wave mechanics, the emergence of quantum behaviour can be exactly modelled. 

To do so, we must ask how the probability densities of a particle on the quantum level are 

constructed from the sub-quantum distribution functions (i.e., of N particle statistical mechanics). 

We propose that the temporal evolution of the quantum particle‘s probability density in configuration 

space is an emerging property of the system‘s description based on the underlying temporal evolution 

of the corresponding sub-quantum distribution function, i.e., 

 
  
  

 
,0

, ,0  
0 ,0

f t
P t P

f


Γ
x x

Γ
 

The equilibrium distribution      ,0 0 ,0
H

kTf t f e



Γ Γ  according to Equation (3.2.6) is 

therefore assumed to be reflected also in the distribution    , ,0
H

kTP t P e



x x . In other words, the 

second ―input‖ to our theory, is provided by the following proposition of emergence (Assumption 2): 

the relation between the distribution functions referring to the trajectories at the times 0  and t , 

respectively, on the sub-quantum level is mirrored by the corresponding relation between the 

probability densities on the quantum level: 

  
  

 

 

,0 ,
 

,00 ,0

f t P t

Pf


Γ x

xΓ
     (3.3.2) 

In Equation (3.3.2) it is proposed that the many microscopic degrees of freedom associated with the 

sub-quantum medium are recast into the more ―macroscopic‖ properties that characterize a collective 

wave-like behaviour on the quantum level. (This will imply that the buffeting effects of the 

surroundings on the particle are represented by a fluctuating force, as we shall see below.) Similar to 

the thermodynamics of a colloidal particle in an optical trap [29], the relevant description of the system 
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is no longer given by the totality of all coordinates and momenta of the microscopic entities, but is 

reduced to only the particle coordinates. 

This ―emergence‖ of the ratio (3.3.2) on the quantum level can be justified on dynamical grounds. 

Assuming that the probability density (3.3.1) obeys the usual continuity equation, i.e., 

  0P P
t


  


v       (3.3.3) 

with solutions 

   
 

00

t

dt

P t P e

 


 v

     (3.3.4) 

we see that the exponent in Equation (3.3.4) exactly matches a familiar form of the phase space 

compression factor, i.e., 

 ,  t  x v       (3.3.5) 

As in this chapter we assume, to begin with, the strictly time-reversible case, the corresponding 

dissipation function (3.2.3) must vanish identically. Thus, if one allows for   to be defined by the 

restriction to  , t   x , then upon the combination of Eqations (3.3.4) and (3.3.5), Equation (3.3.2) 

follows immediately. 

Finally, the proposal that the frequency   is maintained in a steady-state via the constant 

throughput of thermal energy has to be cast into a re-formulation of what is understood as ―total 

energy‖, i.e., of Equation (3.1.1). For the time being, we do not need to specify what exactly this 

thermal energy is, although we shall later identify it with the vacuum‘s zero-point energy. All we need 

to specify in the beginning is that a quantum system‘s energy consists of the ―total energy‖ of the 

―system of interest‖ (i.e., the particle with frequency  ), and of some term representing energy 

throughput related to the surrounding vacuum, i.e., effectively some function F  of the heat flow Q : 

     tot , , , ,E t E t F Q t    x x x     (3.3.6) 

The first term is assumed to be given by Equation (3.1.1), and the second term, being equivalent to 

some kinetic energy, can be recast with the aid of a fluctuating momentum term, p , of the particle 

with momentum p . Thus, the total energy is given by (Assumption 3): 

 
2

tot    
2

p
E

m


       (3.3.7) 

That is all we need: Equations (3.3.1), (3.3.2), and (3.3.7) suffice to derive the exact Schrödinger 

equation from (modern) classical physics. This shall be shown now. 

 

3.3.2. Derivation of the Exact Schrödinger Equation from Classical Physics 

 

We consider the standard Hamilton-Jacobi formulation of classical mechanics, with a ―total internal 

energy‖ of the system of interest generally given by 
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 2 2  + i

i

p m V x       (3.3.8) 

where V is some potential energy. In the following, we shall for simplicity restrict ourselves to the  

one-particle case  1i  , as an extension to the many-particle case can easily be done. 

We introduce the action function  ,S tx  such that the total energy of the whole system (i.e., our 

―system of interest‖ and the additional kinetic energy due to the assumed heat flow) is given by 

 
 

tot

,
,

S t
E t

t


 



x
x      (3.3.9) 

To start with, we consider as usual the momentum p  of the particle as given by 

     , , ,t m t S t  p x v x x     (3.3.10) 

noting, however, that this will not be the effective particle momentum yet, due to the additional 

momentum coming from the heat flow. With these preliminary definitions, we formulate the action 

integral in an n dimensional configuration space with the Lagrangian L  as 

     
1 1

 ,  
2 2

n nS
A L d xdt P t S S S S V d xdt

t m m
 

 
          
  x   (3.3.11) 

where we have introduced the momentum fluctuation of Equation (3.3.7) as 

 S  p      (3.3.12) 

Our task is now to derive an adequate expression for p  from our central assumption, i.e., from an 

underlying nonequilibrium thermodynamics. To begin, we remember the distinction between ―heat‖ as 

disordered internal energy on one hand, and mechanical work on the other: heat as disordered energy 

cannot be transformed into useful work by any means. According to Boltzmann, if a particle trajectory 

is changed by some supply of heat Q  to the system, this heat will be spent either for the increase of 

disordered internal energy, or as ordered work furnished by the system against some constraint 

mechanism [30]: 

internal constraintsQ E W         (3.3.13) 

With constraintsW being the effect of a heat flow, Equation (3.3.13) is a corollary of Equation (3.2.7), 

where the work applied to the system effectively produces a heat flow. This is why W has different 

signs in the two respective equations. However, we first want to concentrate on time-reversible 

scenarios where 0W  . 

It is clear that for the limiting case of Hamiltonian flow, which is characterized by a vanishing phase 

space contraction (3.3.5), a time-reversible scenario is evoked where 0W   for all times. However, 

one can also maintain time reversibility by choosing that only the time average vanishes, 0W  , thus 

allowing for the system of interest to be a nonequilibrium steady-state one. So, in what follows we 

shall at first restrict ourselves to the case where on average no work is done, 0W  , which is equal 

to the time-reversible scenario. In the consecutive Chapter, then, we shall consider the time-irreversible 

case, 0W  . 
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If in Equation (3.2.7), or Equation (3.2.8), respectively, we therefore set 0W  (which due to the 

specific form of these Equations per se already implies time averaging), the dissipation function t  

vanishes identically, which in turn confirms time reversibility. However, as 0t  , we obtain with 

Eqations (3.2.3), (3.2.5), and (3.3.2) the probability (density) ratio 

 

 

,

,0

Q
kT

P t
e

P





x

x
      (3.3.14) 

This is equivalent to the form of the usual Maxwell-Boltzmann distribution for thermodynamical 

equilibrium, but this time it is the result of universal thermostatting in nonequilibrium thermodynamics 

under the restriction that on average the work vanishes identically. 

Now, in order to proceed in our quest to obtain an expression for the momentum fluctuation (3.3.12) 

from our thermodynamical approach, we can again rely on a formula originally derived by Ludwig 

Boltzmann. As mentioned above, Boltzmann considered the change of a trajectory by the application of 

heat Q  to the system. Considering a very slow transformation, i.e., as opposed to a sudden jump, 

Boltzmann derived a formula which is easily applied to the special case where the motion of the system 

of interest is oscillating with some period 2   . Boltzmann‘s formula, which we already used in 

the previous chapter, relates the applied heat Q  to a change in the action function  kin  S E V dt  , 

i.e., 
kinS E dt   , providing [30,31] 

   2 2 0Q S S t S             (3.3.15) 

This is in perfect agreement with the standard relation for integrable conservative systems, which 

we do deal with as long as we restrict ourselves to considering properties of our ―system of interest‖, 

providing an invariant action function 
kin2 2I E dt S   . As originally proposed by Ehrenfest and 

reformulated in Goldstein [32], 

dE
dI


       (3.3.16) 

Identifying dE with the heat flow Q , and with 2I S  as just mentioned, Equation (3.3.16) 

provides exactly the relation (3.3.15) again. (We shall return to Equation (3.3.16) in Chapter 4, when 

we discuss the extension of our approach to non-conservative systems.) 

Note that in Equation (3.3.15) we already have obtained a connection between the heat flow Q  

and our looked-for momentum fluctuation p , the latter being given by Equation (3.3.12), 

 .S  p  What remains to be identified with familiar expressions, is the term kT in  

Equation (3.3.14). It refers to the apparent temperature of the surroundings of our system of interest, 

with the latter having a total internal energy  . 

Now, just as Equation (3.3.14) was derived from very general, i.e., model-independent, features of 

nonequilibrium thermodynamics (―universal thermostatting‖), we can now also give an alternative 

expression for the temperature of the thermostat from a very general observation. The latter is 

concerned with an already mentioned universal property of harmonic oscillators: All sinusoidal 

oscillations have the simple property that the average kinetic energy is equal to half of the total  

energy[17]. Now, our system of interest has the total internal energy of E  , and we deal with 
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steady-state systems where the internal temperature on average matches the external one of the 

surrounding medium. We thus obtain with the requirement that the average kinetic energy of the 

thermostat, Equation (3.2.2), must equal the average kinetic energy of the oscillator, that for each 

degree of freedom 

2 2

kT 
       (3.3.17) 

(In fact, we have already derived the equality (3.3.17) in the previous chapter, viz., Equation (2.4.4).) 

Combining, therefore, Equations (3.3.14), (3.3.15), and (3.3.17), we obtain 

   
   , ,0

2

, ,0
S t S

P t P e
  
 




x x

x x      (3.3.18) 

Thus we obtain from Equation (3.3.18) our final expression for the momentum fluctuation p , 

derived exclusively from model-independent universal features of harmonic oscillators and 

nonequilibrium thermodynamical systems: 

    
 

 

,
, ,

2 ,

P t
t S t

P t
 


  

x
p x x

x
    (3.3.19) 

This further provides the expression for the additional kinetic energy term in Equation (3.3.11), i.e., 

   
2

kin

1 1

2 2 2

P
E S S

m m P
  

 
     

 
   (3.3.20) 

As will be shown shortly, inserting Equation (3.3.20) into the action integral (3.3.11) will ultimately 

provide the Schrödinger equation. (For an earlier version, see [33], where also Heisenberg‘s 

uncertainty principle is derived from Equation (3.3.19)). 

Before doing so, the following remark may be helpful. There is an alternative way to derive the final 

action integral by referring in Equation (3.3.11) to a generalized average momentum 

 S S S    p p  instead of the two kinetic energy terms. Then, instead of Equation (3.3.11) , 

there would only remain one term for the kinetic energy, given by 
1

2m
p p . However, as the average 

momentum fluctuations p  must be linearly uncorrelated with the average momentum S , such that 

the (averaged) vector product is unbiased [34], one has the average orthogonality condition 

  0nP S d x   p      (3.3.21) 

such that the terms with mixed momentum components vanish identically and the action integral again 

is given by Equation (3.3.11). In fact, the requirement (3.3.21) is immediately obtained also from our 

requirement that the dissipation function, or the average work, respectively, vanishes identically. For, if 

we identify in Equation (3.2.8) the flux J  as the probability density current, i.e.,  

S
P P

m


 J v       (3.3.22) 

and if we characterize the external force 
eF  by the change in momentum p , i.e., 
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m
t t

 

 
 e

v p
F       (3.3.23) 

the average work, assuming ergodicity, is given by 

 
1 1 1

0nW d xP S
t mV

      p     (3.3.24) 

which thus confirms Equation (3.3.21), and, ultimately, the action integral (3.3.11). (We also note here 

that a posteriori, with the quantum physical equations already at our disposal, one can provide an 

additional, compulsory argument that necessarily confirms Equation (3.3.24), as will be shown later.) 

This concludes the remark. 

Returning to our main line of reasoning, we now turn to the derivation of the Schrödinger equation. 

We begin by recalling the identity (3.3.1), i.e. 2P R , of the probability density with the intensity of 

waves of amplitude R . (Note: This holds for the time-reversible scenario, which we deal with here. In 

general, this identity does not necessarily hold for nonequilibrium situations. [35]) Thus, the action 

integral we have arrived at now reads 

2

tot  
2

nS
A P V d xdt

t m

p
  



 
 
  

      (3.3.25) 

where 

 tot tot :
R

p S S S
R




        uk k k    (3.3.26) 

Now we introduce the ―Madelung transformation‖ (with the star denoting complex conjugation), 

 
 

i
S

Re



       (3.3.27) 

Thus one has 

2 2 2

,  and  
R i R S

S
R R

 

 

    
    

   
   
   

   (3.3.28) 

and one obtains a transformation rule between the formulations of modern classical physics and 

orthodox quantum theory: the square of the average total momentum is given by 

2

2 2 2

tot

2 2

p
R S

R






  

     
    
     

   (3.3.29) 

With 
22

P R    from equation (3.3.27) one can rewrite (3.3.25) as 

2

2 2

2

n S
A Ldt d xdt V

t m
 


    



  
  
  

    (3.3.30) 
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Further, with the identity  2

2

S i

t
    

 
  


, one finally obtains the well-known Lagrange 

density 

 
2

2 2

i
L V

m
       

   
          (3.3.31) 

As given by the standard procedures of classical physics, this Lagrangian density provides (via the 

Euler-Lagrange equations) the Schrödinger equation  

2

2

2
i V

t m





   



 
 
 

    (3.3.32) 

Without knowledge of the course of physics during the twentieth century, one might wonder why 

one had to introduce the Madelung transformation (3.3.27) in the first place. For, remaining within the 

language of classical physics would have also provided a correct and useful answer: Rewriting the 

action integral (3.3.25), or, respectively, (3.3.11) with the specification of Equation (3.3.19) or 

Equation (3.3.20), i.e.,  

 
 

2 22

,  
2 8

n
SS P

A P t V d xdt
t m m P

   
     

    
 x   (3.3.33) 

one obtains upon fixed end-point variation in S  the usual continuity equation (3.3.3), and, more 

importantly, upon variation in P , a modified Hamilton-Jacobi equation, 

 
2

0
2

SS
V U

t m


   


     (3.3.34) 

where U  is known as the ―quantum potential‖ 

22 2 2 21

4 2 2

P P R
U

m P P m R

    
     

   

    (3.3.35) 

Equation (3.3.3) and (3.3.34) form a set of coupled differential equations and thus provide the basis 

for the de Broglie-Bohm interpretation [14, 36], which can give a causal account of quantum motion. 

Still, as is well known, these two differential equations can, with the aid of the Madelung 

transformation (3.3.27) be condensed into a single differential equation, i.e., the Schrödinger equation 

(3.3.32), from which, historically, they were originally derived. So, the answer to the question, ―why 

the Madelung transformation‖, lies in the compactness of the single equation, and, most importantly, in 

its linearity: The Madelung transformation is a means to linearize an otherwise highly nonlinear set of 

coupled differential equations. Thus, the Schrödinger equation has the distinct advantage of an easy 

handling of the mathematics, although the disadvantage is given by the fact that  , t x  has no direct 

physical meaning, as opposed to all the quantities given in the Equations (3.3.3) and (3.3.34). 

What is new in the present approach, though, is the result that all these latter quantities are, in fact, 

derived from ―modern classical‖ ones, i.e., also the term U . For, as we have seen, the new input (i.e., 

as opposed to ordinary classical mechanics without any embedding of systems of interest in 
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nonequilibrium processes) is an additional term for the kinetic energy, Equation (3.3.20), 
2

kin

1

2 2

P
E

m P


 
  

 
, which in the variational problem as shown above provides the quantum  

potential term 

   
22 2 21

4 2 2 2 2

P P m
U

m P P m

    
         

   
u u u

u u
u k k k   (3.3.36) 

where  

1
 :  and  

2 2

P P R

m m P P R

   
      u

p
u k    (3.3.37) 

Thus, we see that the expression ―quantum potential‖ is rather misleading, since the term derives 

from a kinetic energy, and does indeed exactly represent a kinetic energy term, 
2

2

mu
, in the case that 

0 u . Still, we shall accept and retain the name in the following, because it is so often used and 

well-known in the literature. The reader is referred to excellent reviews (e.g., [36, 14]) for discussions 

of the properties of U , of which we here want to mention the one very particular feature, namely, that 

it does not necessarily fall off with the distance, i.e., it is made ―responsible‖ for the nonlocal effects of 

quantum theory. This is so despite another remarkable property, which actually is founded in very basic 

information theoretic principles [37], i.e., that its average spatial gradient vanishes identically: 

3  0P U d x        (3.3.38) 

Moreover, differentiation of Equation (3.3.34) provides the equations of quantum motion [13,14] : 

 
d

m V U
dt

  
v

     (3.3.39) 

This confronts us with an intriguing observation: apart from the gradient of the classical potential, 

which just results in a classical force term affecting the momentum S  of the ―internal‖ part of our 

system of interest, the (nonlocal) quantum potential is exactly the reason for an acceleration of the 

particle due to a ―contextual‖ dynamics from outside the immediate (classical) system of interest. If we 

thus put in Equation (3.3.23)  

U
t




  e

p
F       (3.3.40) 

and insert this into the defining equation of the work applied to our system, Equation (3.2.8), we obtain 

(with PJ v  as before) 

1

0

3

0

0

t

W ds VP U d d xP U       
x

x

v x     (3.3.41) 

This confirms that time reversibility is equivalent to both a vanishing average gradient of the 

quantum potential (due to Equation (3.3.38)) and a vanishing average work applied to the system of 

interest, i.e., the particle of total (internal) energy E  . Moreover, as the average external force  
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3: 0U P Ud x     e
F      (3.3.42) 

for time-reversible systems in general, Equation (3.3.41) is another justification, this time a posteriori, 

of the average orthogonality of the vectors p  and p  as given in Equation (3.3.21), or in Equation 

(3.3.24), respectively.  

Finally, it should be noted that although the present derivation deals only with spin-less particles, it 

is not only its historical priority which demands that the genuine Schrödinger equation be considered as 

the most essential equation of quantum theory. Just as a possible extension to relativistic cases, the 

extensions to include spinning particles must be on the agenda as ―next steps‖, which can only be 

made, in the context presented here, after the foundations of the Schrödinger equation have become 

clear. For a similar derivation of the n particle Schrödinger equation, see [3]. 

 

3.4. Extension to Integrable Non-Conservative Systems and the Vacuum Fluctuation Theorem 

Formelabschnitt 4 

Now we want to extend our scheme to include integrable non-conservative systems. This means that 

the average work applied to the system of interest will not vanish, 0W  , and also the average 

fluctuating quantum force   0U  
e

F . Thus, assuming still the validity of the ―internal‖ 

equilibrium implied by Equation (3.3.2), we obtain from Equation (3.2.7) and (3.2.8) that 

 

 

, 1
ln

,0
t

P tW Q
t dtPV m

kT P kT kT t





 
       

x v
v

x
   (3.4.1) 

where the expression on the r.h.s. equals, analogously to Equation (3.3.41), 

 
1 1

t

W
t d U U

kT kT kT
 


      x     (3.4.2) 

With Equation (3.4.1) we obtain the generalization of Equation (3.3.14) as 

   
 

 
 1 1

, ,0 ,0
Q W Q U

kT kTP t P e P e
     

 x x x    (3.4.3) 

As Q  refers to the heat applied to our system of interest and is given by Equation (3.3.15), and as 

U  refers to an additional non-vanishing external energy, we also obtain, with 
1

2
t




 
  , the 

generalization 

 
 tot ext

1
:

2 2 2

PP
S U t S S

P P


    



  
          

 
p   (3.4.4) 

where the last term on the r.h.s. refers to a change in the ―external‖ action due to a non-vanishing 

average fluctuation of the quantum potential. In terms of momenta, this means that an additional, 

external momentum  ext extS   p  must be added in the balance (3.3.37) to provide the new total 

momentum fluctuation 

tot extm  p u p       (3.4.5) 
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We shall return to Equation (3.4.5) below, when we discuss implications of the Vacuum Fluctuation 

Theorem. Here we just note that, alternatively, 
totp  can also be written as 

   
tot 3

2 2

P P RR

P P R R

 


 

  
     

 
p    (3.4.6) 

As is well known, Hamilton‘s principle applies for both conservative and non-conservative systems, 

i.e., 

  0S E t t         (3.4.7) 

where fixed end-points are assumed and the Lagrange multiplier  E t  is the true value of the energy at 

time t  (i.e., after having the particle path starting at time 0t  ). Gray et al., in an extensive survey of 

variational principles [38], provide a so-called ―unconstrained Maupertius principle‖ (UMP) for non-

conservative systems, which relates the variations of a mean energy E , of action S , and of the travel 

time t , such that the Lagrange multipliers are the true travel time, and the difference between energy 

and mean energy of the true trajectory at time t , the latter being 

   
1

:
H H

E t E t dt t t
t t t

  
     

     (3.4.8) 

Now, let us turn to our ―system of interest‖, i.e., our oscillating particle with period t , and with the 

action I  as an adiabatic invariant obeying Equation (3.3.16), 

2

dE t
dI dE

 
        (3.4.9) 

For such periodic systems, both the energy E  and the period t  are functions of the action I . If one 

now compares two actual trajectories with action I  and I dI  as two particular ones, the above 

mentioned UMP can be written as [38] 

2 1d E E dt
t

dI t t t dI

 
 


     (3.4.10) 

In terms of the frequency  , Equation (3.4.10) reads as 

2

1d E E
dI t d

t


 


 


     (3.4.11) 

which reduces to Equation (3.4.9) for conservative systems. Remembering from Chapter 3 that for our 

periodic system 
kin2 : 2I E dt S   , one can also write with : t

E
t E

t






  

2 t Ed E d
S

 


  
       (3.4.12) 

Whereas we therefore have for conservative systems with Equation (3.3.15) that 

2 0W dE S    , we now have for non-conservative systems 

2 t

d
W d E S E


 


         (3.4.13) 
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In the preceding chapters, we have seen that nonequilibrium thermodynamics is a very useful field 

that can be employed for a deeper understanding of quantum theory. Now, we do of course not know 

much about the peculiarities of the hypothesised sub-quantum medium. There exists, for example, the 

possibility that the application of the formalism regarding the dissipation function was, in fact, correct, 

but the broader theory regarding the fluctuation theorem (FT) was not. This (rather minute) possibility 

notwithstanding, and in view of the actual successful application of nonequilibrium thermodynamics so 

far, one can consider it encouraging enough to also probe the more encompassing statements of the FT 

and try to apply them on the sub-quantum level. 

Referring, then, to Equation (3.2.4), which is a formulation of the TFT for steady-state systems, we 

can re-formulate said equations in terms of the variables employed in the (sub-)quantum domain. From 

Equation (3.4.2) we get with Equation (3.3.17) that  

t

W U
t

kT






        (3.4.14) 

Moreover, we note that generally, with  2 0R   , 

R
U U

R




 
  

 
     (3.4.15) 

Then, we can formulate a TFT which is assumed to hold for the vacuum (thermo-)dynamics of the 

(sub-)quantum domain, and which we call the Vacuum Fluctuation Theorem (VFT): 

1

1

t

t

At U

U
p A

t
e e

U
p A

t

 









 
   
   
 
    
 

   (3.4.16) 

With Equation (3.4.15), we write 

:
U R U R

At A
R R

  

 

   
       

   
   (3.4.17) 

and we obtain (with an obvious notational shorthand) 

 

 
 ln R A A

p A R R
e e

p A R

    
   

  
   (3.4.18) 

Note that, for example, in the problem of the ―particle in a box‖, 1
U

A


  , such that Equation 

(3.4.18) is no more characterized by an exponential relationship between  p A  and  p A , 

respectively, but rather that fluctuations R  can have relatively high probabilities both for the A  and 

the A  cases, respectively. Generally, we have from Equation (3.4.18) upon re-insertion of (3.4.15) 

that 

 

 
1

Up A U
e

p A U

   
  

  
     (3.4.19) 
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A more detailed discussion of the implications of Equation (3.4.19) will be given in a forthcoming 

paper. For now it shall suffice to have a look at the following consequence. As with Equation (3.4.4) 

we have that 

 
   ext

1
:

2 2 2

P
U t At

P


  




     p    (3.4.20) 

we obtain with Equation (3.4.16) that 

 

 

 

 

 

 
ext ln

2 2

p A p A p A

p A p A p A


        
      

       
p   (3.4.21) 

Thus, the total momentum fluctuation due to Equation (3.4.5) is 

    tot ln
2

P p A p A      p     (3.4.22) 

The first term on the r.h.s. of Equation (3.4.22) refers to the usual momentum fluctuation m p u  

(i.e., which leads to the quantum potential term in the modified Hamilton-Jacobi equation). However, 

the second and third terms refer to fluctuations of the overall system in which our ―system of interest‖ 

is embedded. Here, it is crucial that these fluctuations, according to the VFT, can in principle be 

arbitrarily large! We also see that even for the cases that  p A  or  p A  are very small by 

themselves, the relative gradients p p  can provide significant contributions to 
extp . If we consider, 

for example, the time-dependent term 0U   in the case of a delayed-choice experiment, which is a 

prototype of an experiment that can be characterized by ―moving walls‖ of an experimental 

configuration [39], there may emerge significant contributions to momentum fluctuations, 

 
2

R

R





 
  

 
 , even as a result of minimal changes of amplitudes R  over arbitrary distances within 

the confines of the ―box‖, i.e., the experimental setup between source and detectors. This, then, is a 

strong indication that the vacuum alone can serve as a resource for entanglement. The VFT can thus 

possibly provide a framework for the deeper understanding of how, or why, entanglement can come 

about. Moreover, possible experimental tests of the VFT are conceivable which may reach beyond the 

scope of present-day quantum theory. 

In sum, it was shown here that by merging nonequilibrium thermodynamics with only a few basics 

of classical wave mechanics, the exact Schrödinger equation can be derived, and a general ―Vacuum 

Fluctuation Theorem‖ (VFT) regarding vacuum fluctuations responsible for quantum effects can be 

formalized. Note that in the course of this derivation, apart from the Assumptions 1–3, no parameter 

adjustments were made, or any other form of ―guessing‖ of constants, approximations, etc. As, for 

example, in Nelson‘s derivation of the Schrödinger equation, the ―diffusion constant‖ :
2

D
m

  is put 

in ―by hand‖, we claim that here no such extra assumptions are necessary. This leads us to the claim 

that the present work exhibits the most direct, and the only exact, way to derive the exact Schrödinger 

equation from modern classical physics.  

Specifically, we have identified a dissipative force field 
eF  as being due to the action of the 

―quantum potential‖, U eF , which vanishes identically for conservative systems, but 
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0U  
e

F  for non-conservative systems. The ―quantum potential‖ is given by 

 
2 2

m
U


  

u u
u , where u  can be written as either 

2

P

m P


 u , or, equivalently, via  

Equations (3.3.15) and (3.3.18), as  

 
1

2
Q

m
  u       (3.4.23) 

which thus clearly exhibits its dependence on the spatial behaviour of the heat flow Q . Insertion of 

(3.4.23) into the definition (3.3.36) provides the thermodynamic formulation of the quantum potential 

as 

22 21

4 2

Q Q
U

m  

   
   

   

     (3.4.24) 

4. Derivation of the Heisenberg Uncertainty Relations 

Formel-Kapitel (nächstes) Abschnitt 1 

We have seen that the velocity fluctuation u  of Equation (3.3.37) must be added to the classical 

velocity v  to obtain the total velocity of the ―particle immersed in the zero-point field‖. So, if for the 

time being we assume that our knowledge of the particle‘s momentum is given to one part by the 

classical momentum, we can consider the latter to be ―smeared‖ by the presence of this ―osmotic‖ 

velocity term such that the uncertainty in the particle‘s momentum 
0p  is then given by the average 

r.m.s. momentum fluctuation, i.e., in one dimension for simplicity,  

2

0 :
2

P
p p P dx

P


 
    

 
      (4.1.1) 

Now we recall that a classical measure of minimal position uncertainty is given by the ―Fisher 

length‖
 

1 2
2

P
x P dx

P




  
   

   
       (4.1.2) 

Comparing Equations (4.1.1) and (4.1.2) immediately provides an ―exact uncertainty relation‖ 

which has been proposed by Hall and Reginatto [34]: 

2
0

1 1
:

2 2

2

x
pP

P dx
P




 
 

 
 



    (4.1.3) 

such that 

0
2

x p         (4.1.4) 

This exact uncertainty relation holds only in a limiting case, however. In fact, if we now admit the 

general uncertainty in our knowledge of the momentum to come from both velocities involved, 
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     
2 22

0p S p           (4.1.5) 

we obtain that 

0p p        (4.1.6) 

Moreover, according to the Cramer-Rao inequality of statistical estimation theory, it holds that the 

variance of any estimator x  is equal to, or larger, than the optimal variance, which is given by the 

Fisher length, i.e.,  

x x        (4.1.7) 

Therefore, combining equations (4.1.4), (4.1.6) and (4.1.7), one obtains Heisenberg‘s uncertainty 

relations 

2
x p         (4.1.8) 

Thus, the uncertainty relations are physically explained by the ―smearing out‖ of a particle‘s 

classical momentum due to the ―osmotic‖ process of the zero-point field. Since the ―osmotic‖ velocity 

u  depends only on the relative gradient of ,P  its expression does not necessarily fall off with any 

distance between component parts of a probability distribution. In other words, even small relative 

changes may become fully effective across nonlocal distances. 

5. Thermodynamic Origin of the Quantum Potential 

Formel-Kapitel (nächstes) Abschnitt 1 

5.1. The Case of a Vanishing Quantum Potential: Equivalence with the Classical Heat Equation 

 

The energetic scenario of a steady-state oscillator in nonequilibrium thermodynamics is given by a 

throughput of heat, i.e., a kinetic energy at the sub-quantum level providing a) the necessary energy to 

maintain a constant oscillation frequency  , and b) some excess kinetic energy resulting in a 

fluctuating momentum contribution p  to the momentum p  of the particle. From a perspective out of 

everyday life, one can compare this to the situation of some small convex half-sphere, say, lying on a 

flat vibrating membrane. Due to resonance, the half-sphere will oscillate with the same frequency as 

the membrane, but if the energy of the membrane‘s vibration is higher than that required for the  

half-sphere to co-oscillate, the latter will start to perform an irregular motion, thus reflecting minute 

irregularities in the membrane (or the half-sphere itself) such as to amplify them in a momentum 

fluctuation. However, there is one more element in the energy scenario that is important. In our 

everyday life example, it is the friction between the half-sphere and the membrane, which causes the 

half-sphere to dissipate heat energy into its environment. 

Very similarly, the steady-state resonator representing a ―particle‖ in a thermodynamic environment 

will not only receive kinetic energy from it, but, in order to balance the stochastic influence of the 

buffeting momentum fluctuations, it will also dissipate heat into the environment. In fact, the ―Vacuum 

Fluctuation Theorem‖ (VFT) introduced in ref. [2] proposes, as all fluctuation theorems, that the larger 

the energy fluctuation of the oscillating ―system of interest‖ is, the higher is the probability that heat 

will be dissipated into the environment rather than be absorbed. Also, Bohm and Hiley [36] demand in 
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their review of stochastic hidden variable models that, generally, to maintain an equilibrium density 

distribution like the one given by  ,P x t  under random processes, the latter must be complemented by 

a balancing movement. The corresponding balancing velocity is called, referring to the same 

expression in Einstein‘s work on Brownian motion, the ―osmotic velocity‖. If we remind ourselves of 

the stochastic ―forward‖ movement in our model, i.e., m p u , or the current PJ u , respectively, 

this will have to be balanced by the osmotic velocity u , or P J u , respectively. 

Inserting (3.3.37) into the definition of the ―forward‖ diffusive current J , and recalling the 

diffusivity 2D m , one has 

P D P   J u       (5.1.1) 

which, when combined with the continuity equation P  J , becomes 

2P
D P

t


 


      (5.1.2) 

Equation (5.1.1) and (5.1.2) are the first and second of Fick‘s laws of diffusion, respectively, and J  

is called the diffusion current. 

So, whereas in Chapter 3 we concentrated on that part of the energy throughput maintaining the 

particle‘s frequency   that led to an additional momentum contribution p  from the environment to 

be absorbed by the particle, we now are going to focus on the ―other half‖ of the process, i.e., on the 

―osmotic‖ type of dissipation of energy from the particle to its environment. (The VFT, then, gives 

relative probabilities for the respective cases, to which we shall return below.) 

Returning now to Equation (3.4.23), and remembering the strict directionality of any heat flow, we 

can redefine this equation for the case of heat dissipation where    0 0.Q Q t Q     Maintaining 

the heat flow as a positive quantity, i.e., in the sense of measuring the positive amount of heat 

dissipated into the environment, one therefore chooses the negative of the above expression, Q , and 

inserts this into (3.4.23), to provide the osmotic velocity 

1

2

P
D Q

P m


     u u     (5.1.3) 

and the osmotic current is correspondingly given by 

2

P
P D P Q

m
     J u     (5.1.4) 

Then the corollary to Fick‘s second law becomes 

2 21

2

P
D P P Q P Q

t m


           

J   (5.1.5) 

With these ingredients at hand, let us now return to the expression (3.4.24) for the quantum 

potential U , and let us see how we can understand its thermodynamic meaning. To start, we study the 

simplest case, which is nevertheless very interesting, i.e., 0U  . For, let us remind ourselves that we 

are interested in the similarities and differences between descriptions in the quantum and classical 

frameworks, respectively, and whether or not the descriptions within these two frameworks can be 

brought into full agreement. Certainly, one situation that is comparable for both the quantum and the 
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classical descriptions is when we have to do with a free particle at very short time intervals, i.e., along 

a single path. Then, of course, both in the quantum and in the classical case, the quantum potential will 

vanish identically. (Remember at this point that in our thermodynamic ansatz, the quantum potential 

does have a ―classical‖ meaning, too, as it actually was derived from purely classical physics.) 

So, let us now consider 0U  , and then focus on the dynamics as we follow the behaviour of the 

osmotic velocity (5.1.3), which represents the heat dissipation from the particle into its environment. 

Firstly, we have from (3.3.36) that 

 
2 2

m 
  

u u
u       (5.1.6) 

Insertion of (5.1.3) yields the general thermodynamic corollary of a vanishing quantum potential as 

 
22 1

2
Q Q


         (5.1.7) 

 

However, turning now to the osmotic current and the flux behavior (5.1.5), we firstly insert (3.3.17) 

into (3.3.14) to give 

0

Q

P P e 



       (5.1.8) 

and then obtain from (5.1.5) that 

 
2

2

2

QP P
Q

t m 

 
   

   

     (5.1.9) 

The last term on the r.h.s. can be rewritten with (5.1.7) to provide  

2

2

P P
Q

t m


  


      (5.1.10) 

Now, from (5.1.8) we also have  

P P Q

t t

 
 

 
      (5.1.11) 

so that comparison of (5.1.10) and (5.1.11) finally provides, with constant   and :Q Q   , 

2 1
0

Q
Q

D t


  


      (5.1.12) 

or, generally, 

2 1
0

Q
Q

D t


  


      (5.1.13) 

Equation (5.1.13) is nothing but the classical heat equation, obtained here by the requirement that 

0U  . In other words, even for free particles, both in the classical and in the quantum case, one can 

identify a heat dissipation process emanating from the particle. A non-vanishing ―quantum potential‖, 
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then, is a means to describe the spatial and temporal dependencies of the corresponding thermal flow 

in the case that the particle is not free. 

5.2. The Case of a Non-vanishing Quantum Potential: Equivalence with the Classical  

Thermal-Wave-Field Equation 

Formelabschnitt 2 

Considering the case 0U  , we now introduce an explicitly non-vanishing source term on the r.h.s. 

of (5.1.13), i.e., 

 2 1
0i tQ

Q q x e
D t


   


     (5.2.1) 

Formally, one can solve this equation via separation of variables. Thus, with the ansatz 

    ,    with    i tQ X x T t T e        (5.2.2) 

one has    2 2 1
XT T X X T q x T

D t


    


. With 

   :q x x X       (5.2.3) 

this becomes 
2 1

T X X T XT
D t




  


. Division by  XT  then provides the constant 

2

t
T

X

X DT
 




         (5.2.4) 

Remembering that, according to the construction, the walls of our box are infinitely high, we can 

introduce the Dirichlet boundary conditions, i.e., 

   0, , 0Q t Q L t       (5.2.5) 

with L being the distance between two opposite walls, which provides the constant   as 

2 2
2

2
: n

n
k

L


         (5.2.6) 

With (5.2.4) one obtains, with normalization and dimensionality preserving constant 0Q , 

0 sin
n

X Q x
L

 
  

 
     (5.2.7) 

and, furthermore, with ni t
T e


 , 

2n
n

i
k

D


   , and therefore 

 2 1nk i          (5.2.8) 

With (5.2.3) one thus obtains 

   2

01 sinn

n
q x k i Q x

L

 
    

 
    (5.2.9) 

and, with (5.2.2) and (5.2.6), with 0:Q Q Q , 
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   , sin n

n

i t
Q x t k x e


      (5.2.10) 

Note that, due to the Dirichlet boundary conditions,  : sinn ne k x  are eigenvectors of the 

Laplacian 

2 2

n n ne k e         (5.2.11) 

and 

   
0   

,     
1    

n m n m

m n
e e e x e x dx

m n


  


    (5.2.12) 

This means that, for m n , (5.2.12) can be interpreted as a probability density, with 

 2 2

0 0

sin 1

L L

nPdx k x dx       (5.2.13) 

The normalization thus derives from (5.2.13) as  2 2

0

1
1 1 cos 2

2 2

L

n

L
k x dx      

and therefore 

2

L
       (5.2.14) 

So, we obtain the result that the heat distribution in the box is given by 

   
2

, sin n

n

i t
Q x t k x e

L


     (5.2.15) 

with the probability density 

 
2

,P Q x t      (5.2.16) 

Thus, the classical state (5.2.15) is shown to be identical with the quantum mechanical one, which 

will be discussed in the next section. Then, one obtains from (5.2.16) and (5.2.15) the time-averaged 

quantum potential as 

2 2

2

nk
U

m
       (5.2.17) 

This means also that the quantum potential now constitutes the total energy. The kinetic energy of 

the particle, as will be seen from comparing (5.2.15) with (6.1.7), vanishes identically. 

6. Diffusion Waves in Sub-Quantum Thermodynamics: Resolution of Einstein‟s „Particle-in-a-box‟ 

Objection and Explanation of Planck‟s Quantization Assumption 

6.1. Einstein’s ObjectionFormel-Kapitel (nächstes) Abschnitt 1 

In 1953, Albert Einstein [40] summarized his arguments against the claim of the completeness of 

quantum theory, and also his criticism of Bohm‘s interpretation, by referring to the one-dimensional 

quantum mechanical problem of a particle of mass m  being trapped between two totally-reflecting 
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walls of a box of length L . With quantum mechanics being a universal theory, Einstein argued, it 

should in principle also apply to macroscopic objects. Thus, the solution of the respective quantum 

mechanical problem should, at least approximately, approach the classical one when passing to the 

―macroscopic limit‖, like, e.g., when having a sphere of mass m  and diameter 1mm entrapped in a box 

of length 1m. As is well known, in the latter case there should be a classical to-and-fro uniform motion 

between the walls, which is something that not all quantum predictions do converge to. 

More specifically, the quantum version of the one-dimensional problem is ideally represented by the 

location of two impenetrable walls at 0x   and x L , with an external potential given by 

0   ,   0

  ,   0,

x L
V

x x L

 
 

  
     (6.1.1) 

With the boundary conditions of 0   at 0x   and x L , one obtains the quantum mechanical 

wavefunctions of the normalized stationary state inside the box as 

   
2

, sinn n
niE t

x t k x e
L

 
      (6.1.2) 

where 

2 2

   and   
2

n
n n n

kn
k E

L m


        (6.1.3) 

With 
n np k , Fourier analysis of (6.1.2) provides a continuous distribution of momentum  

values p , 

 
   

2

2

2 2 2

2

8

n n

i i
p p L p p L

n
n

n n n

pe e
p

L p p p p p p




  


  

  
   (6.1.4) 

which for high quantum numbers n  turns into the sum of two non-overlapping wavepackets peaked 

around the classical momenta 
np , i.e., 

     
2 1

lim
2

n n n
n

p p p p p  


         (6.1.5) 

just like for the classical case. Whereas Einstein considers this part of the theory as ―completely 

satisfactory‖, he points to a severe problem when turning to possible position measurements. For, as 

can immediately be seen from (6.1.2), the particle position in the box is distributed as 

   
2 22

, sin ,    0n nx t k x x L
L

        (6.1.6) 

Thus, due to the set of nodes with  
2

, 0n x t   along the length of the box, in certain points the 

particle can never be found. This is clearly incompatible with the classical to-and-fro motion 

mentioned above. But this means that the predictions of quantum theory do, at least in the case of high 

n  position measurements, not converge on the classical ones. This lead Einstein to conclude that 

quantum mechanics can at best be interpreted only as a statistical theory (i.e., via Born‘s rule), but is 

silent on the physics of individual particles. In other words, he considered quantum theory to be 
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incomplete. Along with this objection, Einstein also expressed his criticism of Bohm‘s interpretation of 

quantum theory. For, the x -independence of the phase factor in (6.1.2) provides in the Bohmian 

picture that the velocity of the particle vanishes identically, 

v 0
S

m


        (6.1.7) 

such that the particle‘s position becomes fixed at any nonnodal point along L . As a consequence, the 

kinetic energy is zero, and all the energy is contained in the ―quantum potential‖ term U , 

2 2 2 2 2

2
:

2 2 2

n n
n

n

p n
E U

m m mL

 




          (6.1.8) 

So, we have the contradiction that in the quantum case the particle is at rest, whereas classically it 

should have a momentum distribution as in (6.1.5) – a fact that Einstein criticized thus: ―The 

disappearance of the velocity … contradicts the well-founded requirement that in the case of a  

macro-system, the motion of the system should approach the motion following from classical 

mechanics.‖ [40]. 

Thus, one can pose the following question, which we call here question A: ―How can the state of 

rest implied by the quantum theory of motion be compatible with the finite classical values obtained in 

a measurement of momentum?‖ [14]. 

Peter Holland, in [14], gives a detailed account of the ―particle in a box‖ problem, and also provides 

a consistent explanation within the causal (Bohmian) interpretation, which apparently answers 

Einstein‘s critique fully. He considers the causal version of said classical momentum measurement 

using the ―time-of-flight‖ method: the confining walls of the box are suddenly removed, and the 

particle is detected at some point x  at a time t  , thus providing with the number 
x

m
t

 the value of 

the momentum immediately prior to the position measurement, with the position distribution echoing 

the momentum distribution (6.1.4). Then, two identical separating wavepackets can be seen to form, as 

the wavefunction at time t  after removal of the walls is 

   
1 2 2 2

,  
2

,   n

i kx k t mh
x t k e dk n 



  
 
 



 
  
 

     (6.1.9) 

Thus, starting from rest, the quantum potential energy U  is liberated with the spreading of the 

wave, and the particle gradually acquires kinetic energy, finally leading for n  to the classical final 

momenta np . Holland‘s resolution of the problem stresses the claim that the state (6.1.2) has no 

classical analogue, thus apparently providing a counter-example to what Einstein considered a  

―well-founded requirement‖, i.e., that classical mechanics should emerge in the ―macroscopic limit‖ 

for all valid quantum mechanical states. 

However, in the present chapter an exact classical analogue to the state (6.1.2) will be derived, thus 

showing that Einstein‘s requirement can still be considered well-founded. The derivation will be based 

on our proposed foundation of quantum mechanics in nonequilibrium thermodynamics [2,3], which in 

essential ways goes beyond the Bohmian approach to a quantum theory of motion. This can 



Entropy 2010, 12                    

 

 

2012 

immediately be made clear by ―reverting‖ the above-quoted question A, which Holland had posed and 

answered within a Bohmian framework. 

Thus, one can pose the following question B: How can the classical momentum of the particle be 

compatible with the nodal structure of the distribution obtained in a quantum mechanical position 

measurement? In other words, we consider the ―reverse‖ experiment of suddenly capturing a 

previously free classical particle within the confining walls, and ask: How can one understand that the 

kinetic energy converts completely into the energy of the quantum potential (which does provide said 

nodal structure)? This question cannot be answered satisfactorily within a purely Bohmian approach, 

because one would thereby also have to answer the question of how the quantum mechanical 

wavefunction  , and with it, in consequence, the quantum potential U , appears, although we started 

with a purely classical particle. The reason why a purely Bohmian approach cannot answer question B 

satisfyingly, lies, of course, in the fact that in this approach, like in orthodox quantum theory,   is not 

derived from an underlying theory, such that its appearance is not explained in any dynamical theory. 

As in references [2,3], however, such a derivation was achieved, we can now turn to the respective 

dynamical theory to try to answer question B, i.e., to thermodynamics. 

Therefore, in the remainder of the present section, the starting point of our observations will be the 

simple fact that there is one thing that, along a single path, a free classical particle and a free quantum 

mechanical particle have in common: a vanishing quantum potential. As the latter in the 

thermodynamic framework does have a distinct classical meaning, one can easily show that its 

vanishing leads to a classical heat equation. Moreover, for a non-vanishing quantum potential, like in 

the ―particle-in-a-box‖ problem, a dynamical equation is derived in section 2 of this chapter, whose 

solution exactly matches the quantum state (6.1.2). The equation itself turns out as a type of  

pseudo-wave Helmholtz equation, exactly identical to the one describing classical diffusion-wave 

fields. On this basis, it is then shown that even Planck‘s quantization assumption can be explained by 

the means of classical physics. In section 3 of this chapter, the resolution of Einstein‘s objection is 

recapitulated with the aid of the previously introduced [3] vacuum fluctuation theorem.  

Concerning the problem of the particle in the box, we first observe the following. In order to 

accommodate time-periodic solutions of Q  (which are constitutive for our dissipative model, where 

the particle‘s frequency   comes along with a periodic heat dissipation), one has to introduce a source 

term proportional to 
i te 

 on the r.h.s. of (5.1.13), which, eventually, may turn out to vanish identically 

for 0U  . The source term, of course, is chosen such that Q i Q  does not fade out with time, as in 

the homogeneous Helmholtz case. 

Now, for the particle-in-the-box problem, we begin with the ―no box‖ situation, according to our 

attempt to answer question B above. The reverse scenario to not knowing in which direction the 

particle will leave the zone previously occupied by the ―box‖ (i.e., to the left or to the right), is not 

knowing from which side it will enter the zone which is later to become that of the ―box‖. This means 

that in an idealized experiment one can take a single-particle source, split up the path with a beam 

splitter, and later reflect the two separated paths in such a way as to confront them ―head on‖ along a 

single ―empty‖ line (i.e., one which will later be ―filled‖ by the sudden insertion of two walls, thus 

confining the particle in a ―box‖ then).  
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Looking at the ―empty‖ line along which a particle either goes from left to right, or from right to 

left, we have two plane waves crossing each other. Whether we still deal with the case that 0U  , we 

shall have to find out. Thus, we write down the general ansatz  

 2 1 i tQ
Q q x e

D t


  


     (6.1.10) 

Here,  q x  is, for dimensionality requirements, proportional to 2k :  

      2 2

1 2 : i t i tq x q x q x k Qe k Qe          (6.1.11) 

A first part,  1q x , is given in such a way that the generally time-independent part of (6.1.10) just 

coincides with the ordinary Helmholtz equation. The second part, however, is essentially given by the 

two classical plane waves representing (in an ensemble of many identical runs of the experiment) the 

two possible paths along which the particle may come with momentum 
0k , i.e., 

  2 2

2 0 0
0 0

1
:

2

ik x ik xi tq x k Qe k e e Q      
 

   (6.1.12) 

Note that if one performs a Fourier transformation of (6.1.12), one obtains that 

     2

2 0 0 0 0

1

2
q k k k k k k Q            (6.1.13) 

which is just the expression expected for the classical momentum distribution (6.1.5) and the free 

particle case. In the next Section, we shall ―put this system into a box‖, and see how a classical theory 

can provide a continuous description of the transition from the situation of a free particle to that of a 

particle in a box. 

Here, we just observe that with (6.1.12) 

   2

2 0 0 0cosq x k k x Q      (6.1.14) 

Insertion into (6.1.11) then provides, as 

   2 0 02

0

1
cosi t i tQ q x e k x e Q

k

       (6.1.15) 

that 

 2 2 2 2

0 0

1
:

Q i
Q k Q Q k Q

D t D





       


    (6.1.16) 

So, we find that we have to do with a non-vanishing quantum potential. In the next Section, the 

expression 2 i D   will appear again, and we postpone its discussion until then.  

In any case, we have seen that even in the situation of free particles there exists, at any time, a non-

vanishing undulatory heat flow (6.1.15) emanating from the particle. This means that even a free 

particle is a permanent source of Huygens-type thermal waves, such that the superposition of two 

possible paths may already lead to a non-vanishing quantum potential. As a next example, we shall 

now look into the situation where such a free particle is, together with its thermal surroundings, 

entrapped between the walls of a confining box. 



Entropy 2010, 12                    

 

 

2014 

Formelabschnitt 2 

6.2. Thermodynamic Meaning of the Quantum Potential 

 

After obtaining the formal solution of (5.2.1) in Chapter 5, we can now also provide a more physical 

explanation. Similar to (6.1.11), we can again propose that 

      2 2

1 2 0i t i tq x q x q x k Qe k Qe           (6.2.1) 

As the particle is being trapped between the confining walls of the box, one has to change the 

expression on the r.h.s. of (6.1.12) to account for the fact that, relative to one particle path, the 

opposing one is a reflected one (i.e., off a wall), thus changing the phase by 1ie   . Therefore, our 

ansatz now becomes 

  2 2

2 0

1

2
n

n nik x ik xi tq x k Qe k e e Q      
 

    (6.2.2) 

Incidentally, note that the r.h.s. of (6.2.2) corresponds to the Fourier-transformed expression 

     2

2 0

1

2
n n nq k k k k k k Q             (6.2.3) 

i.e., thereby also accounting for the reflection as opposed to the free case in (6.1.13). 

As    1
sin

2
n

n nik x ik x
k x e e

i


  , we obtain from (6.2.2) with (6.2.1) that 

     2

01 sinn nq x i k Q k x        (6.2.4) 

such that, just as in (6.1.16), one has, with     0:q x q x Q , an eigenvalue equation 

   2 21
1 n

i tQ
Q q x e i k Q

D t


     


     (6.2.5) 

with the unique solutions for Q  now given by (5.2.15).  

Now, with the new expressions for the quantum potential U , we can rewrite the modified 

Hamilton-Jacobi equation (3.3.34) as 

 
2 2

2 1
0

2 4

SS Q
V Q

t m m D t

  
      

  
   (6.2.6) 

or, equivalently, as 

 
 

2 2

0
2 4

i tSS
V q x e

t m m


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
    (6.2.7) 

The appearance in (6.2.7) of the periodic source term 
i te 

  leads to practically the same argument 

for the ―quantization condition‖, and ultimately for E  , as in Chapter 2. First, as was shown in 

reference [3], a general criterion for the time reversibility in a single-particle situation is equivalent to 

both a vanishing average gradient of the quantum potential and a vanishing average work applied to the 

system of interest (i.e., the ―particle‖). This can even be extended to non-conservative systems. That is, 

although the average work applied to the system of interest will not vanish for arbitrary  



Entropy 2010, 12                    

 

 

2015 

time-spans, 0W  , and also the corresponding average fluctuating quantum force 

  0F U   , the criterion of time reversibility provides for periodic processes characterized by 

some period   that the time integral of the dissipation function tt  over such periods   vanishes 

identically. As it thus holds for t   that [3] 

1
0t

W
t U

kT kT



         (6.2.8) 

and as one generally obtains with (6.2.7) that 

 

0t

i t i tUdt e e


  




       (6.2.9) 

the requirement (6.2.8) generally provides, for 1,2,...n  , 

0

2dt n



       (6.2.10) 

Equation (6.2.10) is the core of the ―quantization condition‖, as was already shown in Chapter 2. 

Thus, with our thermodynamic approach we understand that it is the oscillatory nature of the driving 

force 
i te 

  which ultimately explains Planck‘s formula.  

Finally, we can observe that by applying a temporal Fourier transformation on (6.2.5) and 

introducing the complex diffusion wave number  , :
i

x
D


   , one obtains a Helmholtz-type 

pseudo-wave equation: 

     2 2, , ,Q x Q x x     Q     (6.2.11) 

Equation (6.2.11), however, along with the identical definition of  , is the exact defining equation 

for a thermal-wave-field and thus describes the spatio-temporal behaviour of diffusion waves. [41]  

In his extensive survey of diffusion-wave fields [41], Andreas Mandelis stresses that equations of 

the type (6.2.11), or the heat equation, respectively, are peculiar in the sense that they are parabolic 

partial differential equations with no second-order time derivatives. Whereas for wavelike hyperbolic 

equations including the latter, families of solutions exist in terms of forward and backward waves 

propagating in space, no such solutions generally exist for parabolic equations, which are (mostly) 

deprived of the possibility of reflections at interfaces and of the existence of wave fronts, respectively. 

In contrast, they are characterized by an infinite speed of propagation of thermal disturbances along 

their entire domains. (Naturally, this feature makes them particularly amenable for modelling quantum 

mechanical nonlocality.) 

Why, then, we must ask, is the probability density in our example of a particle entrapped between 

two walls given by (5.2.16), i.e., by an expression for standing waves constructed from the thermal 

waves (5.2.15)? The answer is given by the specific physics of the initial conditions of our problem, 

i.e., by the two classical plane waves entering the area of the box, their relative phase difference due to 

reflection, and their superposition into standing waves. This corresponds to the heat equation (6.2.5) 

actually being an eigenvalue equation, with the sinusoidal expression of (5.2.15) as source. In other 
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words, the source of the thermal waves is already distributed according to the standing wave pattern, 

and the continuation of the heat dissipation (i.e., the driving force) corresponds to maintaining of the 

latter. As with the construction of the standing waves nodes are generated, the particle will eventually 

become trapped between two such nodes and continually give off its momentum to the surrounding 

heat bath. Then, in the long time limit, it will have lost all its momentum to the heat bath, and the 

distribution of the latter will completely constitute that of the total energy in the form of the quantum 

potential. In the next section, we shall see that some of the qualitative statements just made can be 

exactly formalized with the aid of the vacuum fluctuation theorem introduced in [3]. 

 

6.3. Resolution of Einstein’s Objection and the Vacuum Fluctuation Theorem 

Formelabschnitt (nächster) 

We have seen that the quantum mechanical state (6.1.2) does have an exact classical analogue,  

i.e., (5.2.15). This is therefore in agreement with Einstein‘s ―well-founded requirement‖ that in the 

―macroscopic limit‖ the movement of a classical object should emerge from the corresponding 

quantum mechanical one, at least approximately. However, the exact matching of (6.1.2) and (5.2.15) 

does not confirm Einstein‘s assertion that the ―disappearance of the velocity‖ of the particle in a box 

contradicted said well-founded requirement. In fact, we have clearly seen why this is so: Even a free 

particle, be it quantum or classical, is a source of thermal waves. On short time scales, the latter are 

dissipated spherically-symmetrically from the particle position and have no net effect on single-path 

particle motion as long as it is free. However, as soon as some kind of (classical) potential V  is 

operative, for example, the configuration of the thermal waves in the new setting will change according 

to (6.2.11). Although the latter can be considered a classical equation, we have shown that it also 

corresponds exactly to a non-vanishing quantum potential. Therefore, even the ―disappearance of the 

velocity‖ of a particle in a box can be described in classical terms, with an exact quantum mechanical 

analogue.  

Moreover, one can now also make use of the ―Vacuum Fluctuation Theorem‖ (VFT) introduced  

in [3] to illustrate the problem of the particle in a box from a slightly different point of view. Consider 

the walls of our box initially being placed at the positions of plus and minus infinity, respectively, and 

let them approach each other to create a box of finite length L . Then we are dealing with a  

non-conservative system for which the average work W  is given by [3] 

E d
W t

t






  


     (6.3.1) 

with brackets denoting time-averaging. As can easily be shown within classical thermodynamics, for 

the-particle-in-a-box problem this expression equals [42] 

kin2
L L

W E
L L

 
     v p      (6.3.2) 

As can also be shown, this is identical to the quantum mechanical result: Writing the Schrödinger 

equation in terms of the Hamiltonian H , eigenfunctions  n L , and eigenvalues  nE L , 

        n n nH V L L E L L       (6.3.3) 



Entropy 2010, 12                    

 

 

2017 

we obtain after differentiation 

  n n n
n n n

EV
H V E

L L L L

 
 

    
     

    
   (6.3.4) 

As  H V  is Hermitian, scalar multiplication with 
m  provides 

 n n
mn n m m

mn
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
 

  
   

   
    (6.3.5) 

Now, if the movement of the wall is so slow that the system‘s state is unchanged, i.e., that m n , 

one obtains that although the energy  n nE E L L  , it is maintained in a quasi-stationary state. The 

change of the box length from L  to L L  is accompanied by a raising of the n th energy level by 

the amount nE
L

L





, which is equal to the work applied to the system. [42] With 

nE  given by 

2 2 2

22
n

n
E

mL


 , this amount of work equals 

nE L
W L

L L





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
v p      (6.3.6) 

which exactly matches (6.3.2). 

Now let us formulate the VFT for our present purposes. Generally, it gives the probability ratio for 

heat dissipation versus heat absorption of a small object in a thermal bath with the aid of the 

dissipation function t . In our case, it equals tt W kT   , with the identity of 
kin2kT E  for the 

kinetic temperature of the heat reservoir [3]. The VFT then reads with (6.3.2) as 

 
 

2t

t

L
At L

p A
e e

p A


 


  

     (6.3.7) 

where  p A  is the probability for heat dissipation, and  p A  the probability for heat absorption. 

Now we can distinguish two cases, which have a direct correspondence to the situations discussed 

above with respect to questions A and B, respectively. 

(a) L  getting smaller; 0L  : In the first case, we start with the two walls of the box far apart and 

moving towards each other such that the box length becomes continually smaller. Then, according to 

the VFT, the probability for heat absorption diminishes with increasing L , i.e., 

   
2

L

Lp A e p A




       (6.3.8) 

In other words, the particle subject to momentum fluctuations of the environment (due to the  

non-conservative system) will tend not to absorb an additional momentum fluctuation p , but rather 

dissipate an amount of the kinetic energy in the form of heat. As this continues as long as the process 

goes on, one has in the long time limit that the particle‘s momentum p  tends towards zero. 

Conversely, we now consider case (b) L  getting larger; 0L  : Then the VFT provides 

     
2 2

1
L

L L
p A e p A p A

L


 

    
 

    (6.3.9) 
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In other words, the larger L , the higher the probability becomes that the particle will absorb heat 

rather than dissipate it. Thus, as long as this process continues, the particle will acquire additional 

momentum, p , due to the widening of the length L  of the box, or a moving apart of the walls, 

respectively. One could also say that the walls, in moving apart, tend to ―drag‖ the particle with them, 

which is a valid illustration considering that the sinusoidal distribution of the probability density is 

maintained as long as the walls are separated by a finite distance. Then, of course, the nodes for each 

energy level n  must move accordingly, and therefore also any particle situated anywhere between two 

such nodes. Finally, with the walls infinitely far apart, the node structure will be gone and the particle 

will have absorbed all the heat energy (which is initially, as we have seen, identical with the energy due 

to the quantum potential) and thus move with the full kinetic energy 2 2np m . 

7. The Superposition Principle and Born‟s Rule from Classical Physics 

Formel-Kapitel (nächstes) Abschnitt 1 

7.1. The ―Translation Scheme‖ 

Formelabschnitt 1 

The ―translation‖ between the language of classical physics employed so far in this review on one 

hand, and that of traditional quantum theory on the other, can easily be established. As was argued in 

Chapter 3, a main condition for being able to derive the Schrödinger equation is an average 

orthogonality condition holding between momenta p  and fluctuations of them, p , respectively. 

Later we shall see that this also corresponds to an orthogonality between reversible physics (i.e., as 

represented by the classical velocity v p m  of the center of a Gaussian wave packet, for example) 

and irreversible diffusion due to a ―heated‖ environment (i.e., as represented by a velocity fluctuation 

u p m ). This average orthogonality can be written and generalized for all v  and u  in the following 

way: 

22 2 2

toti.e.,  0,   i    vu v v u v u     (7.1.1) 

Now, we already know that u  is given by 

2

P

m P

 
   

 
u      (7.1.2) 

and the classical momentum is usually given by the gradient of the action S , such that 

S

m


v       (7.1.3) 

Thus, we have that the average total momentum squared can be written as  

2 2 2

2 2 2 2 1

2 4

P S P
m S i

P P

        
           

      
 

tot totp v    (7.1.4) 

Considering now that the intensity of a wave (packet) is generally represented via the amplitude 

 ,R tx  as 

   2, ,P t R tx x       (7.1.5) 



Entropy 2010, 12                    

 

 

2019 

one obtains 

22 2

2 2 2 2 2:tot tot

S R
p k

R





      
       
    
 

   (7.1.6) 

where a ―compactification― is achieved by the introduction of a ‖wave function―  , defined as 

   
 ,

, ,

S x t
i

x t R x t e       (7.1.7) 

In other words, a re-formulation of the classical total momentum 
totp  as a complex-valued one, 

    tot:m i i    tot up v u k k k     (7.1.8) 

reads in terms of the quantum mechanical wave function as 

tot

R
i S i

R





   
      

  
k     (7.1.9) 

from which the average length (squared) of the vector, Equation (7.1.6), can be obtained. 

As is well known, the introduction of   thus provides a linearization of an otherwise more 

complicated set of coupled differential equations [14]. Let us now see how the quantum mechanical 

superposition principle and Born‘s rule can be formulated with the aid of our classical physics 

approach. To do so, we firstly consider the description of the physics if two alternative paths are 

present (like, e.g., in interferometry), and then, secondly, what happens when two consecutive paths for 

one particle are given, or (as it will turn out) equivalently, an anti-correlated two-particle system. 

 

7.1.1. Two Alternative Paths, A or B 

 

To guide our imagination, let us again refer to the walkers discussed in previous chapters. As was 

shown in experiment [19], the bouncing ―particle‖ can be sent through a two-slit system such that the 

―particle‖ itself just passes one slit, whereas its accompanying Faraday waves pass through both slits, 

interfere behind the slits, and guide the walker to a screen where, eventually, an interference pattern is 

registered. In analogy to this scenario, we now discuss our system of ―particle plus wave-like thermal 

bath‖ along two possible paths, A  and B . Firstly, we note that conservation of the total momentum 

demands that 

A B  tot totp k k k     (7.1.10) 

Secondly, with this momentum conservation, 
tot

,
A B

k k k   in classical physics two overlapping 

waves with amplitudes 
A

R  and 
B

R , respectively, provide  

     tot,  , ,
A BA BR x t R x t R x t k k k     (7.1.11) 

Now consider the average squared momentum as given in (7.1.6). With the aid of Eqns. (7.1.5)  

and (7.1.11), one can write for the average explicitly 
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   

   

2 2

2 2
2 2

2 22 2

tot

tot

tot

2 2

tot  

  

  

n

n n

A A B B

n n

A A B B

k d x P

d x P d x P P

d x R d x R R

k

  

  

 

 

 

k k k

k k k

   (7.1.12) 

Division by 
2 2

totk  then provides, with  (  or )ik i A B  denoting the unit vectors, the normalized 

integral of the intensity, or probability density  2 ,R x t , 

 
22

tot
ˆ ˆn n n

A A B B
P d xP d xR d x R R      k k     (7.1.13) 

Actually, when taking the square roots in (7.1.13), one has to note that generally P  can be either 

 
2

R  or  
2

R , indicating that for waves which are anti-symmetric around their origin (e.g., a 

particle source), the amplitude summation will turn into an amplitude subtraction. Empirically, of 

course, this applies exactly to fermions, but apart from this, no additional assumption is necessary that 

would be of a purely quantum mechanical (i.e., as opposed to classical) nature. So, with this possibility 

as a caveat, we shall continue our discussion, thereby restricting ourselves to the option of  

Equation (7.1.11). 

Now, according to (7.1.9), 

2

2

tot

tot tot 2

tot

:P
k


 


     (7.1.14) 

There thus remains to be shown the following: In order to agree with our classical Equation (7.1.13)

, it must hold in quantum mechanical terms that 

tot A B
          (7.1.15) 

So, we combine Equations (7.1.7), (7.1.15), and (7.1.14), and substitute the division by 
2

totk  by a 

general normalization factor N . Then, one can rewrite (7.1.14) as 

2 2

tot

1
=:  a a

a a a

a aa

S R
P i c

RN
 

 


  
   
  

     (7.1.16) 

Note that we have thus introduced the complex-valued coefficients  

1 1
:a a

a a

a

S R
c i c

RN N

   
    

  
    (7.1.17) 

with the normalization 

22 2

tot1  a a

a a

c c N k         (7.1.18) 

For 1a  , one can easily confirm Equation (7.1.18): 

tota

S R
c i k

R





   
    

 
     (7.1.19) 
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In order to check for 2a  , a more lengthy calculation is required. One obtains after some steps that 

 

 

     

   

   

22

tot

2 2

tot

2 2
2 2 2 2

1

2 cos

2 cos

2 sin 2 sin

2
2 sin 2 sin

A B

A B A B A B

A B
A B A B A B

A A A A B A B A

A B A B B B B B A B A B

R R R R S

S S
R R R R R R S

R R S S R R S S

R R S S R R S S R R S S

 

   



 
 

  

     
            

    
 

      
 
        
  

  (7.1.20) 

Now follows the important step in our calculation, as we remind ourselves of the central importance 

of the average orthogonality of 
iR  and 

iS , respectively, with  or i A B . It holds, as can easily be 

seen, even for the cases where the indices i  are not identical: because of the spherically symmetrical 

distributions of the wave vectors, and thus of the average iR , any average product 
1 2i iR S  , i.e., 

with 
1 2i i  or 

1 2i i , vanishes due to orthogonality. Thus, the corresponding terms in (7.1.20) are to be 

deleted when calculating the averages. In fact, one finally obtains from Equation (7.1.20), even when 

introducing different weights   on different paths (such as 
B AR R ) that generally 

2 2 2

2tot
tot

tot

,
R S

k
R





     
     
   

    (7.1.21) 

with 

2 2
2 2

: ,  : .i
i

i

R R
S S

R R

 
     This confirms Equation (7.1.18) for 2a  . 

We thus see that the conservation of the (squared) momentum, 2

totk , is only guaranteed when the 

averaging procedures necessary to simplify Equation (7.1.20) are fully in operation. In other words, 

then, we have shown that there exists an equivalence between two ―finely tuned‖ calculatory schemes, 

i.e., the implementation of the average orthogonality of classical particle momenta and their  

wave-related fluctuations on one hand, and the superposition principle on the other. Both can 

unambiguously be ―translated‖ into each other, as has just been shown. 

Moreover, Equations. (7.1.16) through (7.1.18) imply that we have derived from classical physics 

the following statement: when, in quantum mechanical terms, a system is described by the total  

wave function, 

   tot , ,a a

a

x t c x t       (7.1.22) 

the probability of finding the result a  is given by 

 
2

, n

a aP x t d x c      (7.1.23) 

This is Born’s rule, which has been proven here for 1 or 2a  , but can by induction be extended to 

a n  alternative possibilities. 
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Let us now turn to applications. In fact, considering an example from interferometry with two 

possible alternatives, our classical formula (7.1.13) is immediately applied. Using (7.1.7) and the 

orthogonality of   and : 
u

k k k , one obtains with 
A B

k k k  : 

 

 

2

2 2

2 2 2

where

ˆ ˆ ˆ ˆ2 cos

     2 cos ,  

ˆ ˆ .

A A B B A B A B

A B A B

A B A B

P R R R R

R R R R

S S





   

   

    

k k k k

k k

   (7.1.24) 

This agrees exactly with the quantum mechanical result, providing now also an example of a 

calculation without wave functions for the double slit: Normalization provides with (7.1.11) that 

22

tot totand thus
1

1 2 ,    2 ,
2

kk  k k and therefore 
1

.
2

N   Thus,  
21 ˆ ˆ ,

2
A A B B

P R R k k  and with 

1

2
A B

R R   one obtains, solely on our ―classical‖ basis, the correct result for the intensity 

distribution on a screen registering an interference pattern: 

   
21 1ˆ ˆ 1 cos

4 2
A B

P     k k     (7.1.25) 

7.1.2. Two Consecutive Paths for One Particle and the Anti-Correlated Two-Particle System 

 

As a further application of our classical approach, we now consider two consecutive paths for one 

particle and the anti-correlated two-particle system. In both cases, it holds that 
     1 2u u u

, k k k  

and also that 
2 2 2

tot
.

u
k k k   Thus, 

     
2 22

1 2 tot 1 1 2 2 1 u1 2 u 2
, NP x x k R R R R   

 
k k k k    (7.1.26) 

where the indices 1  and 2  can either denote two consecutive paths for one particle, or two particles in 

an anti-correlated system (i.e., with opposite momenta). 

Choosing for simplicity
1 2

,R R R   we obtain that 

 

     

1 2

2

2 2

1 1 2 2 1 2 1 2

tot

2
2

2 2 2

tot,1 tot,2
tot,1 tot,2 tot,1 tot,2

tot

2

2

2

.

,

2

u u u u

P x x

R
N

k

R
N k k NR

k
k k

 



     

     

 
 

     

k k k k k k k k

k k

   (7.1.27) 

With
2

1

2
R   , 

tot,1 tot,2
k k k   and 

2

2 2

tot
and thus

1 1
2 2   ,

22
k k N  

 
 
 

k  one obtains for the 

example of the anti-correlated two-particle system 
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   
1 2

1
, 1 1 2 cos

4
P x x         (7.1.28) 

   

        

tot

tot 1 2 1 2

1 0 2 0 1 2 1 2
: 2 .

S



        

        

x k x x k k

x x x x k k r k k

 

Thus, 

       2 2

1 2 1 2

1
, 1 cos 2 cos cos

2
P x x         r k k    (7.1.29) 

Note that this result again agrees exactly with the corresponding calculation in orthodox quantum 

theory. One particular feature of (7.1.29) is given by the decidedly nonlocal correlation for said 

distributions.  

We can now also note that our ―classical‖ expression 

    

  

1 2 1 2

1 2 1 2

1 2

22

1 2 1 2

tot

1 2

2

2

2 2

2
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.

1
R R S S

R R S S

R R

S S R R
k
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 

  


   
   

   



  
   
   

 
  

 
 
 

    (7.1.30) 

implies that quantum mechanically 

tot 1 2
         (7.1.31) 

For the proof, note that 
 

1 2

1 2 1 2

i
S S

R R e


  and thus: 

      1 2 1 2 1 2

1 2 1 2

2 2 2

2

tot
.

R R S S

R R
k

 

 

   
  
 
 
 

As, according to our transformation law (7.1.14), 

2

2

tot

tot

tot

,
k

P


  we obtain  

 
2

1 2 1 2tot
,P x x      (7.1.32) 

Finally, we note that any path can in principle be considered to be decomposable into two sub-paths, 

such that the same procedure applies as shown here. This means that the induction from two to 

n consecutive steps is straightforward. As a similar argument also holds for the addition of 

n alternative paths, we have shown that Born‘s rule can be understood completely on the basis of our 

―classical‖ approach. In particular, the linearity of the quantum mechanical superposition principle is 

explained by classical relations of the type (7.1.11). One reason, therefore, why so far no nonlinear 

modification to the Schrödinger equation could be observed experimentally is given by the 
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circumstance that some fluctuations, often considered as the sources of the hypothesized nonlinearities, 

are already constitutive for the validity of the linear laws like (7.1.11): the average wave vectors 
totk  

already contain momentum fluctuation components, and are also subject to the average  

orthogonality condition. 

 

7.2. Towards a Classical Theory of the Collapse of Quantum Mechanical Superposition 

Formelabschnitt 2 

In this chapter we have investigated some consequences of modelling quantum systems with 

―walker‖-type oscillations in the thermal bath of a vacuum structured by zero point fluctuations. We 

have restricted ourselves to the non-relativistic case, although a generalization to the relativistic one 

should be feasible. In fact, there exists a very interesting relativistic description of quantum systems by 

Baker-Jarvis and Kabos [43], in which they clearly distinguish between ―particle‖ and wave 

contributions to generally complex-valued momenta, similarly as discussed in this chapter. That is, one 

can work out a quantum dynamics distinguishing particle momenta k  and their accompanying waves‘ 

contributions k  such that the relativistic energy-momentum law reads 

     
2 22 2 2 2 2 2 2 2 2

0 tot totwith,   c k c k k k k           (7.2.1) 

where we have used the average orthogonality condition 0k k  . Having worked here with the non-

relativistic variant of the total energy 
totE , i.e.,  

   
2 22 22 2

tot 0
2 2 2

k kk
E

m m m

 
          (7.2.2) 

one can make the following observation. 

Relating the momentum fluctuation p mu k    to the emergent wave behaviour, or, the 

oscillator‘s basic dynamics, respectively, such that 

u r        (7.2.3) 

where 

0

2
2

D
r 


        (7.2.4) 

is the usual diffusion length, one obtains with the minimal uncertainty relations (given in the next 

chapter) that 

2

2 2

r
m         (7.2.5) 

and thus 

 
222 2 2

2 2 2 2

kmu r
m

m

  
        (7.2.6) 

So, we see that without the momentum fluctuations, a quantum system‘s ―total energy‖   is given 

by only the first two terms on the right hand side of Equation (7.2.2). However, inclusion of the 
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thermal environment provides the full quantum version of the total energy with the zero-point 

fluctuations. As will also be shown in the next chapter, the corresponding additional term is identical 

with the average quantum potential, 

2
U


       (7.2.7) 

Moreover, note that with (7.2.3) one can express the frequency   as 

2 2

0 02 4

u D

r m


 
        (7.2.8) 

Here we just observe that Equation (7.2.8) gives us a clear statement about a ―quantum walker‘s‖ 

frequency. Considering, on the one hand, the smallest possible diffusion length as 

1

2

Cr
k mc



 
        (7.2.9) 

with 
C  being the Compton wavelength, one obtains that 

2D
u c

r
  , and 

2mc        (7.2.10) 

thus providing the familiar zitterbewegung frequency, e.g., for the electron, 21

ZB 10 Hz   . On the 

other hand, if one prepares a system with broader distributions such as Gaussians, Equation (7.2.8) 

shows that the larger one chooses 
0  to be, the smaller the frequency   becomes. This is exactly what 

one would expect from a ―walker‖, i.e., a maximal hitting (or bouncing) frequency ―on the spot‖ (of 

size 
C ), and an ever decreasing hitting frequency   for ever larger 

0 . 

We thus arrive at a clear picture also of the ontological status of the various entities in our  

sub-quantum model. In contrast, on the one hand, to hydrodynamical models of the sub-quantum 

regime, which provide no clear statement of how an individual particle is to be distinguished from the 

―rest‖ of the ―flow‖ of probability distributions, we have in our model the definite movement of a 

localized entity, i.e., a ―particle‖ (which may well be the nonlinear part of a wave), surrounded by the 

―flow‖ of its wave-like environment. The latter is described via nonequilibrium thermodynamics, 

which is considered in purely classical terms. This, on the other hand, is in stark contrast to Bohmian 

mechanics, where it is the quantum mechanical wave function   that is supposed to be ―real‖ and thus 

to ―influence‖ the motion of actual particle configurations. We thus claim that our model has a much 

more clear-cut position to offer with respect to the ―reality‖ of quantum systems, in that it can be 

completely described in terms of (modern) classical physics, i.e., without a ―  that falls from the sky‖.  

Finally, then, one can also derive from our model some consequences for the understanding of the 

―measurement problem‖. The origin of the latter is given by the unpredictability of individual 

measurement results despite a deterministic law of (unitary) evolution, once a well-prepared state is 

known at some initial time 0t . Most approaches to the problem maintain that quantum theory should 

apply to both the particle passing through an experimental setup and to the measuring device. That is, 

the final state at time t  is then given by a unitary evolution  expU iHt  applied to the state at 0t , 

thus describing a superposition and not the stochastic patterns of mutually exclusive measurement 

results. However, in Chapter 7 we have found an equivalence between the superposition principle on 
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the one hand and the average orthogonality of particle momenta and wave-related fluctuating 

momenta, respectively, on the other. A violation of said orthogonality has been shown to result in a 

violation of the conservation of the average momentum p . For example, average orthogonality 

violation in Equation (7.1.20) would in general result in a violation of the momentum conservation 

(7.1.21). In other words, then, said violation of average momentum conservation would immediately 

provide also a violation of the superposition principle, i.e., a deviation from unitary evolution.  

The actual measurement process can thus be understood as a process of symmetry breaking, 

ultimately resulting in energy/momentum transfer from the particle to the detecting apparatus. Said 

momentum transfer breaks the symmetry of the superposition principle (i.e., where all possible 

measurement outcomes are represented via coherent addition of corresponding probability amplitudes) 

and transforms unitary evolution into a non-unitary one. It is thus beyond the domain of application of 

the Schrödinger equation and must generally be looked-for in the context of a nonequilibrium 

thermodynamics as, for example, discussed in [2, 3]. In reference [2], a ―vacuum fluctuation theorem‖ 

has been presented as an extension of the model discussed here, which applies to integrable  

non-conservative systems and is of interest for our present purposes. Considering that to some quantum 

system a non-vanishing average work W  is applied, or, contrariwise, the quantum system provides 

some work W  to its environment, one has for the corresponding vacuum thermodynamics that 

probabilities p  for heat dissipation  A  or absorption  A  are related by Equation (3.4.16), with U  

being a difference in the average quantum potential U . [2] This provides an ―external‖, and possibly 

non-local, momentum fluctuation 
extp , i.e., in addition to the usual momentum fluctuations p  

discussed in this chapter so far, 

ext

1

2

U




 
  

 
p       (7.2.11) 

Comparing with Equation(3.4.5), this provides the total momentum fluctuation as [2] 

    tot ext ln p p
2

P A A         p p p    (7.2.12) 

So, one understands how a non-vanishing gradient of fluctuations in the average quantum potential, 

(7.2.11), can account for the symmetry breaking which violates time-reversible, unitary evolution and 

the superposition principle. Dissipation of kinetic energy with probability  p A  thus provides the 

increase in totp  that potentially completes the ―measurement process‖. In this way, one sees how 

irreversibility comes back into the game on the observational level, i.e., as soon as the average 

orthogonality between unitary Schrödinger dynamics and irreversible diffusion processes is discarded.  

 

8. Free Quantum Motion Identified as Sub-quantum Ballistic Diffusion 

Formel-Kapitel (nächstes) Abschnitt 1 

8.1. Co-existence of Reversible Schrödinger Dynamics and Irreversible Diffusion 

Formelabschnitt 1 

In recent years, G.N. Ord has provided a lattice random walk model which in the continuum 

approximation produces the Schrödinger equation as a projection from an ensemble of random walks. 
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(For a review, see [44].) To our knowledge, this is the first application in the literature of the strategy 

to ―leave microscopic irreversibility untouched (keeping the random walk completely intact) and 

simply look carefully for reversible features which are independent of the intrinsic irreversibility of the 

full system.‖ [44] In other words, ―the fact that the projection is orthogonal to that responsible for 

diffusion allows the reversible dynamics of Schrödinger‘s equation to coexist with the irreversible 

behaviour of particle densities (i.e. diffusion).‖ [44] 

Historically, it had already been Schrödinger himself who pointed out the close resemblance of his 

time-dependent equation with the classical diffusion equation [45]. This formal analogy, with the 

equations differing only in that Schrödinger‘s uses an ―imaginary diffusion constant‖ (i.e., instead of a 

real-valued one), has been extensively discussed by R. Fürth [46]. In his treatise, much space is 

devoted to a discussion of the behaviour of Gaussian wave packets, both in classical diffusion and in 

quantum theory. It is there where one can see very clearly the many similarities, but also the subtle 

differences between both types of evolutions. Therefore, we shall also in the present chapter discuss 

Gaussian wave packets, to begin with, and we shall see how Ord‘s strategy will provide a fresh look at 

the whole topic. 

Moreover, along with the understanding of how the Schrödinger equation can be derived via 

nonequilibrium thermodynamics [2, 3], also the mutual relationship of particle and wave behaviour has 

become clearer. Just as in the experiments with bouncers or walkers, there exists an average 

orthogonality also for particle trajectories and wave fronts in the quantum case. In fact, it lies at the 

heart of the reasons for the emergence of quantum from sub-quantum behaviour in general, and of the 

superposition principle in particular, as shall be shown below. 

 

8.2. Dispersion of a Free Gaussian Wave Packet: Particle Trajectories and Velocities from Purely 

Classical Physics 

Formelabschnitt 2 

In our thermodynamic approach to quantum behaviour, a particle of energy E   is characterized 

by an oscillator of angular frequency  , which itself is a dissipative system maintained in a 

nonequilibrium steady-state by a permanent troughput of energy, or heat flow, respectively. We recall 

that the latter is a form of kinetic energy different from the ―ordinary‖ kinetic energy of the particle, as 

it represents an additional, external contribution to it, like, e.g., from the presence of zero point 

fluctuations. The total energy of the whole system (i.e., the particle as the ―system of interest‖ in a 

narrower sense and the heat flow constituting the particle‘s thermal embedding) is assumed as 

 
2

tot
2

p
E

m


        (8.2.1) 

where :p mu   is said additional, fluctuating momentum of the particle of mass m . 

For the following, it will be helpful to let ourselves be guided by the picture provided by the 

―walking bouncers‖ introduced previously, which we shall further on simply call ―walkers‖ (i.e., in 

agreement with the use of the word by Couder‘s group). So, with a walker one is confronted with a 

rapidly oscillating object, which itself is guided by an environment that also contributes some 

fluctuating momentum to the walker‘s propagation. In fact, the walker is the cause of the waves 

surrounding the particle, and the detailed structure of the wave configurations influences the walker‘s 
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path, just as in our thermodynamic approach [2,3,4] the particle both absorbs heat from and emits heat 

into its environment, both cases of which can be described in terms of momentum fluctuations. 

Let us first consider the emergence of ―well ordered‖ diffusion waves out of the ―erratic‖, 

Brownian-type diffusions of myriads of single sub-quantum particles through their thermal 

environments. Being swept along with a diffusion wave, with initial ( 0t  ) location  0x  and 

diffusion velocity u , a quantum particle‘s distance to the heat accumulation‘s center 
0x  at time t  will be 

   0x t x ut        (8.2.2) 

such that one obtains the r.m.s. of (8.2.2) as 

     

         

     

22

0

2 2

0

22 2 2

0

                              or briefly,

, ,0

2 ,   , ,  ,

2 ,  ,  t t

x P x t dx x x P x dx

x x u x t t P x t dx u x t t P x t dx

x x x u x t t u x t t

  

 

       

 

     (8.2.3) 

Now we introduce the central argument of the present chapter: we assume, as an emerging result 

out of the statistics of a vast number of diffusion processes, the complete statistical independence of 

the velocities u  and v , and thus also of u  and the positions x   0for  x : 0x  :  

v  0xu u t        (8.2.4) 

This is justified considering the statistics of huge numbers, millions of millions of diffusive  

sub-quantum Brownian motions, which are supposed to bring forth the emergence of said larger-scale 

collective phenomenon, i.e., the diffusion wave fields as solutions to the heat equation [3]. (In our 

associative picture, these are nothing but the analogy to the walkers‘ Faraday waves emitted with some 

fixed frequency.) In other words, Equation (8.2.2) represents the effect of collectively ―smoothing out‖ 

the ―erratic‖ processes of individual Brownian motions. Thereby, the mean convective and diffusion 

velocities must be unbiased (lest one introduces new physics), and thus linearly uncorrelated. (Note 

that it was exactly the corresponding average orthogonality of momentum and momentum changes 

which has led to a first new derivation of the Schrödinger equation [33], as well as the subsequent one 

based on nonequilibrium thermodynamics [2,3].)  

Therefore, with the thus introduced Ord-type projection, i.e., the orthogonality of classical 

(convective) momentum on one hand, and its associated diffusive momentum on the other, one gets rid 

of the term linear in t  in Equation(8.2.3), and thus of irreversibility, and one obtains 

2 2 2 2

0tx x u t         (8.2.5) 

Equation (8.2.5) is the result obtained for the ―pure‖ emergent diffusive motion as given by (8.2.2). 

However, in a more realistic scenario, such a smooth diffusive motion will just represent an 

idealized case, or one, respectively, at very short time scales only, i.e., before some ―disturbances‖ of 

the surroundings will destroy the said smooth motion. That is, to invoke a more realistic scenario, the 

smooth behaviour in a completely isotropic and unconstrained environment will have to be substituted 

by behaviour in an anisotropic, constrained environment. Thus, if we imagine the bouncing of a 

walker in its ―fluid‖ environment, the latter will become ―excited‖ or ―heated up‖ wherever, in the said 



Entropy 2010, 12                    

 

 

2029 

anisotropic manner, the momentum fluctuations direct the particle to. After some time span (which can 

be rather short, considering the very rapid oscillations of elementary particles), a whole area of the 

particle‘s environment will be coherently heated up in this way. (Considering the electron, for example, 

the fact that it ―bounces‖ roughly 2110  times per second, with each bounce eventually providing a slight 

displacement from the original path‘s momentum, one can thus understand the ―area filling‖ capacity 

of any quantum path whose fractal dimension was shown to be equal to 2 . [47]) 

Now, let us assume we have a source of identical particles, which are prepared in such a way that 

each one ideally has an initial (classical) velocity v . Even if we let them emerge one at a time only, 

say, from an aperture with unsharp edges (thus avoiding diffraction effects to good approximation), the 

probability density P  will be a Gaussian one. This comes along with a heat distribution generated by 

the oscillating (―bouncing‖) particle(s) within the constraints of that ―Gaussian slit‖, i.e., with a 

maximum at the center of the aperture 
0 tx v . So, we have, in one dimension for simplicity, the 

corresponding solution of the heat equation, 

 
 

2

0

221
,

2

x x

P x t e 






      (8.2.6) 

with the usual variance    
2 22

0x x x     , where we shall choose  0 0 0x t   . 

Note that from Equation (8.2.1) one has for the averages over particle positions and fluctuations (as 

represented via the probability density P ) 

 
2

tot const 
2

p
E

m


       (8.2.7) 

with the mean values (generally defined in n dimensional configuration space) 

   
2 2

: np P p d x        (8.2.8) 

As opposed to Equation (8.2.1), where p  can take on an arbitrary value such that 
totE  is generally 

variable, equation (8.2.7) is a statement of total average energy conservation, i.e., holding for all times 

t . This means that in Equation (8.2.7), a variation in p  implies a varying ―particle energy‖  , and 

vice versa, such that each of the summands on the right hand side for itself is not conserved. In fact, as 

shall be detailed below, there will generally be an exchange of momentum between the two terms 

providing a net balance  

v 0m m u         (8.2.9) 

where v  describes a change in the ‖convective― velocity v  paralleled by the ―diffusive‖ momentum 

fluctuation   :p m u    in the thermal environment. 

As elaborated in references [2, 3], once Equation (8.2.1) is assumed, considerations based on 

Boltzmann‘s relation between action and angular frequency of an oscillator provide, without any 

further reference to quantum theory, that 

: ln
2

up mu k P          (8.2.10) 
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Now we make use of one out of a whole series of practical identities, which Garbaczewski has 

collected in [37]. (These identities hold true on general information theoretic grounds and are thus not 

bound to quantum mechanical issues.) Said identity, which can easily be checked by integration, is 

given by 

 
2 2ln lnP P        (8.2.11) 

In a further step, we now introduce a way to prepare for an Ord-type of projection as mentioned in 

the previous chapter, i.e., to cut out a ―slice of time‖ from an otherwise irreversible evolution as given 

by the assumed diffusion process. To do this, we shall first combine Equations (8.2.10) and (8.2.11), 

and shall then insert (8.2.6) for the initial time, 0t  . As from (8.2.7) one has that tot 0,E
t





 and thus 

also    tot tot 0 0,E t E    and as only the kinetic energy varies, one obtains 

   kin kin  const.0E t E   . Then, with the Gaussian (8.2.6), this provides an expression for the 

averaged fluctuating kinetic energy, or heat, of a particle and its surroundings, 

     

 

2
2 22

kin 2

2
2 2

kin 0 02

0

v v
2 2 2 8

0 0 : .
2 8 2

t

m m m
E t u

m

m m
E u u

m

  







    

     

   (8.2.12) 

Equation (8.2.12) is an expression of the fact that at the time 0t   the system is known to be in the 

prepared state whose fluctuating kinetic energy term is solely determined by the initial value 
0 , 

whereas for later times t  it decomposes into the term representing the particle‘s changed kinetic energy 

and the term including  t . As the kinetic energy term of the particle increases, the convective 

velocity becomes     for v v v   tt t     , and, correspondingly,     for   tu t u t u    . In 

other words, one can decompose said term into its initial  0t   value and a subtracted fluctuating 

kinetic energy term, respectively, i.e., 

 
2

22 2

028 2 2 2

m m m
u u u

m



        (8.2.13) 

where the last term on the right hand side is identical to  
2

v
2

m
  in order to fulfil Equation (8.2.12), 

and also in agreement with Equation (8.2.9). 

From Equations (8.2.12) and (8.2.13) one derives minimal uncertainty relations for all t , i.e., 

 

   

22 2

22

0 0 0 0 00

where

and, particularly,

where

,   : ,
2

,   :
2

tt

p p x p p m u

p p x p p mu

 

  

        

         

  (8.2.14) 

Moreover, with the ―diffusion constant‖ 

: 2D m       (8.2.15) 
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Equation (8.2.12) provides an expression for the initial velocity fluctuation, 

0

0

D
u


       (8.2.16) 

Now we take into account the small momentum fluctuations m u  from (8.2.13), providing an 

altered convective velocity  v v v t  , and thus an additional displacement v ,x u t t     i.e., 

as soon as 0t  . Therefore, in Equation (8.2.2) one now must decompose  u t  into its initial value 
0u  

and a fluctuating contribution  u t , respectively. Unless some thermal equilibrium were reached, the 

latter is typically given off from the ―heated‖ thermal bath to the particle of velocity v , 

   0u t u u t       (8.2.17) 

which is in accordance with (8.2.13) 

As opposed to (8.2.2), Equation (8.2.17) now provides the particle‘s total displacement 

         00 0x t x t x ut x u u t          (8.2.18) 

Squaring (8.2.18) provides 

            
2 22 2 2 2 2

0 02 0 2x t x t x t x t x u t u ut u t           (8.2.19) 

Since      
2 2 22 2v ,x t u t     one obtains in accordance with Equation (8.2.9) that the last 

terms on the l.h.s. and on the r.h.s. of (8.2.19), respectively, cancel each other out. Moreover, as the 

product terms in (8.2.19) are subject to the average orthogonality condition, one obtains through 

averaging over positions and fluctuations that 

2 2 2 2

0 0tx x u t         (8.2.20) 

Inserting (8.2.16) into (8.2.20) for the particular case that 2 2 2 2vx t    (i.e., 2 2

0 0tx   ), 

provides for the time evolution of the wave packet‘s variance 

2 2
2 2

0 4

0

1
D t

 


 
  

 
     (8.2.21) 

The quadratic time-dependence of the variance 
2  is remarkable insofar as in ordinary diffusion 

processes the scenario is different. There, with the Gaussian distribution being a solution of the heat 

equation, for purely Brownian motion the variance grows only linearly with time, i.e., as described by 

the familiar relation 

2 2

0 2tx x Dt         (8.2.22) 

However, as we have seen, the momentum exchange between the particle and its environment is 

characterized by both a changing velocity and by a changing thermal environment of the particle, i.e., 

also by a changing diffusivity. Therefore, Equation (8.2.22) must be modified to allow for a  

time-dependent diffusivity. 

In other words, we shall have to deal with the field of anomalous diffusion. This means that instead 

of the diffusion constant D  in the usual heat equation, we now introduce a time-dependent diffusion 
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coefficient  D t kt , where k  is a constant factor and the exponent   has to be derived upon 

comparison with Equation (8.2.21). Thus, we write the heat equation in the more general form 

   
2

2
, , ,  0P x t kt P x t

t x

 
 

 
 

    (8.2.23) 

and, inserting for P  the Gaussian (8.2.6), one obtains after a short calculation that 

d kt dt         (8.2.24) 

Integration then provides (with integration constant 
0c ) 

1
2

02
1

t
k c








 


      (8.2.25) 

Upon comparison with (8.2.21) we obtain that 2

0 0c   and 

1 2
2

2

0

2
1

t D
k t



 






      (8.2.26) 

which can only be fulfilled by 1  . Therefore, 2 2 2

0 0k D u  , and the time-dependent diffusion 

coefficient becomes 

 
2 2

2

0 2 2 2

0 04

D
D t u t t t

m 
        (8.2.27) 

Note that with the exponent of t  being 1  , or the 2t -dependence of 2  in (8.2.21), respectively, 

one deals with the special case of anomalous diffusion usually named ballistic diffusion. We shall 

review some general properties of ballistic diffusion in the last chapter. At this point, however, it is 

useful to recall that throughout the modelling of sub-quantum processes in the present chapter, we deal 

with various processes at different time scales. On the shortest scales, we have assumed Brownian-type 

motions (not detailed here), which, on the next higher level of (spatial and) temporal scales lead 

collectively to the emergence of a regular diffusion wave. The latter is characterized by a velocity u  

according to (8.2.2), and it is orthogonal on average to the particle‘s velocity v , thus providing the 

r.m.s. displacement (8.2.5) depending on  u t . As a next step, we have introduced the noisy thermal 

bath of the particle‘s environment, i.e., essentially the effect of other diffusion wave configurations, 

which disturbs the relation (8.2.5) by introducing a fluctuating term u . The net effect of the latter, 

however, is the r.m.s. displacement (8.2.20) with a dependence solely on the initial diffusive velocity 

0u . This manifests itself also in the expression for  D t  of the ultimately emerging ballistic diffusion, 

which is also dependent only on 0u . However, even on the level of ballistic diffusion one can recover 

the signature of Brownian motion. In fact, if one considers the time-average of  D t  for large enough 

times 1t  , i.e., 

   
 2

0

0

1
: ' '

2 2

t D tu
D t D t dt t

t
       (8.2.28) 

one immediately obtains the linear-in-time Brownian relation 
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   2 2 2 2

0 0and2       2tx x D t t D t t         (8.2.29) 

which is, however, also in accordance with the 2t  dependence of Equation(8.2.21). 

Note that the diffusivity‘s rate of change is a constant, 

  2
2

02

0

constu =
dD t D

dt 
       (8.2.30) 

such that it is determined only by the initial r.m.s. distribution 
0 . In other words, the smaller the 

initial 
0 , the faster  D t  will change. With the square root of (8.2.21), 

2 2

0 4

0

1
D t

 


        (8.2.31) 

we note that 
0   is a spreading ratio for the wave packet independent of x . This functional 

relationship is thus not only valid for the particular point     ,x t t  but for all x  of the Gaussian. 

Therefore, one can generalize (8.2.31) for all x , i.e., 

   
2 2

4

0 0 0

where0 ,   = 1  
D t

x t x
 

  
      (8.2.32) 

In other words, one derives also the time-invariant ratio 

   

0

const
0

 
x t x

 
       (8.2.33) 

Now we remind ourselves that we deal with a particle of velocity v p m  immersed in a wave-like 

thermal bath that permanently provides some momentum fluctuations p . The latter are reflected in 

Equation (8.2.31) via the r.m.s. deviation  t  from the usual classical path. In other words, one has to 

do with a wave packet with an overall uniform motion given by v , where the position 
0 vx t  moves 

like a free classical particle. As the packet spreads according to Equation(8.2.31),    x t t  

describes the motion of a point of this packet that was initially at   00x  . Depending on whether 

initially   00x   or   00x  , then, respectively, said spreading happens faster or slower than that 

for   00x  . In our picture, this is easy to understand. For a particle exactly at the center of the 

packet  0x , the momentum contributions from the ―heated up‖ environment on average cancel each 

other for symmetry reasons. However, the further off a particle is from that center, the stronger this 

symmetry will be broken, i.e., leading to a position-dependent net acceleration or deceleration, 

respectively, or, in effect, to the ―decay of the wave packet‖. Moreover, also the appearance of the 

time-dependent diffusivity  D t  is straightforward in our model. Essentially, the ―decay of the wave 

packet‖ simply results from sub-quantum diffusion with a diffusivity varying in time due to the 

particle‘s changing thermal environment: as the heat initially concentrated in a narrow spatial domain 

gets gradually dispersed, so must the diffusivity of the medium change accordingly. 

In conclusion, then, one obtains with Equations (8.2.32) and (8.2.15) for the ―smoothed out‖ 

trajectories (i.e., those averaged over a very large number of Brownian motions) 
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       
2 2

tot 2 4

0 0

v v 0 v 0 1  
4

t
x t t x t t x t x

m



 
          (8.2.34) 

Moreover, one can now also calculate the average total velocity, 

 
 

 
 tot

totv v
dx t dx t

t t
dt dt

        (8.2.35) 

Thus, with (8.2.32), one obtains the average total velocity field of a Gaussian wave packet as 

     
2

tot tot 2 2 2

0

 v v v
4

t
t t x t t

m  
        (8.2.36) 

Next to the fundamental relations (8.2.29), Equations (8.2.34) and (8.2.36) are the main results of 

this part of the chapter. They provide the trajectory distributions and the velocity field of a Gaussian 

wave packet as derived solely from classical physics. Note that the trajectories are not the ―real‖ ones, 

but only represent the averaged behaviour of a statistical ensemble. The results are in full concordance 

with quantum theory, and in particular with Bohmian trajectories. (For a comparison with the latter, 

see, for example, [14].) This is so despite the fact that no quantum mechanics has been used yet, i.e., 

neither a quantum mechanical wave function, or the Schrödinger equation, respectively, nor a guiding 

wave equation, nor a quantum potential. 

Implicitly, of course, one can easily find the connections to the rhetoric of (Bohmian or other) 

quantum mechanics. As for the Bohmian case, one just needs to consider the expression for the 

quantum potential, 

 
2 2

,
2

P
U x t

m P


       (8.2.37) 

Then one has, again with the help of the general relation (8.2.11), 

 
2

2 21 1
ln ln

4 4

P
P P

P


          (8.2.38) 

and thus obtains from Equation (8.2.6) for 0t   the time-independent expression for the average 

quantum potential as 

 
2 2

2

0 2

0

,0 ln  
8 8

tU x P
m m

         (8.2.39) 

The expression (8.2.39) is identical to the one we obtained on the r.h.s. of (8.2.12), such that we find 

that the energy conservation law (8.2.7) can be rewritten as 

tot const E U        (8.2.40) 

i.e., where 

 
 

2

,
2

p
U x t

m


       (8.2.41) 
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Still, it is rather remarkable that the results presented above can be arrived at without even referring 

to (Bohmian or other) quantum mechanics. However, let us now see how a ―translation‖ of the present 

formalism into that of ordinary quantum mechanics can be accomplished. 

It is straightforward to simulate the diffusion process of Equation (8.2.20) in a simple computer 

model. Using coupled map lattices (CML), one approximates the heat equation as usual by 

   
 

      2

,
, 1 , 1, 2 , 1,

D i k t
P i k P i k P i k P i k P i k

x


      


  (8.2.42) 

and for our anomalous (―ballistic‖) diffusion one simply inserts (8.2.27) into (8.2.42). 

The result is depicted in Figure 1, where the (macroscopic, classical) velocity is chosen as v 0 . 

(For examples with v 0  and different 
0 , see [48].) Moreover, nine exemplary averaged Bohmian 

trajectories are shown in Figure1, and it must be stressed that the Figure shows the emerging behaviour 

of the Gaussian packet following solely from the CML simulation of Eq. (8.2.42). In addition, the 

emerging trajectories from the simulation are shown together with the calculated ones from (8.2.34), 

providing exactly the same trajectories (i.e., up to resolution limits due to discretization). 

Note that the trajectories are not the ―real‖ ones, but only represent the averaged behaviour of a 

statistical ensemble. The results are in full concordance with quantum theory, and in particular with 

Bohmian trajectories. This is so despite the fact that no quantum mechanics has been used yet, i.e., 

neither a quantum mechanical wave function, or the Schrödinger equation, respectively, nor a guiding 

wave equation, nor a quantum potential. Moreover, we want to stress that our model offers possible 

insights into the sub-quantum domain which must escape (Bohmian or orthodox) quantum theory 

because the latter simply does not employ the ―language‖ necessary to express them. Note, for 

example, that the existence of the hyperbolic trajectories depicted in Figure 1, which are given by the 

formula for the scale invariant wave packet spread (8.2.21), has a simple physical explanation in terms 

of sub-quantum processes. As the inflection points of the hyperbolas are, according to (8.2.21), 

characterized by the relation 2 2 4

0 1D t   , i.e., by the length scales 2 2 2

0 0u t  , the trajectories‘ 

evolution is easily understood: as long as the main bulk of the heat ―stored‖ in the initial Gaussian 

spreads well ―inside‖ the distribution, 2 2 2

0 0u t  , the average particle velocity v  is not affected much. 

However, if said main bulk approximately reaches the distance 
0 , or spreads to regions 2 2 2

0 0u t  , 

respectively, the particles will ―feel‖ the full heat and get propagated into new directions. For t  , 

then, 
0u  becomes the spreading rate of the whole Gaussian packet: 

2

02 2

0 0

  
4 2

td t
u

dt m m



  

       (8.2.43) 

In other words, the ―spreading‖ already begins at 0t  , but becomes ―visible‖ in terms of deflected 

trajectories only when 0 0t u . 
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Figure 1. Dispersion of a free Gaussian wave packet. 

 

Figure 1: Considering the particles of a source as oscillating ―bouncers‖, they can be shown to ―heat up‖ 

their environment in such a way that the particles leaving the source (and thus becoming ―walkers‖) are guided 

through the thus created thermal ―landscape‖. In the Figures, the classically simulated evolution of exemplary 

averaged trajectories is shown (i.e., averaged over many single trajectories of Brownian-type motions). The 

results are in full agreement with quantum theory, and in particular with Bohmian trajectories. This is so 

despite the fact that no quantum mechanics is used in the calculations (i.e., neither a quantum mechanical wave 

function, nor a guiding wave equation, nor a quantum potential), but purely classical physics. The Figure 

displays a simulation with coupled map lattices of classical ballistic diffusion, with a time-dependent diffusivity 

as given by Equation (8.2.27). In the (1+1)-dimensional space-time diagram, both the emerging intensity field 

and nine exemplary emerging trajectories are shown (dark lines). They exactly match with the superimposed 

(bright) calculated trajectories from Equation (8.2.34). Note that the emerging hyperbolas‘ inflection points 

occur at the scale 
2 2 2

0 0u t  , a fact which has a direct physical meaning: It is there where the main bulk of the 

heat concentrated within the Gaussian reaches the latter‘s average ―borders‖. Whereas at earlier times the heat 

was essentially spreading ―inside‖ the original distribution, it now begins to affect the distribution itself by 

broadening it via heat dissipation. 
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Figure 2. Dispersion of a Gaussian wave packet in a gravitational field. 

 

 

Figure 2: Same as Figure 1, but with the addition of a linear (e.g., gravitational) field. The results are again 

in full agreement with quantum theory, and in particular with Bohmian trajectories, despite the use of a 

classical CML simulation of ballistic diffusion, now modified according to the substitution of the classical 

velocity by v v gt  . Again, both the emerging intensity field and nine exemplary emerging trajectories are 

shown (dark lines), thereby more or less exactly superimposing the (bright) calculated trajectories due to 

Equation (8.3.3). Note that some trajectories of the dispersing Gaussian even overcome gravity for a well-

defined period of time. In fact, our sub-quantum model provides a detailed explanation of why, and within 

which time limits, this ―anti-gravity‖ effect becomes possible: Some of the upper curves‘ extrema occur at the 

scale 
2 2 2

0 0u t  , which describes the maximum of the ―anti-gravity‖ effect, because it is there where the heat 

of the main bulk of the packet is consumed, which has via the kinetic energy counter-acted the effect of gravity 

for initial times. For larger times, then, the remaining heat gets gradually less, and therefore gravitational 

acceleration begins to dominate the trajectories‘ curvature. 

 

8.3. Addition of a Linear Potential 

Formelabschnitt 3 

So far we have shown that free one-particle quantum motion is exactly identical to sub-quantum 

ballistic diffusion. This is the basis of a research program that would eventually cover more and more 

complex situations beyond the case of free motion. As a first simple example, we extend the present 

scheme to include a linear potential. That is, we place the initial Gaussian packet (8.2.6) in a uniform 

potential V  K x , which may be an electric or a gravitational field, for example. For illustration, but 
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without loss of generality, we substitute in the following K  by mg , i.e., we shall discuss a Gaussian 

packet freely falling due to the potential V m g x . 

At this point it is important to note that our derivation of the time evolution of the free packet‘s 

variance, Equation (8.2.21), was based on considerations of variable kinetic energies only. In fact, this 

must hold true also when a spreading packet is placed into a potential, simply because of momentum 

conservation and the fact that heat, or kinetic energy, respectively, cannot be transformed into the 

potential energies envisaged here, and vice versa. (This is therefore a different scenario from the 

―traditional Bohmian‖ one, where the ―quantum potential‖ is not considered as a kinetic energy.) 

Therefore, in our case of ballistic diffusion, relation (8.2.32) still holds, except that now one has to 

substitute the coordinates  x t  by generalized ones,  X t , where (in one dimension for simplicity) 

2v
2

g
X x t t         (8.3.1) 

Then, with the analogue of (8.2.32), 

   
0

0X t X



       (8.3.2) 

one obtains the trajectories of particles in a gravitational field in a modification of (8.2.34) as 

   
2 2

2

tot 2 4

0

v 0 1
2 4

g t
x t t t x

m 
        (8.3.3) 

from which one immediately obtains the particle acceleration 

   

 

3 22 2 2 2

tot 2 3 2 4 2 4

0 0 0

3 2
2 2 2

0 0

2 2

0 0

0 0
1

4 4 4

     0 1 .

x x t
x g g

m m m

u u t
g x

   

 





 
       

 

 
    

 

   (8.3.4) 

In Figure 2, exemplary trajectories of a Gaussian in a gravitational field are shown as obtained by 

the CML simulation of ballistic diffusion, modified by the substitution v v gt  . The trajectories are 

superimposed by those derived directly from Equation(8.3.3), and again exhibit excellent agreement. 

As noted by Holland [14], one can deduce from Equation (8.3.3) some interesting features of the 

motion. The most curious one is that the acceleration of a particle of mass M m  may be greater or 

less than that of m  depending on the size of the mass rates, i.e., in some cases heavier objects may fall 

more slowly. Of course, a particle at the center of the Gaussian will stay there (because of zero net 

contributions of the symmetrically distributed surrounding heat) and follow the classical trajectory.  

However, note that some trajectories of the dispersing Gaussian even overcome gravity for a  

well-defined period of time, as can also be seen in Figure2. In fact, our sub-quantum model provides a 

detailed explanation of why, and within which time limits, this ―anti-gravity‖ effect becomes possible. 

A look at the last expression of Equation (8.3.4) provides the answer. Similarly to the discussion of the 

hyperbolas‘ inflection points in the free case, one deals also here with an extremum at the scale 
2 2 2

0 0u t  . However, this time the corresponding expression (in rectangular brackets) is antagonistic 
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to g . In other words, said scale describes the maximum of the ―anti-gravity‖ effect, because it is there 

where the heat of the main bulk of the packet is consumed, which has via the kinetic energy  

counter-acted the effect of gravity. For larger times, then, the remaining heat gets gradually less, and 

therefore gravitational acceleration begins to dominate the trajectories‘ curvature. 

 

8.4. Ballistic Diffusion: Conclusions and Perspectives 

Formelabschnitt (nächster) 

Instead of simply repeating the central results of the present chapter in this Summary, I would like to 

discuss them from a slightly different point of view. For, it turns out that the main results of this 

chapter can be derived also with the Ornstein-Uhlenbeck theory, and even simpler at that. Consider 

again a momentum fluctuation p mu  , for which one can write down a Langevin stochastic 

differential equation 

 
du

m m u F t
dt

        (8.4.1) 

where   is our damping factor due to friction and  F t  is the random fluctuating force. Rewriting 

Equation (8.4.1), again in one dimension for simplicity, one has 

 mx m x F t        (8.4.2) 

One notes that on average   0xF t   due to the random nature of the force  F t , and due to local 

equilibrium [2], it holds that 
2 2 2,m x kT  such that one obtains the corresponding Langevin 

equation‘s standard Ornstein-Uhlenbeck solution for 2x  in the form 

 2 2

0

1
2 1 t

tx D t e x







 
     

 
     (8.4.3) 

where the diffusion constant 
kT

D
m

 . As we have derived in Chapter 2 the identity 2  , Equation 

(8.4.3) reads as 

 2 2 2

0

1
2 1

2

t

tx x D t e 







 
     

 
    (8.4.4) 

Equation (8.4.4) has two well-known limiting expressions, depending on the choice of the time scale 

chosen. That is, for 1t   one obtains that 

2 2

0 2tx x Dt         (8.4.5) 

i.e., the description of the usual Brownian-type motion. However, for 1t  , and by expanding the 

exponential up to second order, Equation (8.4.4) provides that 

2
2 2 2 2 2 2 20

0 02t

mukT
x x Dt t t u t

m m
         (8.4.6) 

that is, exactly our expression (8.2.20) for ballistic diffusion. Note on the one hand, however, that both 

Equations (8.4.5) and (8.4.6) are approximations holding for specific time scales only. As, on the other 
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hand, from (8.4.6) one derives the usual quantum mechanical formula for the spreading of a free wave 

packet, one can maintain that the latter is only an approximation, whereas the more exact expression is 

given by Equation (8.4.4). Moreover, one thing must also be stressed in this summary: throughout the 

whole chapter, no use is made of the orthodox apparatus of quantum mechanics, or of any alternative 

ones such as Bohmian mechanics. In fact, only classical physics is employed, which nevertheless 

provides exact agreement with the corresponding quantum mechanical results.  

We have shown for the cases of free motion and motion in linear potentials, respectively, that the 

time evolution of a one-particle quantum system in the noisy heat bath of the surrounding ―vacuum‖ 

exactly equals that of (classical) ballistic sub-quantum diffusion. Note that there are some well-known 

general characteristics of ballistic diffusion [49], and the results presented in this chapter agree 

perfectly with them. For one thing, ballistic diffusion is the only type of diffusion that exhibits 

reversibility, and because of this it violates ergodicity (i.e., as in our cases). Also, if the ballistic system 

is not in equilibrium initially, it will never reach equilibrium (which is true here as well). Finally, the 

result of any measurement depends on the initial conditions. This can be clearly seen also from our 

results for the time evolution of the Gaussians and the corresponding averaged trajectories, which all 

depend on the initial values of 
0u , or 

0 , respectively. 

9. Conclusions and Outlook 

In this review, an extensive discussion was presented of various aspects of a suggested sub-quantum 

thermodynamics as a basis for emergent quantum theory. On this basis, it has been explicitly shown 

how the following quantum mechanical features can be derived from purely classical physics: Planck‘s 

relation E   for the energy of a particle, the Schrödinger equation for conservative and  

non-conservative systems, the Heisenberg uncertainty relations, the quantum mechanical superposition 

principle, Born‘s rule, and the quantum mechanical ―decay of a Gaussian wave packet‖. Moreover, also 

the energy spectrum of a quantum mechanical harmonic oscillator has been derived classically, as well 

as that of a ―particle in a box‖. 

Further, it has been proven that free quantum motion exactly equals sub-quantum anomalous (i.e., 

―ballistic‖) diffusion, and, via computer simulations with coupled map lattices, it has been shown how 

to calculate averaged (Bohmian) trajectories purely from a real-valued classical model. This has been 

illustrated with the cases of the dispersion of a Gaussian wave packet, both for free quantum motion 

and for motion in a linear (e.g., gravitational) potential. It has been shown that the results are in 

excellent agreement with analytical expressions as they are obtained both via our approach, and also 

via the Bohmian theory. However, in the context of the explanation of Gaussian wave packet 

dispersion, quantitative statements on the trajectories‘ characteristic behaviour were presented, which 

cannot be formulated in any other existing model for quantum systems. 

Concerning the computer simulations, much more should be possible, and we are only just 

beginning to exploit this simple and practical tool to arrive at classical simulations of ―quantum 

processes‖. Of course, as a next step, relative phases will have to be implemented, so as to be able to 

simulate truly wave-related phenomena such as interference at a double slit, and the like. Moreover, the 

simulation of interactions with potentials will constitute a major challenge, as well as many-particle 

processes, or the extension to higher-dimensional scenarios. In principle, however, there is one area 
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where the simulation might prove to have a big advantage, i.e., in situations of high complexity, where 

the usual analytic tools of ordinary quantum mechanics would be insufficient. In sum, there is a great 

potential for novelty with our classical simulation approach. 

Finally, one must also mention the challenges as given by quantum mechanical nonlocality and the 

model‘s possible relativistic extensions, respectively. The fact that with diffusion wave fields spatial 

coherence can be created out of random ensembles of diffusive energy is per se already highly 

interesting. Moreover, as has been pointed out, in this context one needs to mention that the equations 

of the type (6.2.11) yield ―the physical artefact of infinite speed of field propagation, though with 

vanishingly small amplitude, at remote locations away from the source. (…) Because propagation is 

instantaneous, the equations yield no travelling waves, no wave-fronts, and no phase velocity. Rather, 

the entire domain ‗breathes‘ in phase with the oscillating source. In the world of diffusion waves, there 

are only spatially correlated phase lags controlled by the diffusion length.‖ [50] Naturally, if any 

phenomena from classical physics should be helpful at all in this regard, these features make diffusion 

waves particularly amenable for modelling quantum mechanical nonlocality.  

One can thus imagine the following scenario for, e.g., an experiment in neutron interferometry. With 

a prepared neutron source in a reactor, one immediately has a thermal field in the ―vacuum‖ that 

nonlocally links the neutron oven, the apparatus (including, e.g., a Mach-Zehnder interferometer), and 

the detectors. The (typical) Gaussians used to describe the initial quantum mechanical particle 

distributions thus also contribute in their totality to the form of the heat distribution in the overall 

system, no matter which particle actually is on its way through the interferometer. In this way, all 

―potential‖ paths are implicitly present throughout the experiment (i.e., under constant boundary 

conditions) in that the corresponding thermal field is spread out no matter where the particle actually is. 

That this can be assumed is, of course, solely due to the fact of the infinite propagation of diffusion 

wave fields. Moreover, eventual relativistic formulations of the physics of diffusion wave fields would 

thus become of primary importance.  

At last, let me mention that this review is in no way intended to provide a closed chapter of, say, 

emergent quantum mechanics. On the contrary, as with research in general, a comprehensive view of 

ongoing research activity is, particularly when devoted to such foundational issues, almost a  

self-contradictory project per se, because the process goes on as we write or read. One can say that 

work in the domain of basic research is always work in progress. 
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